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Frequency-dependent fundamental and dipole gap solitons
in PT -symmetric nonlinear metamaterials
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We derive a theoretical model with frequency-dependent parameters for describing the transmission of
electromagnetic waves in PT -symmetric metamaterials (MMs). Based on the derived theoretical model, we
investigate the tunable band structure and eigenvalue problem in the negative or positive index region of
MMs, and predict the existence and stability of fundamental, out-of-phase, and in-phase dipole gap solitons
in defocusing or focusing nonlinear PT -symmetric MMs. Furthermore, we discuss the enhanced localization
of solitons under different formation conditions. The results reveal that there exist abundant gap solitons with
frequency controllability in PT -symmetric MMs, and the established theoretical model paves the way to explore
more solitons in PT -symmetric MMs.
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I. INTRODUCTION

It has been demonstrated that in quantum mechanics, a
non-Hermitian Hamiltonian obeying parity-time (PT ) sym-
metry may possess fully real eigenvalue spectra [1–3]. Bender
and colleagues pointed out that a non-Hermitian Hamiltonian
Ĥ = −∂2

x + V (x) with a PT -symmetric potential V (x) com-
mutes with the PT operator P̂T̂ , i.e., [Ĥ , P̂T̂ ] = 0, implying
that Ĥ and P̂T̂ share the common eigenfunctions and skewed
vector space of the eigenmodes [1,2]. A necessary but in-
sufficient condition for a Hamiltonian to be PT symmetric
is V (x) = V ∗(−x), leading to a potential with even real and
odd imaginary parts. In recent years, PT symmetry has been
widely applied in atom and quantum mechanics [4,5], acous-
tics [6,7], mechanics [8], electrical circuits [9], and nonlinear
optics [10,11]. Drawing an analogy between the paraxial ap-
proximation equation for optical beams propagation and the
Schrödinger equation in quantum mechanics [12,13], PT -
symmetric potentials in optical systems can be characterized
by the complex refractive index n(x) = nR(x) + inI (x), which
can be physically realized by involving symmetric index guid-
ing nR(−x) = nR(x) and antisymmetric gain-loss nI (−x) =
−nI (x) [14]. On the basis of the judicious design of the
complex refractive index, various PT -symmetric optical sys-
tems including PT -symmetric couplers [15,16] and photonic
lattices [13,17] have been proposed. Novel characteristics
of PT symmetry were observed, such as power oscillation
[14], and loss induced transparency and spontaneous PT
symmetry breaking [18,19]. Recently, the PT symmetry has
been extended to the nonlinear physical systems, and PT -
symmetric solitons governed by the nonlinear Schrödinger
equation (NLSE) have been extensively investigated [20–29].
The solitons and their stability in PT -symmetric optical
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lattices [20,21] and generalized Scarf-II potential [22] were
reported. Double-hump solitons were studied with the PT -
symmetric harmonic-hyperbolic-Gaussian potentials [23] and
Dirac-δ(x)-Scarf-II potentials [24]. Dark solitons and vortices
[25] as well as the symmetry breaking of PT -symmetric
solitons [26,27] were investigated. The switching dynamics of
a bistable soliton in a PT -symmetric fiber coupler [28] and a
single gap soliton and soliton clusters in saturable nonlinear
media [29] were also reported.

On the other hand, metamaterials (MMs), consisting of
periodically arranged metal-dielectric units, have attracted
much attention due to their unique characteristics, such as
negative refraction [30], and strong dispersion and adjustable
electromagnetic (EM) response [31]. However, MMs with
metal-dielectric structures have unavoidable material loss,
which is unfavorable in physical application except for en-
ergy absorption. Many efforts including low-loss material
employment and gain compensation [32,33] have been used
to overcome the loss of MMs, or to exploit loss in PT -
symmetric MMs [32–37], such as matching the permittivity
or/and the permeability [34], featuring a negative-resistance
device [35], and providing negative surface conductance
graphene metasurface [36]. Lazarides and Tsironis first
proposed a one-dimensional (1D) PT -symmetric magnetic
MM consisting of split-ring dimers with balanced gain and
loss [37]. Sun et al. constructed a PT symmetry coupled-
resonators system by balancing the scattering and dissipative
loss in experiments [38]. Alaeian and Dionne reported a five-
layer “metal-insulator-metal” PT -symmetric plasmonic MM
[39]. Gear et al. constructed a 1D photonic crystal through
alternating dielectric slabs with loss and magnetic slabs with
gain [34]. PT -symmetric MMs are of great interest in ma-
nipulating EM waves by engineering the complex refractive
index in dielectric permittivity and the magnetic permeability
plane, which brings about many important physical phenom-
ena. Recently, several works focusing on beam transmission
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in PT -symmetric epsilon-near-zero MMs have been reported
[40,41]. For example, Savoia et al. studied the PT -symmetry-
induced exponentially bound modes at the interface between
two media [40], Nicolussi et al. analyzed the asymmetric
reflection and the enhanced transmission based on the trans-
mission line theory [41]. Moreover, the transmission of EM
waves in non-PT -symmetric MMs has also received much
attention [42–47]. Scalora et al. derived a general NLSE to
describe the propagation of ultrashort pulses in nonlinear
MMs [42]. Lazarides and Tsironis [43] and Wen et al. [45]
successively reported coupled theoretical models in MMs
and revealed the role of the dispersive electric permittivity
and magnetic permeability. Li et al. analytically investigated
three types of gray solitons in MMs based on a derived
higher-order model [46]. Zhu and Chen studied the modula-
tion of periodic waves and solitons in MMs with high-order
effects [47]. Shafeeque Ali et al. discovered the formation
of three-dimensional (3D) light bullets in MMs with the bal-
ance between the dispersion and nonlinearity effects [48].
To reveal the transmission characteristics of EM waves in
PT -symmetric MMs, it is imperative to establish a theoretical
model for describing the transmission of EM waves in PT -
symmetric MMs. Moreover, in view of the unique controllable
frequency-dependent EM properties of MMs, it is also impor-
tant to explore the existence and controllable transmission of
the solitons in PT -symmetric MMs.

