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Probing microcavity resonance spectra with intracavity emitters
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We measure the fluorescence spectrum of broadband emitters in an open optical microcavity with radius of
curvature R = 17.7(3) µm and finesse F ≈ 1000. This geometry enables a combined measurement of emission
spectra versus cavity length, which has several benefits over measurements at fixed wavelength or fixed cavity
length alone. We demonstrate the role of the optical penetration depths on the cavity modes and provide practical
working equations for its analysis. Furthermore, we show the ability to measure the coupling of cavity modes
within a small scan range of the cavity length. By measuring these cavity emission spectra as a function of cavity
length, we thus obtain a rich and complete picture of the optical microcavity.
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I. INTRODUCTION

Optical microcavities [1] are widely used in optics, for
instance, to create good single photon sources [2–5], to
image surface layers with very high precision [6–8], to sim-
ulate physical processes like Bose-Einstein condensates [9]
or nonequilibrium dynamics [10], and to perform chemical
sensing [11,12]. All these examples require many reflec-
tions between the mirrors of the cavity, while maintaining
strong (transverse) field confinement. In the past decade,
open microcavities have been developed for this purpose
[13]. In open microcavities, the two mirrors can be tuned
individually to vary the cavity length and lateral mirror
displacement.

In order to achieve stronger light-matter interaction, the ra-
dius of curvature of the microcavities has been getting smaller
[14]. Consequently, the penetration depths can become similar
to the cavity length [15,16] in such microcavities. Besides,
nonparaxial effects have an increasingly strong influence on
the cavity modes [17,18]. Proper characterization and ap-
plication of microcavities require precise information about
penetration depth and mirror shape. Planar cavity modes are
characterized using emitters in monolithic cavities, where
one simultaneously has access to the wavelength and cavity
length-dependent spectrum, where the latter is determined
from the angle-resolved emission [19,20]. Yet, cavity modes
in a concave or plano-concave geometry are most com-
monly characterized at a fixed wavelength [7,8,21,22] or
a fixed cavity length [23,24]. When using emitters in an
open microcavity, one also has access to a wavelength
and cavity-length-dependent emission spectrum for all cav-
ity modes [25]. This has several advantages, as discussed
below.

In this paper, we study optical microcavities using
broadband, intracavity emitters. We measure spectra of the
fluorescence from these emitters, while slowly tuning the
cavity length, resulting in a joined length-wavelength fluo-
rescence spectrum P(λ, L). The key message of this paper is
that the analysis of the joined P(λ, L) spectrum allows one to
determine the penetration and observe mode mixing in a more

controlled way. First, we distinguish between the different
penetration depths [16] of the cavity mirrors. Second, we
analyze the spectra of the transverse modes and find from
the mode spacings that a shape imperfection of the mirror
dominates the mode structure. Last, we zoom in on cavity
lengths where the N = 0 mode is almost frequency degenerate
with the N = 6 mode group. We observe an avoided crossing
around the wavelength and cavity length where these modes
should overlap, and we quantify it with coupled-mode theory
[26,27].

II. SETUP

Figure 1 shows a schematic of the experimental setup. The
optical cavity, shown in the center, consists of two highly
reflective distributed Bragg reflectors (DBR); one flat and the
other curved. We use an asymmetric set of mirrors, where
the flat mirror has a higher transmission [T = 1.8(1) × 10−3

at λ = 633 nm, central wavelength λc = 640 nm] than the
curved mirror [T = 0.3(2) × 10−3 at λ = 633 nm, λc = 610
nm], such that most of the fluorescent light leaves the micro-
cavity through the flat mirror. The two mirrors are coated with
alternating layers of SiO2 (n = 1.46) and Ta2O5 (n = 2.09).
The curved mirror is an H-DBR, meaning that it ends with a
high reflective index layer of Ta2O5 to optimize its reflectivity
for a given number of layers. The flat mirror, produced by
LaserOptik, is an L-DBR ending with a lower refractive index
layer of SiO2, to create a field antinode close to its surface.
The curved mirror, produced by Oxford HighQ [28], has a
small radius of curvature R = 17.7(3) µm. We use a hexapod
system to align the mirrors in parallel and tune the cavity
lengths L = 3–10 µm with piezo stacks.

