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Geometric phase in plane-wave transmission by a dielectric structurally chiral slab
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A slab made of a dielectric structurally chiral medium (DSCM) strongly reflects the cohanded circularly
polarized plane wave, but not the crosshanded circularly polarized plane wave, in a spectral regime called the
circular Bragg regime. The effect of inserting a central phase defect in a DSCM slab with a modest number
of structural periods is a spectral reflection hole in the circular Bragg regime, for cohanded incidence only.
However, if the incident plane wave is left-circularly polarized, the geometric phase of the transmitted plane
wave contains evidence of both the circular Bragg regime and the spectral reflection hole, regardless of the
structural handedness of the DSCM. This evidence is indicative of the type of phase defect. The effect of inserting
a central phase defect in a DSCM slab with a large number of structural periods is a spectral transmission hole
in the circular Bragg regime, for crosshanded incidence only. The spectral transmission hole may be difficult to
observe experimentally because of absorption inside the DSCM slab, but it will still be evident in the geometric
phase of the transmitted plane wave, if the incident plane wave is left-circularly polarized.
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I. INTRODUCTION

A rectilinearly propagating plane wave is partially re-
flected by and partially transmitted through a slab made
of a homogeneous isotropic dielectric material. When that
material is periodically nonhomogeneous in the thickness
direction, the slab exhibits spectral regimes of high re-
flectance and correspondingly low transmittance, depending
on the direction of propagation of the incident plane wave,
provided the slab thickness is several periods [1,2]. The
slab is often called a scalar Bragg grating and the high-
reflectance spectral regimes are called the Bragg regimes (or
zones). The focus of this paper is on the lowest-order Bragg
regime.

When a central phase defect is inserted in a scalar Bragg
grating, the (lowest-order) Bragg regime is punctured by a
much narrower high-transmittance spectral regime, as demon-
strated by Haus and Shank in 1976 [3]. This narrower regime
is called a spectral reflection hole and is widely employed
in laser optics [4] and optical-fiber communication [5,6].
Commonly, the central phase defect is a thin slab of a homo-
geneous dielectric material [7–9].

To realize a circular-polarization-sensitive spectral reflec-
tion hole, the slab must be made of a dielectric structurally
chiral material (DSCM), exemplified by chiral sculptured thin
films and and chiral liquid crystals [10–15], and must be thick
enough to have a moderate number of structural periods. In
general, a DSCM slab discriminates between incident plane
waves of different circular polarization states in the Bragg
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regime. DSCMs and circularly polarized plane waves possess
handedness. In the Bragg regime, the reflectance of a DSCM
slab is very high for a cohanded incident plane wave, but not
for the crosshanded one, leading to the term circular Bragg
regime [16]. As the high reflectance in the circular Bragg
regime is only for the cohanded incident plane wave, so is the
spectral reflection hole arising from the insertion of a central
phase defect in the DSCM slab.

Facile implementation of central phase defects in a DSCM
slab is possible of the following two types.

(i) Layer defect: A homogeneous layer, whether isotropic
[11] or anisotropic [12], of finite thickness is inserted in the
center of the DSCM slab. The thickness and the constitutive
parameter(s) of the homogeneous layer determine the center
wavelength of the spectral reflection hole.

(ii) Twist defect: One half of the DSCM slab is twisted
about the thickness axis with respect to the other half by a
certain angle [13,15]. The twist angle determines the center
wavelength of the spectral reflection hole. Needless to add, a
twist defect is not possible with scalar Bragg gratings.

Examples of DSCMs with layer and twist defects are found
in the bioworld as well [17,18].

Both types of phase defects may be combined to offer
design flexibility [14,19]. DSCMs without a phase defect
are attractive as relatively wideband optical filters [20–25],
whereas DSCMs with a central phase defect are attractive as
narrowband optical filters [13,26,27]. Both types of filters are
also deployed for optical sensing [27–31] and lasing [32–35].
Notably, these applications are based on high or low values
of reflectances and transmittances, which are all positive real
numbers, but not on the reflection and transmission coeffi-
cients, which are complex numbers [36].
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A quantity derivable from the transmission coefficients is
the geometric phase [37–39]. This quantity is of current in-
terest for research on chiral liquid crystals [40–43] and chiral
sculptured thin films [44,45], with some potential for applica-
tion [41,43,46]. The geometric-phase spectrum of plane-wave
transmission through a DSCM slab contains a signature of
the circular Bragg phenomenon, provided that the incident
plane wave is not right-circularly polarized (RCP), whether
the DSCM is structurally right handed or structurally left
handed [45]. Furthermore, both the thickening of the DSCM
slab and the reversal of structural handedness affect that geo-
metric phase.