In this work, motivated by the works of solitons in PT -
symmetric optical lattices mentioned above, we firstly derive
a theoretical model to describe the EM waves transmission
in PT -symmetric MMs. Based on the derived transmission
model and the tunable dispersion characteristics of PT -
symmetric MMs, we study the frequency-dependent band
structure and eigenvalue problem, and predict the existence,
stability, and controllability of fundamental, out-of-phase
dipole (out-dipole) and in-phase dipole (in-dipole) solitons in
the negative or positive index region of defocusing or focusing
nonlinear PT -symmetric MMs. Furthermore, the stability of
these solitons is verified by direct simulations, and their en-
hanced localizations are discussed in detail.

The remaining contents of this work are arranged as fol-
lows: In Sec. II, the nonlinear theoretical model describing the
transmission of EM waves in PT -symmetric MMs is derived,
and the tunable parameters of the PT -symmetric MMs are
discussed. In Sec. III, the tunable band structure and the
existence, stability, nonlinear dynamics, and localization of
fundamental, out-dipole and in-dipole solitons in the negative
or positive index region of PT -symmetric nonlinear MMs are
investigated in detail. Finally, the conclusion and discussion
are presented in Sec. IV.

II. THEORETICAL MODEL AND PARAMETER ANALYSIS

It is well known that the transmission of the EM waves
follows the Maxwell equations in both conventional materials
and MMs: ∇ × E = −∂B/∂t , ∇ × H = ∂D/∂t , ∇ · D = 0,
∇ · B = 0, where E, H, D, and B are, respectively, electric
field, magnetic field, and electric and magnetic flux densities
obeying the constitutive relations D = εE + PNL and B =
μH + μ0MNL [45,46], where ε = ε0εr and μ = μ0μr are the
permittivity and permeability in vacuum with ε0μ0 = 1/c2,

εr and μr are the relative permittivity and relative perme-
ability; PNL = ε0χp|Ex|2Ex and MNL = χm|Hy|2Hy represent
the nonlinear polarization and magnetization, respectively.
Assuming the beam is operating at frequency ω0 with the elec-
tric field E = 1

2 (Ẽe−iω0t + Ẽ∗eiω0t ) and magnetic field H =
1
2 (H̃e−iω0t + H̃∗eiω0t ), and substituting them into the Maxwell
equations, we can obtain the wave equations in the frequency
domain as follows:

∇2Ẽ + ω2
0

c2
εrμrẼ + ω2

0

c2
μr

P̃NL

ε0
+ iω0μ0∇ × M̃NL = 0, (1a)

∇2H̃ + ω2
0

c2
εrμrH̃ + ω2

0

c2
εrM̃NL + iω0∇ × P̃NL = 0, (1b)

where the variables with tildes correspond to the Fourier
transforms. For the TE mode propagating along the z axis,
E = (Ex, 0, 0) and H = (0, Hy, 0) can be defined as [49]

Ex = A(y)

[∫
E (kx, z)e−ikxzdkx

]
e−ikz0z, (2a)

Hy = A(y)

[∫
H (kx, z)e−ikxzdkx

]
e−ikz0z, (2b)

where the integration defines a packet of waves with trans-
verse wave number kx and longitudinal wave number kz0 along
the z axis. Here E (kx, z) and H (kx, z) are Fourier components
related to z, and A(y) is independent of z and satisfies the
modal field equation. Substituting Eqs. (2a) and (2b) into
Eqs. (1a) and (1b) and applying the method of separation of
variables, one can obtain the equations for the electric field
(similar forms for the magnetic field):

