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Stokes scintillations for vector vortex beams with controllable spatial correlation
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The present work reports the theoretical and experimental observation of Stokes scintillations (SS) for
focused vector vortex beams (VVBs) with controllable spatial correlation. Initially, a Gaussian-Schell model
(GSM) source is utilized to generate the partially coherent VVBs (PC-VVBs). The focusing of PC-VVBs
results in the optimization of extremum values of SS parameters across the beam cross section. Additionally,
the SS parameters of the focused PC-VVB show spatially structured behavior. It is found that the spatial
correlation, the inhomogeneous polarization distribution, and the Poincaré-Hopf index (PHI) of VVBs are
important factors for structuring the SS parameters. The SS parameters are observed to exhibit a complementary
relationship. Furthermore, the degeneracy associated with the SS parameters is discussed to complete the study.
The flower-patterned distribution of specific SS parameters is useful in determining the topological index of
the PC-VVBs. Interestingly, the bound condition and complementary nature of SS parameters are useful for
scintillation squeezing across the beam cross section in PC-VVBs, where one SS parameter is suppressed at
the expense of another. Thus, the source can be finely tuned using the bound condition with correlation and
topological features to harness this effect optimally.
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I. INTRODUCTION

Polarization in the electromagnetic (EM) field denotes the
correlation observed between the orthogonal electric field
components at a specific space-time coordinate. Similarly,
spatial correlation characterizes the degree of correlation be-
tween electric field components at two distinct transverse
points within the EM field [1]. Whenever an EM beam propa-
gates through any random media, its coherence, polarization,
and intensity (beam profile) fluctuate due to the randomness
of the medium. The fluctuations in intensity are of particular
interest because their correlations help to determine the un-
known source properties. Hanbury Brown and Twiss (HBT)
first studied these fluctuation correlations in the scalar fields
to determine the angular diameter of distant celestial objects
[2–4]. Since then, the HBT effect has been applied to nu-
clear physics [5], classical optics [6,7], quantum optics [8],
and so on. However, due to their wide applications in mul-
tiple domains of physics, the effect was mainly restricted to
the scalar optical fields. Recently, it has been observed that
the subtle correlations of the fields must be addressed for
the electromagnetic optical field [9]. This leads to Stokes
fluctuation correlations or generalization of the HBT effect.
These correlations in Stokes parameters at a single spatial
point are known as Stokes scintillations (SS) and are useful in
explaining light-matter interaction [10], semiconductor lasers
[11], beam propagation [12], etc. Scintillations are essential
to investigate because they are a source of signal degradation
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quantifiable by the elements of the 4 × 4 SS matrix. Under
the assumption of Gaussian statistics, the diagonal SS pa-
rameters are found to be bounded by a sum rule. They can
be manipulated across the beam cross section by controlling
the coherence and polarization properties of the source. It
implies that an increase (decrease) in a particular SS param-
eter is accompanied by a decrease (increase) in the other
SS parameters at the same point. Depending on the type of
application, it may be preferable to tune the SS parameters.
For example, the first SS parameter results from a speckle
pattern. So, optimizing the level of the first SS parameter can
be helpful in free space and laser communications through
the turbulent atmosphere [13]. Similarly, other SS parameters
are polarization dependent, which enables tunability of dif-
ferent polarizations depending upon their applications. One
of the effective ways to control the scintillations is using a
spatially partially coherent (PC) beam. It was found that the
intensity and polarization-resolved scintillations and phase
distortion caused by fluctuating light fields are reduced for
PC fields, which leads to a decrease in communication error
rate and an increase in the channel capacity [13,14]. The
interconnection between coherence and polarization is an-
ticipated to cause modulation in either property by altering
the correlation within fluctuating fields in standard Gaussian
beams, Laguerre-Gaussian beams, Bessel beams, partially co-
herent vector vortex beams (PC-VVBs), etc. [15–19]. Hence,
PC-VVBs are an appropriate field structure for investigating
polarization-resolved intensity fluctuations.