We use nanodiamonds as broadband intracavity emitters.
The nanodiamonds [Adamas Nanotechnologies flourescent
nanodiamonds, 40 nm, 1–4 negatively charged nitrogen-
vacancy centers (NV−) per nanodiamond] contain NV− and
NV0 (neutral nitrogen vacancy) centers whose combined
room-temperature emission spectrum (590–700 nm) over-
laps with the stopband of our cavity (590–680 nm). The
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FIG. 1. Schematic image of the experimental setup. The mi-
crocavity (center + zoom-in) is injected with either a HeNe laser
(λ = 633 nm) or a Nd:YAG laser (λ = 532 nm). The fluorescence
spectra under green off-resonant excitation are observed with either a
fiber spectrometer (not shown) or a free-space spectrometer. A 10 nm
bandpass filter around 532 nm (BP532) is used to filter out fluores-
cence that may originate from the fiber. A 550 nm longpass filter
(LP550) is used to block the green laser light transmitted through the
cavity.

nanodiamonds are drop-casted onto the flat mirror. Their con-
centration is not uniform and we scan the flat mirror to find
an optimum where the finesse is not strongly degraded and is
similar to previous works [18]. More specifically, we study a
region where the finesse F ≈ 1000 instead of the F ≈ 3000
observed without nanodiamonds. By comparing the increased
scattering losses of approximately 2 × 10−3 with the calcu-
lated scattering cross section of the individual nanodiamonds,
we estimate having approximately 1600 nanodiamonds within
the mode volume of the microcavity.

In the first experiment, we inject the cavity with a HeNe
laser (λ = 633 nm) to probe the finesse and “length spectrum”
of the cavity. We couple the laser light into the cavity with an
f1 = 5mm [40×, numerical aperture (NA) = 0.6] lens, and
out of the cavity with an f2 = 8mm (NA = 0.5) aspheric lens.
We rapidly scan the cavity length (scan velocity ≈10 µm/s)
and record the transmission spectrum on a solid-state photo-
multiplier tube (PMT). From this scan, we determine a finesse
of F ≈ 1000 for the fundamental modes. Furthermore, we use
it to compare the mode structure of a length scan with that of
a spectral scan (see below).

In the second set of experiments, which form the bulk
of this paper, we measure the fluorescence spectrum from
the cavity. We use a frequency-doubled Nd:YAG (yttrium
aluminum garnet) laser (λ = 532 nm) to excite intracavity
emitters. We measure their fluorescence spectrum with two
different spectrometers. The first (fiber-coupled) spectrome-
ter (Ocean Optics QE65000) can image the full fluorescence
spectrum with a resolution of λres = 1.2 nm. The second
(free-space) spectrometer has a smaller spectral range (619–
647 nm) but a better spectral resolution of λres = 0.05 nm,
which is comparable to typical linewidths in the cavity fluo-
rescence spectrum. The photoresponse of this spectrometer is
about 1 bitcount per outcoming cavity photon (the CCD has
approximately 8 bitcounts/photon, while the optical transmis-
sion is approximately 1/8 from cavity to CCD). The cavity
length is now scanned very slowly (scan velocity ≈0.3 nm/s)
such that the cavity resonances appear to be quasistatic. The
1 Hz acquisition rate of the spectrometer is just fast enough to
minimize the influence of drift on the measurements.