∂2A

∂y2
+ ω2

0

c2
μr�εA = Ak̃2, (3a)

2ikz0
∂E

∂z
+ ∂2E

∂z2
− k2

z0E − k2
x E + ω2

0

c2
εrμrE

+ ω2
0

c2
εr�μE = −Ek̃2, (3b)

where k̃2 = k2
z + k2

x + ω2
0�NL/c2 is introduced to describe the

nonlinear eigenvalue shift �NL from the linear value [49]; kx
2

and ω2
0�NL/c2 can be viewed as a perturbation of kz

2. After
substituting k̃2 into Eq. (3b) and combining the corresponding
equations of the magnetic field, we can obtain the following
coupled equations:

∂2Ex

∂z2
+ 2ikz0

∂Ex

∂z
+ (

k2
z − k2

z0

)
Ex + ω2

0

c2
εrμrEx

+ ω2
0

c2
εr�μEx + ω2

0

c2
�NLEx = 0, (4a)

∂2Hy

∂z2
+ 2ikz0

∂Hy

∂z
+ (

k2
z − k2

z0

)
Hy + ω2

0

c2
εrμrHy

+ ω2
0

c2
μr�εHy + ω2

0

c2
�NLHy = 0. (4b)

Here �NL = μr�ε = εr�μ with �ε = χp|Ex|2, �μ =
χm|Hy|2, which can be derived from Eq. (3a) and its magnetic
field counterpart by multiplying the complex amplitude A∗
and integrating with respect to y [49]. �NL represents but
is not limited to the third-order nonlinearity. In Eqs. (4a)
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and (4b), as kz is approximately kz0 and k2
z + k2

x = const,
(k2

z −k2
z0) ≈ 2kz0(kz − kz0) and kz − kz0 can be expressed as a

Taylor series in kx with zero odd-order terms, i.e., ( ∂kz

∂kx
)
kx=0

=
( ∂3kz

∂k3
x

)
kx=0

= 0, and then only even-order derivative terms are

included [49], i.e.,

kz − kz0 ≈ 1

2

(
∂2kz

∂k2
x

)
kx=0

k2
x + 1

24

(
∂4kz

∂k4
x

)
kx=0

kx
4 + · · · .

(5)

Performing the inverse Fourier transform of the second
and fourth terms into x derivatives −k2

x → ∂2

∂x2 , −k4
x → ∂4

∂x4 ,
Eqs. (4a) and (4b) can be written as

∂2Ex

∂z2
+ 2ikz0

∂Ex

∂z
+ ∂2Ex

∂x2
− 1

4kz0

∂4Ex

∂x4
+ ω2

0

c2
εrμrEx

+ ω2
0

c2
(μrχp|Ex|2+εrχm|Hy|2)Ex = 0, (6a)

∂2Hy

∂z2
+ 2ikz0

∂Hy

∂z
+ ∂2Hy

∂x2
− 1

4kz0

∂4Hy

∂x4
+ ω2

0

c2
εrμrHy

+ ω2
0

c2
(μrχp|Ex|2+εrχm|Hy|2)Hy = 0. (6b)

With the aid of the intrinsic relationship |Hy/Ex|2 =
ε0|εr/μr |/μ0, Eqs. (6a) and (6b) can be decoupled to one
equation as follows:

∂Ex

∂z
= i

2nk0

∂2Ex

∂x2
− i

8(nk0)3

∂4Ex

∂x4
+ ik0

2n
εrμrEx

+ ik0

2n
μrχp|Ex|2Ex + ik0

2n
εrχm

ε0

μ0

∣∣∣∣ εr

μr

∣∣∣∣|Ex|2Ex. (7)

In general, for lossy MMs, the permittivity and permeabil-
ity are complex, i.e., ε = ε0εr=ε0(εrr + iεri ) and μ = μ0μr =
μ0(μrr + iμri ) [50], where εrr , εri, μrr, and μri are, respec-
tively, the real parts and imaginary parts of εr and μr in MMs.
Equation (7) can be rewritten as

∂Ex

∂z
= i

2nk0

∂2Ex

∂x2
− i

8(nk0)3

∂4Ex

∂x4
+ i

2
k0(n + i2α)Ex

+ i

2n
k0

[
(μrr + iμri )χp + (εrr + iεri )χm

ε0

μ0

∣∣∣∣ εrr

μrr

∣∣∣∣
]

× |Ex|2Ex, (8)

where n = ±√
εrrμrr and α = n(ε̄ + μ̄)/2 are the real and

imaginary parts of the equivalent complex refractive index
neff = n + iα, with ε̄ = εri/εrr and μ̄ = μri/μrr, respectively.
On the right-hand side of Eq. (8), the first and second terms
describe the second-order diffraction (SOD) and fourth-order
diffraction (FOD), the third term is a linear potential re-
lated to the refractive index n and linear loss or gain α,
and the last one represents the nonlinear effects, where
ηr = η0ηrr with ηrr = √