The VVBs are polarization-structured beams with an un-
defined azimuth and intensity null at the vortex center [20].
The characterizing parameter of such a beam is PHI (η =

1
2π

∮ ∇� · dl), where ∇� gives the gradient of polarization
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azimuth in the immediate neighborhood of the vortex center.
Interestingly, the VVBs of a particular η have polarization
distributions identical to the fiber modes and can also be
generated readily using laser resonators [21]. Most of the
practical applications of these beams in a fully coherent
regime are associated with their orbital angular momentum
(OAM) and spin angular momentum (SAM) states [20,22,23].
However, simultaneous research progress asserts that VVBs
in partially coherent regimes enhance the capability of par-
ticular applications such as robustness in communication
(∼ two times) [24,25], speckle-free and enhanced image con-
trast [13,26], trapping of particles with different refractive
indices [22], and so on. Furthermore, it was found that the
PHI of VVBs is a stable quantity and provides a reduced level
of intensity degradation on propagation [27,28]. Additionally,
PC-VVBs with controlled correlations and topological char-
acteristics offer the capability for beam shaping, self-focusing,
and self-rotation [19,29–31], which renders them valuable for
sculpting the illuminating beam to reduce fluctuations [32,33].
This has indeed led to a growing emphasis on PC-VVBs in the
direction of optimizing polarization-resolved intensity fluctu-
ations. Most of the research related to scintillation is confined
to random EM beams [9,34,35], although there is a recent
report on the stability of polarization-dependent Stokes pa-
rameters over the intensity distribution for radially polarized
VVB [36]. However, the SS parameters for both generic and
higher-order PC-VVBs and their dependency on the topology
have not yet been explored.

In this article, we present theoretically and experimentally
the effect of input spatial correlation and PHI on controlling
the Stokes scintillations for focused PC-VVBs. The Gaussian-
Schell model (GSM) beam is considered for both experiment
and theory purposes. The diagonal elements of the SS matrix,
which give the variance of Stokes parameters, are explored
in this work. Although it was found that focusing produces
a significant increase in the scintillation index of electromag-
netic beams [37], the present work shows that the maximum
value of the first SS parameter (scintillation index) for
PC-VVBs at the source plane can be manipulated upon focus-
ing. Further, the spatial distribution of other SS parameters for
focused PC-VVBs demonstrates an unexpected spatial behav-
ior. Moreover, we found that the focusing of PC-VVB results
in a substantial increment and decrement of the maximum
value of SS parameters when compared with their counter-
parts at the source plane. These manifold characteristics of
focused PC-VVBs and the sum rule of SS parameters open
up the possibility of an analogous term used in the quan-
tum domain, i.e., “scintillation squeezing.” This involves the
suppression of specific Stokes scintillations at the expense of
others. Thus, depending upon the choice of application, one
can tune the scintillations accordingly. In Secs. II and III, the
mathematical preliminaries are explained to deduce the SS
parameters of focused PC-VVBs. The theoretical formalism
predicts that the spatial distribution and strength of SS pa-
rameters are fundamentally dependent on the PHI and spatial
correlation width of the input beam. The experimental setup
to synthesize the focused PC-VVBs to study their scintilla-
tion properties is given in Sec. IV. The experimental results
with their theoretical predictions are discussed in Sec. V.
Section VI concludes all the key findings of the paper.

II. THE STOKES SCINTILLATIONS

Based upon the unified theory [1], the correlation and
polarization properties of a random, statistically stationary
(in a wide sense) partially coherent electromagnetic beam
can be characterized using 2 × 2 cross-spectral density (CSD)
matrix as

W(r1, r2) =
(

Wxx(r1, r2) Wxy(r1, r2)

Wyx(r1, r2) Wyy(r1, r2)

)
, (1)

where Wαβ (r1, r2) = 〈E∗
α (r1)Eβ (r2)〉, (α, β = x, y) is the

first-order correlation between electric fields at two spatial
points r1(r1, θ1) and r2(r2, θ2). Any state of polarization of an
EM beam can be defined in terms of the single-point Stokes
parameter. The instantaneous value of Stokes parameters at a
spatial point r can be given in terms of electric field compo-
nents Ex(r) and Ey(r) as

S0(r) = E∗
x (r)Ex(r) + E∗

y (r)Ey(r),

S1(r) = E∗
x (r)Ex(r) − E∗

y (r)Ey(r),

S2(r) = E∗
x (r)Ey(r) + E∗

y (r)Ex(r),

S3(r) = i[E∗
y (r)Ex(r) − E∗

x (r)Ey(r)].