This paper is devoted to the signatures of central phase
defects in the geometric-phase spectrum of the transmitted
plane wave. The phase defect can be either (i) an anisotropic
layer defect, (ii) a twist defect, or (iii) a combination of both
defects. For calculations, the DSCM is taken to be a chiral
sculptured thin film [47,48] and the anisotropic layer defect
to be a columnar thin film [49]. Without significant loss of
generality, both films are taken to be sequentially made by
evaporating the same material in a vacuum chamber and the
substrate is similarly oriented for the growth of both films, the
only difference being that the substrate spins about a central
normal axis passing through it when a chiral sculptured thin
film is being grown but is stationary when a columnar thin
film is being grown [36,49].

Parenthetically, if a structurally left-handed DSCM slab
is interfaced with a structurally right-handed DSCM slab,
both slabs being otherwise identical, the resulting structure
exhibits the Bragg phenomenon for incident plane waves
of both circular-polarization states [20,25,50] and may also
guide surface waves [51,52]. However, a sudden change in
structural handedness does not amount to a phase defect.

This paper is organized as follows. Section II provides the
theoretical framework to calculate the geometric phase of the
transmitted plane wave in relation to the incident plane wave.
Numerical results are presented and discussed in Sec. III, and
the paper ends with key conclusions in Sec. IV. An exp(−iωt )
dependence on time t is explicit, with ω = 2π f as the angular
frequency, f as the linear frequency, and i = √−1. With ε0

and μ0, respectively, denoting the permittivity and permeabil-
ity of free space, the free-space wave number is denoted by
k0 = ω

√
ε0μ0, λ0 = 2π/k0 is the free-space wavelength, and

η0 = √
μ0/ε0 is the intrinsic impedance of free space. The

Cartesian coordinate system (x, y, z) is adopted. Vectors are
in boldface and unit vectors are additionally decorated by a
caret on top. Dyadics are double underlined. Column vectors
are underlined and enclosed in square brackets. The asterisk
(∗) denotes the complex conjugate, and the dagger (†) the
conjugate transpose.

II. THEORY

The DSCM slab with a central layer defect and a cen-
tral twist defect occupies the region 0 < z < L, where the
regions 0 < z < LCSTF = 2N� and LCSTF + LCTF < z < L =
2LCSTF + LCTF are occupied by a chiral sculptured thin film
and the region LCSTF < z < LCSTF + LCTF by a columnar thin
film. Here, 2� is the period of the chiral sculptured thin film

along the z axis and N ∈ {1, 2, 3, . . . } is the number of periods
on either side of the central phase defect.

A. Relative permittivity dyadic

The relative permittivity dyadic of the dielectric matter in
the region 0 < z < L is given by

ε
rel

(z) = S
z
(h, p, ϕ, z) · S

y
(χ ) · [εa ẑẑ + εbx̂x̂ + εcŷŷ]

·S−1
y

(χ ) · S−1
z

(h, p, ϕ, z), z ∈ (0, L). (1)

The frequency-dependent relative permittivity scalars εa, εb,
and εc capture local orthorhombicity [36,49,53]. The tilt
dyadic

S
y
(χ ) = ŷŷ + (x̂x̂ + ẑẑ) cos χ + (ẑx̂ − x̂ẑ) sin χ (2)

contains χ ∈ [0, π/2] as an angle of inclination with respect
to the xy plane.

Both structural handedness and twist are captured by the
rotation dyadic

S
z
(h, p, ϕ, z) = ẑẑ + (x̂x̂ + ŷŷ) cos [h(π pz + ϕ)]

+ (ŷx̂ − x̂ŷ) sin [h(π pz + ϕ)]. (3)

Here, h ∈ {−1, 1} is the structural-handedness parameter,
with h = −1 for structural left-handedness and h = 1 for
structural right-handedness; p/2 is the reciprocal of the pe-
riod; and ϕ ∈ [0, 2π ) is a twist about the z axis. The last two
parameters are defined in piecewise fashion as follows:

p =
⎧⎨
⎩

1/�

0
1/�

, ϕ =
⎧⎨
⎩

0
0
ϕt

, z ∈
⎧⎨
⎩

(0, LCSTF),
(LCSTF, LCSTF + LCTF),
(LCSTF + LCTF, L).