III. JOINED LENGTH-WAVELENGTH SCAN

Figure 2(b) shows a typical fluorescence spectrum P(λ, L)
of the emitters in the cavity. There data are measured by
slowly increasing the cavity length L, while constantly record-
ing the emission spectrum on the free-space spectrometer.
Each vertical line-cut corresponds to a single measurement
at fixed L. The line-cut for L ≈ 3.6 µm is shown as the black
curve in Fig. 2(c). This figure also shows a red curve which
is the emission spectrum of the NV centers averaged over a
large range of cavity lengths (L = 3.0–5.2 µm). This shows
that the spectrum is relatively uniform over the investigated
wavelength range. The cavity length is estimated by taking a
horizontal line-cut, plotted in Fig. 2(a), and fitting the trans-
verse mode splittings to an increasing Gouy phase [16]. The
shortest cavity length is L ≈ 2.9 µm, indicated by the dashed
yellow line, where the substrates of the mirrors almost touch.

The optical modes in Fig. 2 can be labeled by a longitu-
dinal mode number q and a transverse mode number N . The
longitudinal mode number q and cavity length L are estimated
based on the mode crossing of the fundamental N = 0 mode
with the N = 6 mode, where L + LD1 + LD2 = R sin(π/6)2 =
R/4. The physical cavity length L is then determined by filling
in the values LD and R from the fits in Fig. 3 below. The
number of half-wavelengths that fit in this cavity length results
in a longitudinal mode number q = 2L/λ = 13.1(3) for the
fundamental mode at this crossing at λ = 637 nm. The large
uncertainty in q is due to the difficulty of determining the
radius of curvature and modal penetration depth for all lon-
gitudinal mode numbers simultaneously. For a combination
of H-DBR and L-DBR, we expect q to be a half-integer [16].
However, due to the asymmetry of the mirror stopbands and
slightly thinner final layer of the L-DBR, the reflection phase
of the L-DBR is nonzero, which results in an unconventional
value of q. For labeling purposes, we round q to integer values.
The exact value of q has no influence on the measurements
shown below, but will be discussed in more detail in the
Appendix.

IV. PENETRATION DEPTHS

The frequency- and angle-dependent reflection of any DBR
can be described by three penetration depths: Lϕ , Lτ , and
LD [15,16,29]. The phase penetration depth Lϕ is the shift
of the (anti)node when the frequency ν is detuned from the
DBR’s central frequency νc. The frequency penetration depth
Lτ is the extra length required to correct for the time delay
of a reflected laser pulse. The modal penetration depth LD

describes the shift of the focus of a converging beam inside
the mirror. The penetration depths are different for H-DBRs
and L-DBRs [15,16]:

Lτ = 1

nH − nL

λc

4
(H-DBR) (1)

and

Lτ = nH nL

nH − nL

λc

4
(L-DBR), (2)

where nH and nL are the high and low refractive indices of the
DBR pairs. The modal penetration is related to the frequency
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FIG. 2. Emission spectrum P(λ, L) of NV centers in the optical cavity: (a) horizontal line-cut of the P(λ, L) map for λ = 646 nm, (b) false-
color plot of the fluorescence spectra as a function of the cavity length, (c, black curve) typical spectrum for q = 11 at L ≈ 3.6 µm, (c, red
curve) emission spectrum averaged over L = 3.0–5.2 µm.

penetration depth [16,29] as

LD = Lτ

2

(
1

n2
H

+ 1

n2
L

)
. (3)

Both equations assume that the DBR is illuminated from air
(n = 1). The phase penetration depth is frequency dependent,
Lϕ = ν−νc

ν
Lτ , where νc is the central frequency of the stop-

band. The penetration depths of the two different mirrors used
here are referred to as Lτ,1, Lτ,2, LD,1, LD,2.