μrr/εrr is the parameter of material
impedance. The parameters of the MMs can be described

by the Drude model [46], εrr (
 ) = 1 − 1

 2+γ̃ 2

e
, εri(
 ) =

γ̃e


 (
 2+γ̃ 2
e ) , μrr (
 ) = 1 − 
 2

p

(
 2+γ̃ 2
m ) , and μri(
 ) = γ̃m
 2

p


 (
 2+γ̃ 2
m ) ,

where 
=ω/ωpe, 
p = ωpm/ωpe, γ̃e = γe/ωpe, and γ̃m =
γm/ωpe. Here ωpe and ωpm are the electric and magnetic
plasma frequencies; γe and γm are the electric and mag-
netic loss or gain coefficients, respectively. It is noted that
in PT -symmetric MMs, the EM parameters εr and μr are
functions of frequency 
 and space coordinate x; more-
over, they follow the PT -symmetric rules, i.e., εr (
, x) =
ε∗

r (
,−x) and μr (
, x) = μ∗
r (
,−x) [38,51]. Thus, Eq. (8)

can be used to investigate the transmission of EM waves in
PT -symmetric MMs. Considering the transmission proper-
ties of the EM waves in non-PT -symmetric MMs can be
characterized by the frequency-dependent permittivity and
permeability [45,46], which are significantly different from
those in conventional materials, it is necessary to explore the
existence and controllable transmission of solitons in PT -
symmetric MMs.

For convenience, we firstly normalize Eq. (8) by Z = z/LD,
X = x/W , U = √

γ LDEx, where LD = |β|W 2 is the diffrac-
tion length, β = nk0 is the wave number, and W is the beam
width. The normalized equation in dimensionless units can be
written as

i
∂U

∂Z
= −1

2
sgn(n)

∂2U

∂X 2
+ sgn(n)p

∂4U

∂X 4
− δ(n + i2α)U

− (ρ + iσ )|U |2U . (9)

Here sgn(n) = ±1 represents the positive or nega-
tive refractive index, p = 1/(8|β|LD) stands for the FOD,
δ = k0LD/2 is related to the linear potential, and ρ =
sgn(χp)(1 + χm

χpη2
r η

2
rr

) and σ = sgn(χp)(μ̄ + ε̄χm

χpη2
r η

2
rr

) denote cu-
bic nonlinearity and nonlinear loss or gain. It can be deduced
from Eq. (9) that in PT -symmetric MMs, the EM wave
experiences normal SOD and anomalous FOD in the nega-
tive index region (NIR); oppositely, it experiences anomalous
SOD and normal FOD in the positive index region (PIR).
Also, it is noted that the nonlinear loss or gain σ is related to
ε̄ and μ̄, which means that the linear loss of the MMs plays an
important role in the nonlinearity effects [50]. In this paper,
only the nonlinear polarization is considered, i.e., χm = 0,
the nonlinear coefficients ρ and σ can be simplified as ρ =
sgn(χp), σ = sgn(χp)μ̄. According to the above expressions
of parameters, μ̄ is negligible when γm = 5 × 10−4 [46,50],
resulting in a negligible absorption σ . Therefore, in the sub-
sequent analysis, we take γ0 = γe, ρ = sgn(χp), and σ = 0.
In addition, the FOD effect is essential for the transmission
of ultrashort EM waves; however, it is much weaker than the
SOD for general EM waves. Therefore, here we omit the FOD
and only consider the SOD in the transmission model for the
EM waves in PT -symmetric MMs, which can be reduced to
the following form,

i
∂U

∂Z
+ 1

2
sgn(n)

∂2U

∂X 2
+ V (
, X )U + sgn(χp)|U |2U = 0,

(10)

where V (
, X ) = δn(
, X ) + i2δα(
, X ). It should be
pointed out that Eq. (10) is in the same form as the one in
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FIG. 1. (a) Background refractive index n0, loss: gain α0, (b) depth v1, and (c) imaginary part w1 of the PT potential for 
p = 0.9, in
which the gray areas denote the stop bands.

the optical lattice [20]; however, there exist fundamental dif-
ferences between them. The coefficients of the derived model
(10) are the function of frequency and refraction index as a
result of the strong dispersive permittivity, permeability, and
refractive index of MMs, featuring the controllable transmis-
sion of EM waves in nonlinear MMs. Moreover, the MMs
can work in positive or negative index regimes with different
diffraction, which will bring about some results disclosed in
the subsequent section. Assuming PT -symmetric MMs have
periodically modulated refractive index n = n0(
 )cos2(X )
and loss or gain α = α0(
 ) sin(2X ) [52], where n0 and α0 are
the respective background refractive index and loss or gain,
thus the linear potential will take the form of V (
, X ) =
v1[sgn(n0)cos2(X ) + iw1 sin(2X )]; v1 = δ|n0(
 )| and w1 =
2α0(
 )
|n0(
 )| denote the depth and imaginary part of the PT po-
tential, respectively. Such PT -symmetric potential in MMs
can be experimentally realized on a Si-based optical platform
with periodically arranged sinusoidal shaped combo struc-
tures [52], where the real and imaginary part modulations
are implemented by elaborately designed Si and Ge or Cr
structures, respectively.