(4)

The foregoing equations also apply for a chiral smectic
liquid crystal containing a layer of a smectic liquid crystal
[54,55]. Furthermore, the same equations can be used for a
chiral nematic liquid crystal containing a layer of a nematic
liquid crystal by setting εc = εa and χ = 0 [54]. It is also pos-
sible to specify εa,b,c and χ in the defect layer differently from
their respective values in the regions 0 < z < LCSTF = 2N�

and LCSTF + LCTF < z < L = 2LCSTF + LCTF, but that is not
necessary for the present purpose.

B. Boundary-value problem

The half-space z < 0 is the region of incidence and reflec-
tion, while the half-space z > L is the region of transmission.
A plane wave, propagating in the half-space z � 0 at an angle
θinc ∈ [0, π/2) to the z axis and at an angle ψ ∈ [0, 2π ) to
the x axis in the xy plane, is incident on the chosen chiral
sculptured thin film. The electric and magnetic field phasors
associated with the incident plane wave are represented as
[36]

Einc(r) =
[

(is − p+)√
2

aL − (is + p+)√
2

aR

]
× exp [iκ (x cos ψ + y sin ψ )] exp (ik0zcos θinc),

z < 0, (5a)
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and

Hinc(r) = 1

iη0

[
(is − p+)√

2
aL + (is + p+)√

2
aR

]
× exp [iκ (x cos ψ + y sin ψ )] exp (ik0zcos θinc),

z < 0, (5b)

where

κ = k0 sin θinc

s = −x̂ sin ψ + ŷ cos ψ

p± = ∓(x̂ cos ψ + ŷ sin ψ ) cos θinc + ẑ sin θinc

⎫⎪⎬
⎪⎭. (6)

The amplitudes of the left-circularly polarized (LCP) and the
RCP components of the incident plane wave, denoted by aL

and aR, respectively, are assumed to be known.
The reflected electric and magnetic field phasors are ex-

pressed as

Eref (r) = −
[

(is − p−)√
2

rL − (is + p−)√
2

rR

]
× exp [iκ (x cos ψ + y sin ψ )] exp (−ik0z cos θinc),

z < 0, (7a)

and

Href (r) = − 1

iη0

[
(is − p−)√

2
rL + (is + p−)√

2
rR

]
× exp [iκ (x cos ψ + y sin ψ )] exp (−ik0z cos θinc),

z < 0. (7b)

The transmitted electric and magnetic field phasors are repre-
sented as

Etr (r)=
[

(is − p+)√
2

tL− (is + p+)√
2

tR

]
× exp [iκ (x cos ψ+y sin ψ )] exp [ik0(z−L) cos θinc],

z > L, (8a)

and

Htr (r) = 1

iη0

[
(is − p+)√

2
tL + (is + p+)√

2
tR

]

× exp[iκ (x cos ψ+y sin ψ )] exp [ik0(z − L) cos θinc],

z > L. (8b)

The reflection amplitudes (rL and rR) as well as the trans-
mission amplitudes (tL and tR) are unknown and require
the solution of a boundary-value problem. Several numerical
techniques exist to solve this problem [56–59]. The most
straightforward technique requires the use of the piecewise
uniform approximation of ε

rel
(z) followed by application of

the 4×4 transfer-matrix method [60]. The interested reader is
referred to Ref. [36] for a detailed description of this tech-
nique.

Thereafter, the transmittance

T = |tL|2 + |tR|2
|aL|2 + |aR|2 ∈ [0, 1] (9)

can be calculated.