The frequency spacing between the cavity modes depends
on different penetration depths. This can be seen from the
cavity resonance condition [16],

2L

c
ν + 2(Lτ,1 + Lτ,2)

c
(ν − νc) = q + (N + 1)

χ

π
, (4)

where L is the physical (on-axis) distance between the two
mirrors, c is the speed of light, and χ is the Gouy phase (see
below). The frequency difference between two consecutive
fundamental modes at fixed L, the so-called free spectral
range, depends only on the frequency penetration depth,

νq+1,0 − νq,0 = νfsr = c

2(L + Lτ,1 + Lτ,2)
, (5)

and therefore

L + Lτ,1 + Lτ,2 = c

2(νq+1,0 − νq,0)
. (6)

The transverse mode spacings and the associated Gouy phase
χ , on the other hand, depend only on the modal penetration
depth [16] via

π
νq,N − νq,0

Nνfsr
= χ = arcsin

√
L + LD,1 + LD,2

R
, (7)

and therefore

L + LD,1 + LD,2

R
= sin2

(
π

N

νq,N − νq,0

νq+1,0 − νq,0

)
. (8)

From the difference between these quantities, we find the
difference between the penetration depths of the mirror pair
Lτ,1 + Lτ,2 − LD,1 − LD,2, without having to rely on an abso-
lute longitudinal mode number q.

Figure 3 shows our procedure to determine the two dif-
ferent penetration depths. These were measured using the
fiber spectrometer with the larger spectral range. We only use
cavity modes in the range λ = 610–670 nm such that a non-
linearity in the reflection phase of the DBR is relatively small
[23]. The data in the figure are corrected for this third-order
nonlinearity (corrections are � 20%; see the AppendixA).
The horizontal axis indicates the cavity length, as determined
by the inverse of the free spectral range. The vertical axis
shows the transverse mode splittings, normalized to the free
spectral range. Figures 3(c) and 3(d) show the spread in the
data points. This is mainly due to the modest resolution of the
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FIG. 3. (a) The transverse mode splitting for the first four transverse mode groups as a function of the inverse of the free spectral range.
(b) The Gouy phase converted to a “modal cavity length” such that both axes depend linearly on cavity length. The crossing with the horizontal
axis yields the difference between the penetration depths. (c,d) Histograms of the deviation from the fits for the vertical axis. The horizontal
axis shows the number of data points in a bin of 0.0002 for (c) and 0.0004 for (d).

fiber spectrometer of 1.2 nm. The relative resolution is worse
at larger cavity lengths because the free spectral range by
which the data are normalized becomes smaller. Furthermore,
the higher N groups show an increased spread due to the
spectral splittings, also shown in Fig. 4. Note that the periodic
structure is an artifact of the shift of the free spectral range out
of the cavity mirrors’ stopband.

FIG. 4. Mode structure for transverse mode groups N = 1–4.
Each transverse mode group is fitted with 2, 3, 3, and 4 Lorentzians
for N = 1, 2, 3, and 4, respectively. The N = 2 plot shows peak
distances that correspond to the (a) and (b) labels in Table I.

The difference in penetration depths, Lτ − LD, is
visible as the crossing with the x axis in Fig. 3.
This can be seen best in Fig. 3(b). A linear fit
of Fig. 3(b) gives penetration depths for transverse
modes N = 1–4 of (Lτ,1 + Lτ,2 − LD,1 − LD,2)/2 =
0.481(2), 0.410(2), 0.381(3), 0.33(1) µm. The radii of curva-
ture are R = 18.02(1), 17.60(1), 17.45(2), 17.84(9) µm.
From theory [16] we expect that the H-DBR (curved
mirror) has a penetration depth Lτ = 0.25 µm, and the
L-DBR has a penetration depth Lτ = 0.77 µm. This
means that the theoretical difference in penetration
depths (Lτ,1 + Lτ,2 − LD,1 − LD,2)/2 = 0.33 µm. The
frequency penetration depth for the modified [top layer
0.8 × λc/(4nL )] L-DBR will be smaller than for a standard
L-DBR. From the slope of the reflection phase versus
wavelength data provided by the manufacturer, we find
a theoretical value for the L-DBR Lτ = 0.69(2) µm,
which results in a slightly smaller theoretical prediction
(Lτ,1 + Lτ,2 − LD,1 − LD,2)/2 = 0.30(1) µm. The measured
values of Lτ − LD agree reasonably well with theoretical
predictions. Still, the measured values are somewhat larger
than predicted. This might be due to the asymmetric mirror
set with different central wavelengths. The data also suggest
N-dependent variations in curvature and penetration depths,
possibly due to mirror shape effects [30], where each
transverse mode scans a different part of the curved mirror.
The error bars of the estimated (differences in) penetration
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TABLE I. Mode structure, relative to the free spectral range,
determined from (i) emission spectra at fixed cavity length, (ii) length
scans at fixed wavelength (λ = 633 nm), and (iii) theoretical values
for a perfectly spherical mirror. The N = 1 structure contains two
peaks, while the N = 2 structure contains three peaks. The two
relative splittings for N = 2 are (a) and (b) as indicated in Fig. 4.