(2)

Taking the average on both sides, Eq. (2) reduces to Stokes
parameters in relation to CSD elements as [38]

〈S0(r)〉 = Wxx(r, r) + Wyy(r, r),

〈S1(r)〉 = Wxx(r, r) − Wyy(r, r),

〈S2(r)〉 = Wxy(r, r) − Wyx(r, r),

〈S3(r)〉 = i[Wyx(r, r) − Wxy(r, r)].

(3)

Similar to the intensity correlation in the scalar beams, the
polarization-resolved intensity correlations were introduced
using Stokes parameters [9]. For any stochastic EM field, the
above parameters are random quantities; hence, fluctuations
in these parameters are defined as

�Sn(r) = Sn(r) − 〈Sn(r)〉, n = 0, 1, 2, 3. (4)

Further, the correlations in the fluctuations of Stokes param-
eters are compiled in a 4 × 4 Stokes fluctuation (SF) matrix
with elements [9]

Cnm(r1, r2) = 〈�Sn(r1)�Sm(r2)〉, (n, m = 0 − 3)

= 〈Sn(r1)Sm(r2)〉 − 〈Sn(r1)〉〈Sm(r2)〉. (5)

Under the assumption that the source follows Gaussian statis-
tics, the SS parameters can be expressed in terms of CSD
elements as [39]

Cnm(r1, r2) = 	ab 	cd σ n
ab σ m

cd Wad (r1, r2)W ∗
bc(r1, r2),

with (a, b, c, d = x, y). (6)

When the two spatial coordinates coincide, i.e., (r1 = r2 = r),
the SF matrix converts into the SS matrix with elements

Dnm(r) = Cnm(r, r). (7)
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The diagonal elements for the SS matrix measure the variance
of Stokes parameters in fluctuating fields, and their decrement
indicates the stability of Stokes parameters. Using Eqs. (5)
and (6), the general expressions for normalized diagonal SS
parameters are given as

DN
00 = |Wxx|2 + |Wxy|2 + |Wyx|2 + |Wyy|2

|Wxx + Wyy|2 , (8a)

DN
11 = |Wxx|2 − |Wxy|2 − |Wyx|2 + |Wyy|2

|Wxx + Wyy|2 , (8b)

DN
22 = 2Re[WxxW ∗

yy + WxyW ∗
yx]

|Wxx + Wyy|2 , (8c)

DN
33 = 2Re[WxxW ∗

yy − WxyW ∗
yx]

|Wxx + Wyy|2 . (8d)

III. PARTIALLY COHERENT VECTOR VORTEX BEAM

The electric field for a VVB can be written as a superposi-
tion of OAM states in orthogonal SAM states as [20]

E (ρ, φ) = ρ|q|

2
exp

(
− ρ2

4w2

)
[eiqφ L̂ + e−i(qφ+φ0 )R̂], (9)

where ρ2 = ρ2
x + ρ2

y ; φ = arctan (ρy/ρx ) is the azimuthal an-
gle; w is the beam waist; q is the topological charge; and L̂
and R̂ are orthogonal basis vectors. Here, q determines the
strength of the phase gradient of the OAM states and can
take any integral value. For a PHI, η (such that |η| = |q|),
there are two pairs of orthogonal basis states for VVBs: type I
and type III with + η; and type II and type IV with -η [20,40].
The first pair of inhomogeneously polarized orthogonal fields
can be obtained by substituting φ0 = 0 and φ0 = π , while the
other pair with negative |η|′s can be obtained by interchanging
the OAM states of orthogonal polarization components. The
PC-VVB is generated using the GSM-type source having
beam waist w and spatial correlation width δ [39]. For PC-
VVB of type I, the CSD matrix elements at the source plane
(W0αβ) are [31]