C. Geometric phase

Any plane wave can be located on the Poincaré sphere
using the polar angle α ∈ [0, 2π ) and the azimuthal angle
β ∈ [−π/2, π/2], and its Poincaré spinor can then be defined
as

[φ] =
[

cos
(

π
4 − β

2

)
sin

(
π
4 − β

2

)
exp (iα)

]
. (10)

The transmitted plane wave possesses the geometric phase

� = Arg{[φinc]† · [φtr]} (11)

relative to the incident plane wave.
For an incident LCP plane wave, αinc = 0 and β inc =

−π/2 so that

[
φinc

L

] =
[

0
1

]
(12)

is the Poincaré spinor. For an incident RCP plane wave, αinc =
0, β inc = π/2, and

[
φinc

R

] =
[

1
0

]
(13)

is the Poincaré spinor.
The Stokes parameters of the transmitted plane wave are

given by [61]

str
0 = |tR|2 + |tL|2

str
1 = 2 Re

(
tL t∗

R

)
str

2 = 2 Im
(
tL t∗

R

)
str

3 = |tR|2 − |tL|2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (14)

Accordingly, the angles αtr and β tr can be calculated using

str
1 = str

0 cos β tr cos αtr

str
2 = str

0 cos β tr sin αtr

str
3 = str

0 sin β tr

⎫⎪⎬
⎪⎭, (15)

so that

[φtr] =
[

cos
(

π
4 − β tr

2

)
sin

(
π
4 − β tr

2

)
exp(iαtr )

]
(16)

is the Poincaré spinor of the transmitted plane wave. For later
convenience, let αtr

L , β tr
L , and [φtr

L
] refer to LCP incidence,

whereas αtr
R, β tr

R , and [φtr
R

] refer to RCP incidence.

III. NUMERICAL RESULTS AND DISCUSSION

To use causal frequency-dependent constitutive parameters
[62–64] for calculations, single-resonance Lorentzian func-
tions were assumed for εa, εb, and εc as follows [53]:

εa,b,c(λ0 ) = 1 + pa,b,c

1 + (1/Na,b,c − iλa,b,c/λ0 )2
. (17)

The oscillator strengths are determined by the values of
pa,b,c, λa,b,c(1 + N−2

a,b,c)−1/2 are the resonance wavelengths,
and λa,b,c/Na,b,c are the resonance linewidths. The parameters
used for most of the theoretical results reported here are as
follows: pa = 2.3, pb = 3.0, pc = 2.2, λa = λc = 260 nm,
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FIG. 1. TR, TL, and �L as functions of λ0 and θinc of a DSCM slab
without a central phase defect (LCTF = 0 and ϕt = 0◦), calculated for
ψ = 0◦, � = 150 nm, and N = 5. Other parameters are as follows:
pa = 2.3, pb = 3.0, pc = 2.2, λa = λc = 260 nm, λb = 270 nm, and
Na = Nb = Nc = 130. Top row: h = 1. Bottom row: h = −1.

λb = 270 nm, and Na = Nb = Nc = 130. Furthermore,
χ = 37◦ and � = 150 nm were fixed.

Calculations of the transmittance TR were made by setting
aR = 1 and aL = 0. Note that the corresponding geometric
phase

�R = Arg
{[

φinc
R

]† · [
φtr

R

]} ≡ 0, (18)

as shown elsewhere [44]. The transmittance TL and the geo-
metric phase �L = αtr

L were calculated by setting aR = 0 and
aL = 1.

A. DSCM slab without central phase defect

For reference, Fig. 1 presents TR, TL, and �L as functions
of λ0 ∈ [400 nm, 900 nm] and θinc ∈ [0◦, 90◦) of a DSCM slab
without a central phase defect (LCTF = 0 and ϕt = 0◦), calcu-
lated for ψ = 0◦, N = 5, and h = ±1 [45]. The circular Bragg
regime is evident as a blue trough in the plots of (i) TR for
h = 1 and (ii) TL for h = −1. The troughs are about 70-nm
wide and centered at λ0 � 600 nm for θinc = 0◦; they blueshift
as θinc increases, in accord with experimental results [65].
Although the two troughs look identical, they are somewhat
different [45]. The blue trough is naturally absent in the plots
of TL for h = 1 and TR for h = −1 [16].

Whereas �R ≡ 0, both plots of �L versus λ0 and θinc in
Fig. 1 contain a signature of the circular Bragg phenomenon.
A reversal of structural handedness affects but does not lead
to a simple change in �L [45].

B. DSCM slab with a central twist defect

The introduction of a central 90◦ twist defect by itself
is responsible for the insertion of a 15-nm-wide high-
transmittance ridge in the center of the 70-nm-wide blue
trough in the plots of (i) TR versus λ0 ∈ [400 nm, 900 nm] and
θinc ∈ [0◦, 90◦) for h = 1 and (ii) TL similarly for h = −1, as
illustrated in Fig. 2 for ψ = 0◦. Like the troughs signifying
the exhibition of the circular Bragg phenomenon, the high-
transmittance ridges in both plots blueshift as θinc increases.
These ridges are spectral reflection holes.