�λ/λfsr �L/(λ/2) �ϕth/(2π )

N = 1 5.35(2) × 10-3 5.1(6) × 10-3 1.78 × 10-3

N = 2 (a) 5.63(5) × 10-3 6.6(6) × 10-3 2.78 × 10-3

N = 2 (b) 12.05(5) × 10-3 13(1) × 10-3 3.56 × 10-3

depths underestimate the influence of noise, as they are
computer generated and hence based on intrinsic estimates of
the noise. Still, the trend of these estimates with transverse
order N is undeniable.

V. TRANSVERSE MODE GROUP STRUCTURE

Figure 4 shows zoomed-in spectra of the transverse mode
groups N = 1 to N = 4. The N = 1 and N = 2 groups were
measured at q = 11, where the modes are least coupled to
any other transverse mode groups. The N = 3 and N = 4
transverse groups were measured at q = 8 where the two
mirrors almost touch, such that vibrations are smaller and
the peaks become better resolvable. Each transverse mode
group N is predicted to consist of N + 1 separate peaks. The
observed number of peaks in the N = 3 and N = 4 spectra
is N instead of the expected N + 1, presumably because two
peaks overlap.

The measured transverse group structure is quantified by
determining the distance between the peaks. In the case of a
perfectly spherical mirror, the mode structure is determined
by a fine structure, �λ/λfsr = (	s + 3	2/8)/(2πkR), where
	 and s are the angular momentum and spin polarization of
the mode [17,18]. For the N = 1 and N = 2 mode groups, we
observe the expected number of peaks, so we can make a com-
parison between theory and measurement. Table I shows this
comparison, where we also added the splitting from the mode
structure measured with a length scan using a HeNe laser.

The theoretically predicted values for the nonparaxial fine
structure are a factor 2–3 smaller than the measured values.
We thus conclude that technical effects dominate over the
intrinsic nonparaxial effects. This is most likely due to astig-
matism in the curved mirror, which shifts the fundamental
fine structure towards more equidistant peaks, as observed
for N = 2 [18]. Another explanation of the astigmatism could
be a symmetry breaking due to a gradient concentration of
nanodiamonds. We also observe that the peaks in Fig. 4 have
different integrated powers. However, there is no clear trend
visible where, for example, a central peak with a more cen-
tered mode is stronger than side peaks with a more spread out
mode. Hence, we can not conclude on a clear difference in the
concentration of the nanodiamonds.

The advantage of a spectral measurement over a length
scan is that it hardly depends on the incoupling of light
[18]. Furthermore, it is not influenced by fluctuations in the
piezovelocity, such that the uncertainties are smaller. The
mode structure is similar to the spectral and cavity length scan.