W0xx(ρ1, ρ2) = (ρ1ρ2)|q|

(2w)2|q| cos(qφ1) cos(qφ2) γ (ρ1, ρ2),

(10a)

W0xy(ρ1, ρ2) = (ρ1ρ2)|q|

(2w)2|q| cos(qφ1) sin(qφ2) γ (ρ1, ρ2),

(10b)

W0yx(ρ1, ρ2) = (ρ1ρ2)|q|

(2w)2|q| sin(qφ1) cos(qφ2) γ (ρ1, ρ2),

(10c)

W0yy(ρ1, ρ2) = (ρ1ρ2)|q|

(2w)2|q| sin(qφ1) sin(qφ2) γ (ρ1, ρ2),

(10d)

where γ (ρ1, ρ2) = exp[ − ρ2
1+ρ2

2
4w2 ]exp[ − (ρ1−ρ2 )2

2δ2 ], and
ρ1(ρ1, φ1) and ρ2(ρ2, φ2) describe the position of two
transverse points in the source plane. Using Eqs. (10a)–(10d)
in the expressions mentioned in Eqs. (8a)–(8d), one can find

the normalized SS parameters in the source plane as

DN (s)
00 = 1,

DN (s)
11 = cos2(2qφ),

DN (s)
22 = sin2(2qφ), (11)

DN (s)
33 = 0.

The above expressions show that the SS parameters for
PC-VVB are independent of the radial coordinate, but some
of the SS parameters depend on the azimuthal angle and
topological charge. This is due to the azimuthal phase gradient
on the spatially varying half-wave plate (SWP), which is used
to generate the VVB given in Eq. (9). The SWP embeds
requisite polarization distribution on the input beam, which
will be discussed further in Sec. IV. It can be obtained easily
that these parameters obey the sum rule, i.e.,

3∑
n=0

DN (s)
nn = 2. (12)

Figure 1 infers the variation of the normalized SS parameter
for various index PC-VVBs at the source plane. The comple-
mentary nature of DN (s)

00 /DN (s)
11 and DN (s)

33 /DN (s)
22 is clear from

Eq. (11). It is observed that at the source plane, DN (s)
00 and DN (s)

33
are independent of azimuthal angle and represent the concen-
tric circles of radius 1 and 0, respectively, but DN (s)

11 and DN (s)
22

depend on the azimuthal angle. This means that the intensity
scintillations are constant and maximum while polarization-
resolved scintillations vary at the source plane for PC-VVBs.
DN (s)

11 and DN (s)
22 possess a petal-like structure and the number

of petals (K ) gives the information about the topological index
(q) of the SWP such that (|q| = K/4). Notably, the degree
of polarization of the generated beam at the source plane is
unity all across the beam cross section. It was obtained that
a partially coherent, fully polarized beam always produces a
maximum scintillation, i.e., “1” [37]. Hence, the modulation
in the SS values at the source plane is the consequence of the
topological index of the generated PC-VVB.

In this study, we aim to find the effect of focusing on the
SS parameters for PC-VVBs of various indices. The effect of
focusing on the statistical properties such as beam profile [41],
spectral degree of coherence [42], and degree of polarization
[43] of stochastic wave field are well known. Furthermore,
the spatial behavior of stochastic structured light fields such
as PC-VVBs exhibits even more intricate characteristics upon
focusing. Hence, the generated PC-VVB is focused using a
converging lens with the source and observation planes at the
front and back focal planes, respectively, i.e., the field at the
observation plane is proportional to the Fourier transform of
the field at the source plane [44]. A similar relation holds for
the CSD matrix elements focused with a lens ( f ) [16]

Wαβ (r1, r2, f ) = k2

4π2 f 2

∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0
W0αβ (ρ1, ρ2)

× exp

[
ik

f
(ρ1 · r1 − ρ2 · r2)