FIG. 2. TR, TL, and �L as functions of λ0 and θinc of a DSCM slab
with a central twist defect (LCTF = 0 and ϕt = 90◦), calculated for
ψ = 0◦, � = 150 nm, and N = 5. Other parameters are as follows:
pa = 2.3, pb = 3.0, pc = 2.2, λa = λc = 260 nm, λb = 270 nm, and
Na = Nb = Nc = 130. Top row: h = 1. Bottom row: h = −1.

A linear feature right in the center of the circular Bragg
regime also appears in the plots of �L versus λ0 and θinc for
h = ±1 in Fig. 2, as a signature of the central twist defect.
Additionally, the red-orange-yellow curvaceous ridges on the
long-wavelength side of the circular Bragg regime in the plots
of �L in Fig. 1 appear to have partially coalesced pairwise in
the plots of �L in Fig. 2. The pairwise coalescence is partial
because it is pronounced for low θinc with bifurcation evident
for high θinc. Again, a reversal of structural handedness does
not lead to a simple change in �L in Fig. 2.

Calculations (not shown here) indicate that the spectral
reflection holes for h = ±1 redshift within the circular Bragg
regime when ϕt is progressively reduced from 90◦ to 60◦, and
they blueshift when ϕt is progressively increased from 90◦ to
120◦.

C. DSCM slab with a central layer defect

A central �/4-thick layer defect alone is responsible for
the insertion of a central 15-nm-wide high-transmittance ridge
(i.e., spectral reflection hole) in the blue 70-nm-wide trough in
the plots of (i) TR for h = 1 and (ii) TL for h = −1, in Fig. 3.
The high-transmittance ridges blueshift as θinc increases, just
as in Fig. 2.

A linear feature in the center of the circular Bragg regime
and partial pairwise coalescence of curvaceous ridges on the
long-wavelength side of the circular Bragg regime are also
evident in the plots of �L versus λ0 and θinc for h = ±1 and
ψ = 0◦ in Fig. 3. However, visual comparison of Figs. 2 and
3 reveals that the effects of the central twist defect and the
central layer defect on �L are quantitatively not identical.

The spectral reflection holes blueshift within the circular
Bragg regime when LCTF is progressively reduced from �/2
to �/3, and redshift when LCTF is progressively increased
from �/2 to 2�/3, according to calculations not reported here
in detail.

D. DSCM slab with central layer and twist defects

Both types of central phase defects can cooperate to gener-
ate spectral reflection holes [14]. Therefore, for LCTF = �/4
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FIG. 3. TR, TL, and �L as functions of λ0 and θinc of a DSCM slab
with a central layer defect (LCTF = �/2 and ϕt = 0◦), calculated for
ψ = 0◦, � = 150 nm, and N = 5. Other parameters are as follows:
pa = 2.3, pb = 3.0, pc = 2.2, λa = λc = 260 nm, λb = 270 nm, and
Na = Nb = Nc = 130. Top row: h = 1. Bottom row: h = −1.

and ϕt = 135◦, a central 15-nm-wide high-transmittance ridge
is present in the center of the blue 70-nm-wide trough in the
plots in Fig. 4 of (i) TR versus λ0 and θinc for h = 1 and (ii)
TL, also versus λ0 and θinc, for h = −1. More importantly in
the present context, a linear feature manifests as a signature of
the combined defects in the plots of �L versus λ0 and θinc for
h = ±1, in that figure. The two defects also combine to effect
the partial pairwise coalescence of curvaceous ridges on the
long-wavelength side of the circular Bragg regime.

Figures 1–4 show the spectrums of TR, TL, and �L for
θinc ∈ [0◦, 90◦] with ψ = 0◦ fixed. Both TR and TL for DSCM
slabs without central phase defects have long been known to
vary weakly with ψ [36]. In contrast, it was recently shown
[45] that �L does depend significantly on ψ for a defect-free
DSCM slab (i.e., LCTF = 0 and ϕt = 0◦), as confirmed by
Fig. 1.