FIG. 5. False color plot of the fluorescence in the N = 0 and
N = 6 modes around their frequency degeneracy. The vertical axis
indicates the cavity-length-dependent wavelength λ13,0 at which the
uncoupled N = 0 (q = 13) mode is resonant. The horizontal axis
indicates the spectral distance λ − λ13,0 from this uncoupled N = 0
mode. The white curves follow a theoretical model of coupled modes
(see text for details).

The disadvantage of the described P(λ, L) method, how-
ever, is the limited operation of the finesse. In particular,
cavities with very high finesse [31,32] will suffer significantly
from the additional scattering losses. Although we try to stay
in a regime where the finesse hardly suffers, we do observe ad-
ditional scattering losses of the order 2 × 10−3, corresponding
to approximately 1600 nanodiamonds.

VI. MODE COUPLING

Figure 5 shows a false color plot of P(λ, L) in the region
where the (q = 13, N = 0) and (q = 12, N = 6) modes cross.
This is a zoom-in from Fig. 2(b) around the q = 13 longitudi-
nal mode, but the horizontal and vertical axes are interchanged
and rescaled. The vertical axis now shows the wavelength
λ13,0 at which an uncoupled (q = 13, N = 0) mode would
be resonant. The increasing value of λ13,0 corresponds to an
increasing cavity length in the measurements, which can also
be described by an increasing Gouy phase, as shown on the
(second) y axis on the right. The horizontal axis shows the
spectrum in terms of wavelength detuning λ − λ13,0. Com-
parable figures in Refs. [7,33] present data as a function of
longitudinal mode number q, i.e., a P(q, L) map is shown
instead of a P(λ, L) map. The advantage of a P(λ, L) map
is that λ is a continuous variable and not an integer like q.
This is especially important for small cavities, where the Gouy
phase χ changes rapidly with cavity length and the steps due
to discrete changes in q are too large to accurately measure
coupling in the length spectra [30].

The accurate determination of λ13,0 required some refine-
ments of the data. First, we shifted all measured spectra such
that the intensity-weighted wavelength around the N = 0 and
N = 6 modes was set to zero. From the resulting image, a
straight line could be drawn for the N = 0 mode between the
highest and lowest wavelengths, where the N = 0 and N = 6
modes are no longer coupled (see top and bottom of Fig. 5).
This straight line yields the values λ13,0 in Fig. 5. A Gaussian
filter was used to make the N = 6 modes (visible as slanted
lines) more visible. Without these corrections, the coupling is
still visible but less clean.
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We can quantify this avoided crossing using a coupled-
mode model with a coupling matrix [30](

0 −M
−M �ϕ

)
, (9)

where �ϕ = 6χ − π is the one-way phase difference between
the N = 6 and N = 0 modes, and M is the coupling parameter.
Using a “fit by eye” we find M = 0.014(3). This value is com-
parable to the coupling parameter M = 0.016(2) found in a
similar cavity [30]. This shows the equivalence between mea-
surements in the frequency domain and the far field. Previous
measurements on a similar cavity [30] showed that the origin
of mode mixing was a slight deviation of the curved (H-DBR)
mirror shape. Atomic force microscopy (AFM) topography on
that mirror showed a defect at the mirror center which gave the
cavity a slight bathtub shape. The curved mirror that is used
in the current experiments is produced in the same way [28]
and, although we have not performed AFM measurements on
this mirror, we believe the origin to be the same.

VII. CONCLUSIONS

We have demonstrated the use of broadband intracav-
ity emitters for the characterization of microcavities. The
obtained broadband spectra P(λ, L) enable accurate deter-
mination of the difference between two DBR penetration
depths Lτ − LD, in reasonable agreement with theoretical
expectations. Furthermore, mode coupling can be measured
without having to switch between discrete values of q. This is
crucial in very small cavities, where the Gouy phase changes
rapidly with cavity length. Although the measurements could
also be done using a tunable laser or white light source, the
advantages of using emitters in a cavity are that they are typi-
cally already in place inside the cavity [25] and that the light
source does not depend on incoupling. In many experiments,
the experiments shown above can thus be done without much
additional effort.