]
ρ1ρ2dρ1 dρ2

× dφ1 dφ2, (13)
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FIG. 1. The azimuthal variation of SS parameters DN (s)
nn , n = 0 (solid line), 1 (dotted line), and 2 (dashed line) for PC-VVBs with |η| = 1

(blue), |η| = 2 (red), and |η| = 3 (green) at the source plane (SWP plane). Here, DN (s)
00 = 1 and DN (s)

33 = 0 (concentric circles of radius = 1 and
= 0, respectively, for all indices).

where k = 2π
λ

, λ is free-space wavelength. The CSD ma-
trix elements for type I PC-VVB at the back focal plane of
the paraxial lens obtained upon solving Eq. (13) are given
in Appendix. Using Eqs. (A1)–(A4) from Appendix A in
Eqs. (8a)–(8d), one can obtain the diagonal SS parameters for
PC-VVBs of various indices across the focal plane.

In Fig. 2, we have plotted SS parameters of a focused
PC-VVB (|η| = 1, 2, 3) as a function of spatial correlation
width (δ). The insets show their density profiles for two differ-
ent δ values. Although the variation of DN

00 and DN
33 is identical

to DN
11 and DN

22, respectively, the two figures are shown to look
into all four parameters separately. The azimuthally symmet-
ric and asymmetric distribution of SS parameters is due to
the inhomogeneous polarization distribution. It is observed
that the variation of SS parameters DN

00 and DN
33 is comple-

mentary to each other, which is clear from their respective
color maps also. However, the color map of the other two
SS parameters DN

11 and DN
22 are identical, but their variation is

complementary. For instance, the SS parameters correspond-
ing to δ1 and δ2 are mentioned in Table I. It is seen that DN

00( f )
can be lowered significantly by decreasing δ and increasing

|η|. However, this leads to an increase of DN
33( f ). A similar

conflict is employed for the other two SS parameters. The
SS parameters are equal for less correlated fields, and this
deterioration is more for higher-index PC-VVBs. Reduction
in δ at the source plane results in a decrease in the polarized
contribution [degree of polarization (DOP, P)] across the focal
plane [19,31]. Also, it was found that for uncorrelated fields
(P = 0), the SS parameters are equal [34]. However, for large
δ, the identical SS parameters are nearly independent of the
topological index of the input beam. By tuning the various
source parameters, one can design a focused vector field in
which the polarization-resolved intensity fluctuations are min-
imized, which can be useful in various applications such as
communication, optical measurement, etc.

IV. THE EXPERIMENT

The experimental setup to generate the PC-VVB is pre-
sented in Fig. 3. A linearly polarized He-Ne laser beam is
collimated with the help of microscope objective (MO), pin-
hole (PH), and lens L1. The collimated beam is made to fall on

FIG. 2. Theoretical plot for the dependency of the SS parameters on correlation width δ of focused ( f = 200 mm) PC-VVBs [|η| = 1
(blue), 2 (red), 3 (green)] at (0.5 mm, 0 mm). The selected location aligns with the extremum value (either maximum or minimum) of the SS
parameters at the periphery of PC-VVB with a beam waist of 3 mm. (A) The solid lines represent DN

00 and dashed lines represent DN
33. (B) The

solid lines represent DN
11 and dashed lines represent DN

22. In the insets the SS profiles corresponding to two distinct δ′s (δ1, δ2) are shown.
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TABLE I. The SS parameters for various index PC-VVBs with
|η| = 1, 2, 3 at δ1 = 1.54 mm and δ2 = 0.85 mm.

δ1 = 1.54 mm δ2 = 0.85 mm

|η| DN
00( f ) DN

11( f ) DN
22( f ) DN

33( f ) DN
00( f ) DN

11( f ) DN
22( f ) DN

33( f )

1 0.975 0.975 0.02 0.02 0.78 0.78 0.22 0.22
2 0.91 0.91 0.1 0.1 0.58 0.58 0.42 0.42
3 0.85 0.85 0.19 0.19 0.52 0.52 0.48 0.48

a rotating ground glass diffuser (RGGD) through a translating
lens L2 to generate a spatially incoherent source. The RGGD
and SWP are placed at the front and back focal plane of lens
L3, respectively, such that a partially spatially coherent beam
falls at the SWP by the consequences of van Cittert–Zernike
theorem [45]. The generated partially coherent beam follows
the Gaussian statistics, which is following the theoretical as-
sumptions. The correlation width at the SWP can be obtained
as δ = 3.832λ f3