Figure 5 presents TR, TL, and �L as functions of λ0 ∈
[400 nm, 900 nm] and ψ ∈ [0◦, 360◦) for a DSCM slab with
central layer and twist defects, when θinc = 0◦. Clearly, TR and

FIG. 4. TR, TL, and �L as functions of λ0 and θinc of a DSCM slab
with central layer and twist defects (LCTF = �/4 and ϕt = 135◦),
calculated for ψ = 0◦, � = 150 nm, and N = 5. Other parameters
are as follows: pa = 2.3, pb = 3.0, pc = 2.2, λa = λc = 260 nm,
λb = 270 nm, and Na = Nb = Nc = 130. Top row: h = 1. Bottom
row: h = −1.

FIG. 5. TR, TL, and �L as functions of λ0 and ψ of a DSCM slab
with central layer and twist defects (LCTF = �/4 and ϕt = 135◦),
calculated for θinc = 0◦, � = 150 nm, and N = 5. Other parameters
are as follows: pa = 2.3, pb = 3.0, pc = 2.2, λa = λc = 260 nm,
λb = 270 nm, and Na = Nb = Nc = 130. Left column: h = 1. Right
column: h = −1.

TL depend very weakly on ψ , whether in or out of the circular
Bragg regime; and even the spectral reflection hole varies very
little with ψ . Although the spectral reflection hole is clearly
evident as a vertical feature in the plots of �L, that quantity
depends strongly on ψ inside as well as outside the circular
Bragg regime.

Although transmittance data for ψ ∈ [180◦, 360◦] can be
obtained from transmittance data for ψ ∈ [180◦, 360◦] by
exploiting symmetry, the same cannot be said for geometric-
phase data. Linearity permits the representation

tL = tLL aL + tLR aR

tR = tRL aL + tRR aR

}
, (19)

so that TL = |tLL|2 + |tRL|2 and TR = |tRR|2 + |tLR|2. Exami-
nation of the calculated data reveals that

tLL(h, θinc, ψ ) = tRR(−h, θinc, 2π − ψ )

tLR(h, θinc, ψ ) = tRL(−h, θinc, 2π − ψ )

tRL(h, θinc, ψ ) = tLR(−h, θinc, 2π − ψ )

tRR(h, θinc, ψ ) = tLL(−h, θinc, 2π − ψ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (20)
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These symmetries imply that

TL(h, θinc, ψ ) = TR(−h, θinc, 2π − ψ )

TR(h, θinc, ψ ) = TL(−h, θinc, 2π − ψ )

}
, (21)

so that the transmittances for {h, ψ} can be obtained from the
transmittances for {−h, 2π − ψ}. However, the symmetries

αtr
L (h, θinc, ψ ) = 2π − αtr

R(−h, θinc, 2π − ψ )

αtr
R(h, θinc, ψ ) = 2π − αtr

L (−h, θinc, 2π − ψ )

}
(22)

and

β tr
L (h, θinc, ψ ) = −β tr

R (−h, θinc, 2π − ψ )

β tr
R (h, θinc, ψ ) = −β tr

L (−h, θinc, 2π − ψ )

}
, (23)

which also stem from Eqs. (20), are unfruitful for a similar
exercise with geometric phases because �R ≡ 0 but �L can
be nonzero.

By choosing LCTF and ϕt appropriately, the spectral re-
flection holes can be positioned anywhere inside the circular
regime. For example, when θinc = ψ = 0, these features are
located at λ0 ≈ 610 nm when LCTF = 0.4� and ϕt = 120◦
(results not shown), instead of at λ0 ≈ 600 nm when LCTF =
0.5� and ϕt = 135◦ (Fig. 5).

E. Crossover to spectral transmission holes

Both types of central phase defects can engender, singly
[66–68] as well as jointly [19,69], spectral transmission holes,
when N is sufficiently large. A remarkable crossover, from

(1) a spectral reflection hole in the response of a struc-
turally right-handed (h = 1) and non-dissipative DSCM slab
with a central 90◦ twist defect to a normally incident (i.e.,
θinc = 0) RCP plane wave [13] to

(2) a spectral transmission hole in the response of the same
slab to a normally incident LCP plane wave, with increasing
N , emerged from theoretical analysis [66].
Theory shows the analogous crossover, from

(1) a spectral reflection hole in the response of a struc-
turally left-handed (h = −1) and nondissipative DSCM slab
with a central 90◦ twist defect to a normally incident (i.e.,
θinc = 0) LCP plane wave to

(2) a spectral transmission hole in the response of the same
slab to a normally incident RCP plane wave, with increasing
N . The spectral reflection hole is considerably wider than the
spectral transmission hole, as explained by coupled-mode the-
ory [68]. That approximate theory, however, has not yielded
the crossover value of N [68].