According to the Drude model, the refractive index region
of MMs can be divided into the NIR (
 < min{
p, 1}),
the PIR (
 > max{
p, 1}), and the stop band region
(min{
p, 1} < 
 < max{
p, 1}). Without loss of general-
ity, we set 
p = 0.9 throughout this paper [42,46]. Figure 1
presents the variation of the parameters related to the PT
potential with normalized frequency 
 . From Fig. 1(a), it can
be seen that the background refractive index n0 monotonically
changes with 
 and the loss or gain parameter α0 varies
dramatically with the increase of 
 in the NIR (
 < 0.9)
and varies very slowly over the PIR (
 > 1). From Figs. 1(b)
and 1(c), it can be found that γ0 has little effect on the depth
v1 of the PT potential, while it strongly affects the imagi-
nary part w1 of the PT potential. It is worth noting that the
variations of v1 and w1 with 
 and γ0 are much larger in the
NIR than those in the PIR, which implies that one can easily
regulate the PT -symmetric potential in the NIR by choosing
the frequency of the EM waves and material loss or gain.
Figure 2 shows the profiles of PT -symmetric potentials for
different 
 and γ0. It can be seen from Figs. 2(a)–2(c) that
depending on the values of 
 and γ0, the PT potentials can
behave as a well or a barrier with different depths when the
MMs operate in the NIR or PIR. The tunable PT potentials
can give rise to abundant band structures, which will affect

the controllable transmission characteristics of solitons in the
PT -symmetric MMs.

III. SOLITONS IN PT -SYMMETRIC MMs

A. Tunable band structure and eigenvalue problem

Assuming the stationary solution of Eq. (10) possesses the
form of U (X, Z ) = ψ (X ) exp(iμZ ), where μ is the propaga-
tion constant and ψ (X ) is a complex function, substituting it
into Eq. (10) will yield the following differential equation:

−μψ + 1

2
sgn(n)

∂2ψ

∂X 2
+ V (
, X )ψ + sgn(χp)|ψ |2ψ = 0.

(11)

Here the PT potentials V (
, X ) are a function of both
frequency 
 and space coordinate X; the coefficients of SOD
and cubic nonlinearity are related to the sign of the refrac-
tive index n and the nonlinear susceptibility χp. It is noted
that Eq. (11) can be used to study the solitons in the NIR
with normal SOD and in the PIR with anomalous SOD for
defocusing (χp < 0) or focusing (χp > 0) nonlinearity. For a
given 
 , the soliton of Eq. (11) can be numerically solved by
the modified squared operator iteration method [53,54], and

the soliton power is defined as P = ∫ +∞
−∞ |ψ |2dX .

Due to the periodicity of PT -symmetric potentials, the
existence of solitons is determined by the band structure [55].
According to the Bloch theorem, the linear version of Eq. (11),
−μψ + 1

2 sgn(n) ∂2ψ

∂X 2 + V (X )ψ = 0, possesses Floquet-Bloch
modes whose folding in momentum k forms Bloch bands
[56]. Figure 3 shows the first three Bloch bands in the NIR
(
 < 0.9) and PIR (
 > 1) when γ0=0.1. It is observed
from Figs. 3(a) and 3(b) that the band structure in the NIR
has a wider tunable range by changing 
 than that in the
PIR, which is consistent with the characteristics of v1 and
w1 shown in Figs. 1(b) and 1(c). Combining Fig. 1(c) with
Fig. 3(a), there exists a critical frequency 
th = 0.21 in the
NIR corresponding to the phase transition point w1 = 0.5,
where the first and second Bloch bands begin to merge to-
gether. Figures 3(c)–3(e) present the band structures in the
NIR for the cases of the broken PT symmetry (
 = 0.2),
the phase transition point (
th = 0.21), and the unbroken PT
symmetry (
 = 0.31), respectively. As the band structure
depends on the sign of the refractive index, it is easy to deduce
from the above linear version of Eq. (11) that the PIR band
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FIG. 2. Profiles of PT -symmetric potential with different parameters. (a) 
 = 0.29, γ0 = 0.025, corresponding to v1 = 4, w1 = 0.1; (b)