2πa , where f3 is the focal length of lens L3 and
a is the spot size on RGGD [46]. The correlation between
two spatial points at the SWP plane can be manipulated by
changing the spot size at RGGD by translating lens L2. The
SWP encodes the requisite polarization on the input beam
while maintaining unit DOP across the beam cross section.
The generated PC-VVB is focused using lens L4 at the Stokes
camera (SC) plane. The input polarizer (P) is used to change
the initial polarization of the beam to obtain different types of
PC-VVBs, which are SS degenerate. An additional half-wave
plate (HWP) is used to generate a negative topological index
PC-VVB [47]. The Stokes parameters (Sn, n = 0, 1, 2, 3) of
PC-VVBs are recorded simultaneously using SC (SALSA,
Bossa Nova Technologies, USA, 1040 × 1040). The PC-VVB
of |η| = 1 and |η| = 2 are generated using SWPs of q = 1
and q = 2, respectively (SWP, Thorlabs), while a PC-VVB

FIG. 3. Schematic of the experimental setup to generate
PC-VVBs and investigate the effect of focusing on the Stokes scintil-
lation. MO: microscope objective; PH: pinhole; L1, L2, L3, L4: lens;
M1, M2: mirrors; TS: translational stage; RGGD: rotating ground
glass diffuser; P: polarizer; HWP: half-wave plate; SWP: spatially
varying HWP; SC: Stokes camera. Translating lens L2 provides a
controlled generation of PC-VVBs. The VVB of |η| = 3 is generated
using two SWPs of |η| = 1 and |η| = 2 in concatenation with a HWP
as shown in the inset (blue-dashed borderline).

of |η| = 3 was generated using SWPs of q = 1 and q = 2
in concatenation with HWP [48] (see blue-dashed borderline
inset of Fig. 3).

V. RESULTS AND DISCUSSION

Following the Gaussian statistics, the normalized SS pa-
rameters are measured at the focal plane (SC plane) using the
Stokes parameters as [9]

DN
00(r, f ) = 〈S0〉2 + 〈S1〉2 + 〈S2〉2 + 〈S3〉2

2〈S0〉2
, (14a)

DN
11(r, f ) = 〈S0〉2 + 〈S1〉2 − 〈S2〉2 − 〈S3〉2

2〈S0〉2
, (14b)

DN
22(r, f ) = 〈S0〉2 − 〈S1〉2 + 〈S2〉2 − 〈S3〉2

2〈S0〉2
, (14c)

DN
33(r, f ) = 〈S0〉2 − 〈S1〉2 − 〈S2〉2 + 〈S3〉2

2〈S0〉2
. (14d)

From Eq. (14a), DN
00(r, f ) is directly related to DOP(P)

of the input beam as in Ref. [49], DN
00(r, f ) = 1

2 (1 + P2),

P =
√

〈S1〉2+〈S2〉2+〈S3〉2

〈S0〉 . Two important bound conditions under
Gaussian statistics are [50,51]

0.5 � DN
00(r, f ) � 1,

3∑
n=0

DN
nn(r, f ) = 2. (15)

The VVBs are inhomogeneously polarized beams, which can
be represented on a higher-order Poincaré sphere (HOPS)
by a single spatial point, in contrast to the Poincaré sphere,
where it is distributed all across the equatorial plane [52].
In Fig. 4, for two correlation widths δ1 = 1.54 mm and δ2 =
0.85 mm, we plot theoretically (T) and experimentally (E)
obtained SS parameters for PC-VVBs (|η| = 1, 2, 3) of all
four types. The total intensity (S0), Stokes components distri-
butions (|S1|, |S2|) are given in the insets for |η| = 1, 2, 3 with
blue, red, and green dotted boxes, respectively. The different
inner-spherical shells of HOPS correspond to correlation-
induced depolarization effects on various index (|η| = 1, 2, 3)
PC-VVBs. The mentioned DOP values on HOPS directly
give the intensity scintillation in the particular PC-VVB. The
inner spherical shells shrink more rapidly for higher-index
PC-VVBs with reducing δ. This implies that the intensity
scintillations can be minimized by reducing δ for higher-
order PC-VVBs. From Eqs. (14a)–(14d), it is clear that the
azimuthally symmetric and asymmetric distribution of SS
parameters is due to the petal-like distribution of Stokes
parameters |S1| and |S2|, since S3 for PC-VVBs is almost
zero. The azimuthal asymmetry of DN