The description of mode formation in a microcavity be-
comes intriguing when microcavities become smaller. For
small radii of curvature, the penetration depth can become
significant, especially when L-DBRs are used. Indeed, the
measured difference between two penetration depths, Lτ −
LD, is approximately half a wavelength, so an erroneous de-
termination of the penetration depth can easily result in a
wrong estimation of the longitudinal mode number q. The
method that is described here is better than a previously
presented method [16] because it does not rely on an exact
cavity length L or longitudinal mode number q. Furthermore,
the penetration depth can be determined for each individual
transverse mode group. Our measurements show a difference
in penetration depth for the different transverse mode groups,
possibly due to the mirror shape that is probed differently for
each transverse mode. This mirror shape also causes mode
mixing, which can be observed as an avoided crossing of two
modes. The full P(λ, L) map of the microcavity reveals all
these aspects in a single picture.
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APPENDIX: THIRD-ORDER FREQUENCY
DISPERSION OF DBRS

This Appendix describes the influence of the third-order
frequency dispersion of DBRs on the measurements. For most
cases, the reflection phase of the DBR is linearly approxi-
mated, ϕ = 2Lτ

c (ν − νc), with the central frequency νc and
frequency penetration depth Lτ . If the frequency is near the
edge of the DBR stopband, this relation becomes nonlinear
[23,34]. This has consequences for the accurate determination
of the penetration depths.

The complex reflection amplitude of a DBR can be derived
from coupled mode theory [35,36]. Its frequency dependence
can be derived from an expansion of the phase in the reflection
amplitude 
0 = |
0|eiϕ [16], where |
0| = 1. The result

ϕ = arcsin[τ0(ω − ωc)] ≈ τ0(ω − ωc)

+ τ 3
0 (ω − ωc)3

6
+ · · · , (A1)

with τ0ωc = πnH/(nH − nL ), is only valid when the material
outside of the DBR has refractive index nin = nH or nin = nL.
For the general case, we need to consider one more reflection
from its first layer, such that the new reflection amplitude is


 = − r ∓ 
0ei2(ω−ωc )�τ

1 ± r
0ei2(ω−ωc )�τ
. (A2)

where the + (−) sign is used for an initial layer with low
(high) refractive index and �τ = π/(2ωc) is the transit time
through the first layer. The reflection from the first interface
is r = nin−nL/H

nin+nL/H
, where the environment has refractive index

refractive index nin. Our experiments are conducted in air, so
we can set nin = 1. The approximate reflection phase of the
mirror including this top layer is


 = |
|ei(τL/H (ω−ωc )+μL/H (ω−ωc )3/ω3
c ), (A3)

where τL/H and μL/H are constants which are determined
from the refractive indices of the DBR. The frequency pen-
etration depth is related through LL/H = τL/H

2nin
c. If we assume

that |
0| = |
| = 1 and compare the first and third derivatives
of Eqs. (A2) and (A3), as was done in [15], we find for the
H-DBR

ωcτH = π
nin

nH

nH

nH − nL
, μH = π

nin

6nH

(
nH

nH − nL

)3

(A4)

and for the L-DBR

ωcτL = π
nL

nin

nH

nH − nL
, μL = π

nL

6nin

(
nH

nH − nL

)3

. (A5)

For our mirrors, with nL = 1.46, nH = 2.09, and the refractive
index of our environment nin = 1, we expect μH = 9.1 and
μL = 27.9.