 = 0.47, γ0 = 0.04, corresponding to v1 = 1, w1 = 0.1, and (c) 
 = 1.42, γ0 = 0.025, corresponding to v1 = 0.3, w1 = 0.02, respectively.

structure is qualitatively upside down compared to the NIR;
hence Fig. 3(f) only shows the band structure for the unbroken
case (
 = 1.77) in the PIR. It should be noted that the PT
potential parameter w1 is tunable in PT -symmetric MMs [see
Fig. 1(c)]; one can regulate w1 to maintain the unbroken PT
symmetry in the PIR and NIR by changing the frequency of
the EM waves. Therefore, in the subsequent analysis we focus
on the case of unbroken PT symmetry.

To analyze the linear stability of solitons, we add the small
perturbations g(X ) and t (X ) to the stationary solution:

U (X, Z ) = [ψ (X ) + g(X ) exp(λZ )

+ t∗(X ) exp(λ∗Z )] exp(iμZ ). (12)

Here, g(X ), t (X ) � ψ (X ); “*” represents the complex
conjugation. Substituting Eq. (12) into Eq. (10) and lineariz-
ing it around ψ yields an eigenvalue problem:

λ

(
g
t

)
= i

(
D + C1

− C∗
2

C2

−(D + C∗
1 )

)(
g
t

)
,

D = 1

2
sgn(n)

∂2

∂x2
,

C1 = −μ + V + 2sgn(χp)|ψ |2,
C2 = sgn(χp)ψ2. (13)

The perturbation eigenvalue λ is numerically calculated by
the Fourier collocation method [53], which can be used to
predict the stability of solitons. If the real part of λ is equal
to zero, i.e., Re(λ) = 0, the soliton will propagate stably. It is
noted that Eq. (13) is closely related to the signs of n and χp;
therefore, the eigenvalue problem in Eq. (13) can be divided
into two cases: (i) in the NIR sgn(n) = −1, sgn(χp) = ±1;
(ii) in the PIR sgn(n) = 1, sgn(χp) = ±1. The existence and
stability of solitons in these two cases will be discussed in
detail.

B. Existence and stability of solitons in PT -symmetric MMs

Based on the band structure and the linear-stability analy-
sis, we consider the existence and stability of fundamental and
dipole gap solitons. Figure 4 plots the variations of the soliton
power P with the propagation constant μ for typical frequen-
cies of incident waves in the NIR (
 = 0.29, 0.47) and PIR

FIG. 3. Band structures in the (a) NIR and (b) PIR of PT -symmetric MMs, (c) 
 = 0.2 (v1 = 7.31, w1 = 0.52); (d) 
 = 0.21 (v1 = 6.69,
w1 = 0.5); (e) 
 = 0.31 (v1 = 3.01, w1 = 0.36); (f) 
 = 1.77 (v1 = 0.79, w1 = 0.02); the other parameters are γ0 = 0.1, 
p = 0.9.
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FIG. 4. Power P versus the propagation constant μ in the NIR and PIR of PT -symmetric MMs. (a) 
 = 0.29 (v1 = 4, w1 = 0.1); (b)

 = 0.47 (v1 = 1, w1 = 0.1); (c) 
 = 1.42 (v1 = 0.3, w1 = 0.02); (d) 
 = 1.89 (v1 = 1, w1 = 0.01).The blue areas correspond to the Bloch
band. The soliton profiles at the points marked by N1–N7 (in the NIR) and P1–P7 (in the PIR) will be displayed in Figs. 5 and 6, respectively.

(
 = 1.42, 1.89) of MMs, where the solid and dotted lines
correspond to the stable and unstable solitons, respectively.

In the NIR shown in Figs. 4(a) and 4(b), it is found that
the solitons can exist in the semi-infinite gap for defocusing
nonlinearity and in the first gap for focusing nonlinearity.
Specifically, in the semi-infinite gap, the fundamental solitons
are stable while the in-dipoles are unstable over the entire
existence range, but the out-dipoles can stay stable above
the critical power Pcr = 0.67 for 
 = 0.29 (v1 = 4, w1 =
0.1) and Pcr = 2.35 for 
 = 0.47 (v1 = 1, w1 = 0.1), respec-
tively. The instability of the in (out)-dipoles is caused by the
mutual attraction (repulsion) between the soliton components.
In the first gap, the in-dipoles for 
 = 0.29 and 
 = 0.47 are
unstable over the whole gap; the out-dipoles for 
 = 0.29
are stable below the critical power Pcr = 7.01, while they are
unstable for 
 = 0.47 over the whole gap, which results from
the narrower gap for a shallower PT -symmetric potential
(v1 = 1 at 
 = 0.47). However, the fundamental solitons are
stable below the critical power Pcr = 3.59 for 
 = 0.29 and
Pcr = 1.39 for 
 = 0.47, respectively. Comparing the results
for 
 = 0.29 and 
 = 0.47, it can be concluded that the
shallower potential can expand the instability range of the
solitons in both the semi-infinite gap and the first gap, but
suppress the existence range in the first gap.