11 and DN
22 carry in-

formation of PHI of the input beam such that (number of
petals K = 4|η|), as discussed in Sec. III. The SS distribution
is unchanged on reducing correlation, but their magnitude
deteriorates uniformly across the beam cross section. The
significant deterioration for higher-index PC-VVBs makes
them more robust toward atmospheric turbulent scintillation,
which may enhance the information preservation during free
space communication [53]. The state of polarization (SOP)
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FIG. 4. Higher-order Poincaré sphere representation of focused PC-VVBs |η| = 1 (blue), |η| = 2 (red), and |η| = 3 (green). The experi-
mentally obtained total intensity (S0), |S1|, and |S2| for δ1 = 1.54 mm (cyan), δ2 = 0.85 mm (yellow) are shown in the blue, red, and green
dashed box for |η| = 1, 2, 3, respectively, in row I. The location of two orthogonal pairs (I, III and II, IV) of PC-VVBs are at diametrically
opposite coordinate points of HOPS (points 1 and 2). Inner spherical shells can see the correlation-induced depolarization. The theoretical and
experimentally obtained SS parameters at two δ′s are shown in rows II and IV. The SOP distributions for a particular |η| in row III show SS
degeneracy.

distributions for all four types of PC-VVBs are independent of
the correlation-induced depolarization effect. The points 1 and
2 inside the HOPS represent two orthogonal pairs of beams
lying at diametrically opposite coordinates. The SS parame-
ters for all four types (for generic PC-VVB: radial, azimuthal,
antiradial, and antiazimuthal) of PC-VVBs for particular |η|
are degenerate (see row IV).

To visualize the variation of SS parameters across the beam
cross section, the line profiles are plotted in Fig. 5. It can
be seen from the figure that DN

00 and DN
11 are minimum at

the core while increasing toward the edge of the beam. An
opposite trend is followed by DN

33 and DN
22 owing to the com-

plementarity. Thus, the later SS parameters are maximum at
the core and decrease toward the edge of the beam. DN

00/DN
11

and DN
22/DN

33 are minimized for generic PC-VVBs across the
beam cross section. However, these parameters can be reduced
substantially for higher indices by reducing δ since a re-
duced two-point correlation is more effective for higher index
PC-VVBs, which can be observed by an almost flat green line
profile (see Fig. 5 for DN

00 and DN
11 line profiles). The exper-

imentally obtained maximum values of Stokes scintillations
are presented in Table II. It infers that the SS parameters can

be optimized using the index and spatial correlation width
of the input beam. For instance, DN

00 and DN
11 are lowered

by decreasing spatial correlation and increasing the index at
the expense of an increase in DN

22 and DN
33. Changing δ and η

are two specific ways to squeeze the Stokes scintillations for
PC-VVBs. The averaged value of Stokes parameters is ob-
tained by repeating the measurements five times, and the
statistical error shown in Fig. 5 is the standard deviation
present in the realized data. Along with the bound condi-
tions given in Eq. (15), the spatial correlation, PHI, and the

TABLE II. The experimentally obtained maximum values of SS
parameters across the beam cross section for various index PC-VVBs
with |η| = 1, 2, 3 at δ1 = 1.54 mm and δ2 = 0.85 mm.