The resonance condition of the cavity, including the third-
order nonlinearity of the DBR, is

ν
2L

c
= q + (N + 1)χ/π

− 2(Lτ,1 + Lτ,2)

c
(ν − νc) − μ

(ν − νc)3

ν3
c

, (A6)
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FIG. 6. Effective cavity length, Leff , calculated from the free spectral range between the N = 0 modes with q and q + 1, where q = 10–19
are indicated with different colors. The points at a higher average frequency are more noisy because the intracavity NV centers are less bright.
(a) Original data. (b) All data shifted by q + 1/2, where q is the lowest number in the labels q = 10–11, q = 11–12, etc., in (a).

which is an extended version of Eq. (4) in the main text.
μ = μ1 + μ2 is the combined nonlinearity constant of both

mirrors. The free spectral range νfsr = νq+1,0 − νq,0 in this
case is given by

νfsr
2(L + Lτ,1 + Lτ,2)

c
= 1 − μ

(νq+1,0 − νc)3 − (νq,0 − νc)3

ν3
c

≈ 1 − 3μ
νfsr

νc

(
ν − νc

νc

)2

, (A7)

which is an extended version of Eq. (6) in the main text. We can express this in terms of an effective cavity length Leff normalized
by the averaged frequency ν = (νq+1,0 + νq,0)/2:

ν

νfsr
= Leff

λ/2
≈ q + 1

2
+ 2(Lτ,1 + Lτ,2)

c
νc + 3μ

(
ν − νc

νc

)2
ν

νc
, (A8)

where q + 1/2 is the average q of two subsequent
fundamental modes, 2(Lτ,1+Lτ,2 )

c νc originates from the
linear frequency dispersion, and the final term is a
third-order correction to the frequency penetration
depth.

Figure 6(a) shows the observed effective cavity lengths,
expressed in units λ/2. Each curve is one longitudinal mode
number higher, as expected. Furthermore, the parabolic trend
from Eq. (A8) is visible. This parabola is more visible in
Fig. 6(b), where all curves are shifted by q + 1/2 and now
lie on top of each other. A simultaneous fit of all data with
Eq. (A8) yields a nonlinearity factor μ = 48.3(6) and a cen-
tral frequency λc = 635(1) nm [νc = 472.5(8) THz]. The
measured value for μ agrees reasonably well with the theoreti-
cally predicted value of μ = μH + μL = 37.0. But the central
wavelength is surprisingly close to the central wavelength of
the H-DBR, λc = 640 nm (νc = 469 THz). From theory, one
would rather expect the central wavelength to be closer to the
L-DBR, λc = 610 nm (νc = 492 THz), since its value for μL

is larger than μH . This discrepancy from theory might be due
to the large spread in data points near 610 nm, where the NV
centers are less bright.

The offset of the parabola in Fig. 6(b) contains informa-
tion about Lτ . The figure shows the effective cavity length
ν/νfsr , divided by λ/2 and shifted by q + 1/2. In contrast
to the main text, the exact value of q is now important.
The q that is subtracted is the same integer value that is
used for labeling in the main text and in Fig. 6, but this
is not entirely correct. For the combination of an ideal
L-DBR and H-DBR, we expect q to be half-integer [16],
but for our L-DBR, with a top layer of 0.8 × λc/(4nL ) in-
stead of λc/(4nL ), we expect a slightly different q. The best
experimental estimate of the longitudinal mode number is
q = 13.1(3) given in the main text, which is thus 0.1(3) more
than the integer labels used to convert Fig. 6(a) to Fig. 6(b).
Therefore, if we want to interpret the vertical axes of Fig. 6(b)
correctly, we should subtract an additional 0.1(3), which we
then use to roughly estimate the penetration depth from the
offset value in Fig. 6(b) to be 2(Lτ,1+Lτ,2 )

c νc ≈ 2.5(3) or Lτ,1 +
Lτ,2 ≈ 0.8(1) µm. This is somewhat smaller than the theo-
retical prediction 2(Lτ,1,th+Lτ,2,th )

c νc = 3.20 or Lτ,1,th + Lτ,2,th =
1.02 µm (Lτ,1,th = 0.77 and Lτ,2,th = 0.25). The measure-
ments in the main text do not rely on q and are thus a more
reliable measurement of the penetration depth.
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