In the PIR shown in Figs. 4(c) and 4(d), it is observed
that the solitons can exist in the first gap for defocusing
nonlinearity and in the semi-infinite gap for focusing non-
linearity, which is different from the case in the NIR. This
is because the sign of the refractive index directly affects
the diffraction effect in Eq. (11). Obviously, the first gap
for 
 = 1.42 (v1 = 0.3, w1 = 0.02) is much narrower than
that for 
 = 1.89 (v1 = 1, w1 = 0.01). In the first gap, the
fundamental solitons are stable below the critical power Pcr =
1.78 for 
 = 1.42 and Pcr = 1.48 for 
 = 1.89, respectively.
However, the dipole solitons, regardless of out-dipoles or
in-dipoles, are completely unstable, which stems from the

weakened localization for the shallower PT potentials for

 = 1.42 and 
 = 1.89, respectively. This is quite different
from the instability of the dipole solitons in a deeper potential
(v1 = 4 for 
 = 0.29). In the semi-infinite gap, the funda-
mental solitons are completely stable and the in-dipoles are
unstable over the whole existence range for both 
 = 1.42
and 
 = 1.89, while the out-dipoles are stable above the
critical power Pcr = 6.03 for 
 = 1.42 and Pcr = 2.30 for

 = 1.89, respectively. The results presented here imply that
the existence and stability of the fundamental, out-dipole, and
in-dipole gap solitons can be controlled flexibly by changing
the frequency of incident waves.

Furthermore, the stability of the fundamental and dipole
solitons is verified by direct simulations under 5% random
noise perturbations. The linear spectra, profiles, and evo-
lutions of the stable PT -symmetric solitons at the points
N1–N3 in the NIR and P1–P3 in the PIR (marked in Fig. 4) are
presented in Fig. 5, where the blue and red lines in Figs. 5(a1)–
5(f1) are for the real and imaginary parts of the solitons. It can
be clearly seen that the fundamental soliton and the out-dipole
solitons at the points N1–N3 and P1–P3 can propagate stably
against perturbations, as shown in Figs. 5(a3)–5(f3), which
are consistent with the linear spectra with pure imaginary
values [see Figs. 5(a2)–5(f2)]. The unstable solitons at the
points N4–N7 and P4–P7 marked in Fig. 4 are presented in
Fig. 6, exhibiting various unstable behaviors. Comparing the
profiles of solitons in Fig. 6(g1) with Figs. 6(h1) and 5(d1)
with Fig. 6(e1), it is found that the localization of solitons
in the same existence region remains consistent, which di-
rectly stems from the formation conditions of solitons and
the values of PT potential parameters. Moreover, the funda-
mental solitons start diffraction after stable propagation over
a longer distance, as shown in Figs. 6(b3) and 6(g3), while the
dipole solitons evolve asymmetrically [see Figs. 6(a3), 6(c3),
6(d3), 6(f3), and 6(h3)], which originates from the interaction
between the components of the solitons. The instability of
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FIG. 5. Profiles, linear spectra, and nonlinear evolutions of the stable solitons at the points (a) N1: μ = −3.5; (b) N2: μ = −1.6; (c) N3:
μ = −0.18; (d) P1: μ = −0.33; (e) P2: μ = 1.7; and (f) P3: μ = 1, which are marked in Fig. 4.

FIG. 6. Profiles, linear spectra, and nonlinear evolutions of the unstable solitons at the points (a) N4: μ = −2.9; (b) N5: μ = −0.96; (c)
N6: μ = −0.68; (d) N7: μ = −2; (e) P4: μ = −0.37; (f) P5: μ = 0.6; (g) P6: μ = −0.2; and (h) P7: μ = 0.05, which are marked in Fig. 4.
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FIG. 7. Profiles and linear spectra of fundamental, out-dipole and in-dipole solitons. (a)–(c) μ = −0.34 at 
 = 1.42 (v1 = 0.3, w1 = 0.02)
and (d)–(f) μ = 0.1 at 
 = 1.89 (v1 = 1, w1 = 0.01) for defocusing nonlinearity; (g)–(i) μ = 0.4 (P = 0.95, 2.20, 3.19) and (j)–(l) μ = 0.7
(P = 1.86, 3.73, 3.75) for focusing nonlinearity at 
 = 1.42, respectively.

solitons at the points N4–N7 and P4–P7 is consistent with the
pairwise appearance of pure real or complex perturbed eigen-
values in the linear spectra in Figs. 6(a2)–6(h2). The stability
analysis of solitons lays the foundation for the investigation
of nonlinear EM waves in PT -symmetric MMs, which can
be used for signal encryption and the fabrication of optical
devices.