Figure 6 is the counterpart of Fig. 4, the first drawn for
N = 25 and the second for N = 5. The reflection hole in
the spectrum of TR (or TL) for h = 1 (or h = −1) in Fig. 4
has been replaced by a much narrower transmission hole in
the spectrum of TL (or TR) for h = 1 (or h = −1) in Fig. 6,
whether the plane wave is incident normally or obliquely.

Although the ultranarrow spectral transmission hole is
clearly present in the plots of �L, it is hard to recognize it
in the transmittance spectrums in Fig. 6 because the much
thicker DSCM slab absorbs electromagnetic radiation very

FIG. 6. TR, TL, and �L as functions of λ0 and θinc of a DSCM slab
with central layer and twist defects (LCTF = �/4 and ϕt = 135◦),
calculated for ψ = 0◦, � = 150 nm, and N = 25. Other parameters
are as follows: pa = 2.3, pb = 3.0, pc = 2.2, λa = λc = 260 nm,
λb = 270 nm, and Na = Nb = Nc = 130. Left column: h = 1. Right
column: h = −1.

well. When the dissipation in the DSCM was reduced by
setting λa = λb = λc = 10 nm and calculations were carried
out for N = 25, the resulting plot of TL (or TR) for h = 1 (or
h = −1) in Fig. 7 shows the spectral transmission hole very
well.

FIG. 7. TR, TL, and �L as functions of λ0 and θinc of a DSCM slab
with central layer and twist defects (LCTF = �/4 and ϕt = 135◦),
calculated for ψ = 0◦, � = 162 nm, and N = 25. Other parameters
are as follows: pa = 2.3, pb = 3.0, pc = 2.2, λa = λb = λc = 10
nm, and Na = Nb = Nc = 130. Left column: h = 1. Right column:
h = −1.
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IV. CONCLUDING REMARKS

The effect of inserting a central phase defect in a DSCM
slab with a modest number of structural periods is the emer-
gence of a narrowband high-transmittance feature (i.e., a
spectral reflection hole) in the circular Bragg regime, only
when the handedness of the incident circularly polarized
plane wave is the same as the structural handedness of the
DSCM. However, regardless of the structural handedness of
the DSCM, the geometric phase of the transmitted plane wave
contains evidence of both the circular Bragg regime and the
spectral reflection hole, if the incident plane wave is LCP. The
geometric phase of the transmitted plane wave is identically
zero, if the incident plane wave is RCP.

A comparison of Figs. 2–4 indicates that the spectral reflec-
tion holes due to a central twist defect, a central layer defect,
or a combined defect in a DSCM slab manifest in the same
way in the transmittance plots. However, the geometric-phase
signatures of both types of defects and of their combination
are all different. Thus, the type of central phase defect could
conceivably be gleaned by determining �L as a function of λ0

and θinc, possibly using machine-learning techniques [70,71].
When the DSCM slab with the central phase defect is

thick enough to have a large number of the structural periods,
the narrow-band high-transmittance feature in the response

to an incident cohanded circularly polarized plane wave is
replaced by an ultra-narrow-band high-reflectance feature in
the response to an incident crosshanded circularly polarized
plane wave. The new feature may be difficult to observe ex-
perimentally because of absorption inside the DSCM slab, but
it will still be evident in the geometric phase of the transmitted
plane wave, if the incident plane wave is LCP.

Spatial variation of the geometric phase on the mul-
tiwavelength scale has been used for optical applications
[41,46,72–75]. In the same vein, coating of curved surfaces of
transparent objects by DSCMs, with and without central phase
defects and even with multiple phase defects, is envisaged
for circular-polarization-state-discriminatory [39] lensing ap-
plications. Instead of curved surfaces, surfaces decorated by
multi-wavelength-sized planar facets could also be used, as
also surfaces decorated with arrays of metasurfaces. These
avenues are promising because both cholesteric liquid crystals
[41,42,75] and chiral sculptured thin films [76–78] can be
deposited on nonplanar surfaces.
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