C. Enhanced localization of PT -symmetric solitons

As demonstrated in Figs. 5 and 6, the localization and
stability of the solitons highly depend on the parameters of
the PT potential and the nonlinearity effect, exhibiting di-
verse characteristics. In order to further elucidate the intrinsic
connection, the profiles and linear spectra of fundamental
and dipole solitons under different formation conditions are

presented in Fig. 7. For a shallower PT potential (v1 = 0.3),
weak localization occurs for defocusing nonlinearity. The real
part of the solitons features decaying oscillatory behavior
with strong side lobes [Figs. 7(a)–7(c)]; in particular, from
the insets in Figs. 7(a)–7(c), it is obviously found that the
fundamental soliton has maximum peaks only at x = 0; the
two main peaks of the out-dipole soliton are odd symmetric
about the center of the soliton, while the two main peaks
of the in-dipole soliton are even symmetric with a small
separation. This mainly originates from the excitation and
interference of multiple modes. On the other hand, increas-
ing the depth of the PT potential (v1 = 1) can promote the
localization of solitons, which can be found by comparing
the profiles of solitons in Figs. 7(d)–7(f) with Figs. 7(a)–7(c).
Furthermore, the localization of solitons for shallower poten-
tials (v1 = 0.3) are investigated in focusing nonlinearity, as
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shown in Figs.7(g)–7(l). It is found that the localization of
the solitons can be enhanced in the focusing nonlinear MMs;
the side lobes of solitons disappear completely. Moreover,
by comparing the profiles and linear spectra of solitons in
Figs. 7(g)–7(i) corresponding to the power P = 0.95, 2.20,
3.19, and Figs. 7(j)–7(l) corresponding to the power P = 1.86,
3.73, 3.75 under focusing nonlinearity at 
 = 1.42, it is ob-
viously observed that the localization of solitons is further
enhanced with the increase of power P. Therefore, in PT -
symmetric MMs, deeper potentials can overcome the weak
localization for defocusing nonlinearity, while the focusing
nonlinearity can enhance the localization for shallower poten-
tials, and the power has a distinct effect on the localization
of solitons. For those cases, the enhanced localization can
be realized by choosing a suitable frequency of incident EM
waves.

IV. CONCLUSION AND DISCUSSION

In summary, starting from Maxwell equations and the
Drude model, we have established a general theoretical model
that can be used to describe the transmission of EM waves
in nonlinear PT -symmetric MMs, where the PT potential is
not only a function of space coordinators, but also a function
of frequency. Thus, the PT -symmetric MMs have abundant
tunable linear band structure and a nonlinear eigenvalue prob-
lem in negative and positive index regions, and there is a
larger tunable range in NIR than in PIR, which results in
the frequency-dependent gap range and existence region of
solitons being quite different from those in an optical lattice
[20]. Based on the established transmission model, we have
predicted the existence ranges, stability, and localization of
fundamental, out-dipole, and in-dipole solitons with different
incident frequencies. It is found that in the NIR, the PT -
symmetric solitons exist in the semi-infinite (first) gap for
defocusing (focusing) nonlinearity; oppositely in the PIR, the
solitons exist in the first (semi-infinite) gap for defocusing
(focusing) nonlinearity. Moreover, the stability of the soli-

tons depends on the existence ranges and the PT potential
parameters. Specifically, the fundamental soliton is stable in
the semi-infinite gap, while is stable below a lower critical
power in the first gap; however, the in-dipole solitons are
completely unstable in their existence ranges; the out-dipole
solitons are stable in the semi-infinite gap above the criti-
cal power, while they are stable for deeper potentials below
the critical power and unstable for shallower potentials in
the first gap. Furthermore, we reveal deeper potentials can
overcome the weak localization from defocusing nonlinearity,
and focusing nonlinearity can enhance the localization even
for shallower potentials, and the power also can influence the
localization of solitons. Our research may profoundly enrich
the transmission theory of solitons in nonlinear optics, and
provides fertile ground for the research of tunable solitons and
the flexible manipulation of EM waves.

It should be pointed out that the preceding analysis fo-
cuses on bright fundamental, dipole gap solitons in the case
including only SOD in PT -symmetric MMs. In fact, for the
transmission of ultrashort EM waves in PT -symmetric MMs,
the FOD effect in the model equation (9) should be consid-
ered, which will be discussed in the future. In addition, dark
solitons and vortices will also be explored in PT -symmetric
MMs with the FOD and nonlinear absorption. Most recently,
the spontaneous symmetry breaking in PT -symmetric MMs
is under consideration. Many characteristics and manipulation
of EM waves in PT -symmetric MMs will be discovered in the
future.
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