δ1 = 1.54 mm δ2 = 0.85 mm

|η| DN
00( f ) DN

11( f ) DN
22( f ) DN

33( f ) DN
00( f ) DN

11( f ) DN
22( f ) DN

33( f )

1 0.96 0.95 0.07 0.08 0.75 0.7 0.3 0.27
2 0.92 0.91 0.08 0.12 0.62 0.6 0.37 0.32
3 0.86 0.88 0.12 0.18 0.55 0.56 0.41 0.45

043516-6



STOKES SCINTILLATIONS FOR VECTOR VORTEX BEAMS … PHYSICAL REVIEW A 109, 043516 (2024)

FIG. 5. Variation of SS parameters for PC-VVBs with |η| = 1 (blue), |η| = 2 (red), and |η| = 3 (green) across the beam cross section for
different input spatial correlation values (δ1 = 1.54 mm, δ2 = 0.85 mm). The solid and dashed lines are theoretical predictions, and various
shapes are the experimentally obtained data points.

complementarity of SS parameters may play an essential role
in scintillation squeezing, the term used as an analogy to the
well-known effect of quantum domain [34].

VI. CONCLUSION

In this article, we have studied the Stokes scintillation (SS)
parameters for focused vector vortex beams (VVB) of various
indices (|η| = 1, 2, 3) with controlled spatial correlation. The
source and observation plane distributions of SS parameters
verified their evolution upon focusing. It is found that the
SS parameters are modulated by input index, spatial corre-
lation, and focusing of the beam. The distributions of Stokes
parameters (|S1|, |S2|) result in both the azimuthal symmetry
and asymmetry of SS parameters, which is useful in detec-
tion. Owing to the bound conditions of the SS parameter,
the change in the input correlation and index give rise to the

scintillation squeezing. A uniform deterioration in the Stokes
scintillations across the beam cross section is a signature of
a deteriorated two-point correlation at the source plane. This
research holds particular significance for optical communi-
cation systems in both the classical and quantum domains,
where intensity and polarization-resolved scintillations play
a significant role in signal deterioration.
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APPENDIX: THE CSD ELEMENTS USING EQ. (13)

Wxx(r1, r2, f ) = −�(r1, r2)
∞∑

l=−∞

∞∑
j=0

[
P1(p1, l )P2(p1, l )

j!�(a1)(2δ2)2 j+|l−q| + P1(p2, l )P2(p2, l )

j!�(a2)(2δ2)2 j+|l+q| + i2qei2qθ2 P1(p1, l )P2(p1, l − 2q)

j!�(a1)(2δ2)2 j+|l−q|

+ i−2qe−i2qθ2 P1(p2, l )P2(p2, l + 2q)

j!�(a2)(2δ2)2 j+|l+q|

]
eil (θ1−θ2 ), (A1)

Wyy(r1, r2, f ) = �(r1, r2)
∞∑

l=−∞

∞∑
j=0

[
− P1(p1, l )P2(p1, l )

j!�(a1)(2δ2)2 j+|l−q| − P1(p2, l )P2(p2, l )

j!�(a2)(2δ2)2 j+|l+q| + i2qei2qθ2 P1(p1, l )P2(p1, l − 2q)

j!�(a1)(2δ2)2 j+|l−q|

+ i−2qe−i2qθ2 P1(p2, l )P2(p2, l + 2q)

j!�(a2)(2δ2)2 j+|l+q|

]
eil (θ1−θ2 ), (A2)
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Wxy(r1, r2, f ) = i�(r1, r2)
∞∑

l=−∞

∞∑
j=0

[
P1(p1, l )P2(p1, l )

j!�(a1)(2δ2)2 j+|l−q| − P1(p2, l )P2(p2, l )

j!�(a2)(2δ2)2 j+|l+q| + i2qei2qθ2 P1(p1, l )P2(p1, l − 2q)

j!�(a1)(2δ2)2 j+|l−q|

− i−2qe−i2qθ2 P1(p2, l )P2(p2, l + 2q)

j!�(a2)(2δ2)2 j+|l+q|

]
eil (θ1−θ2 ), (A3)

Wyx(r1, r2, f ) = W ∗
xy(r1, r2, f ). (A4)

The functions used in Eqs. (A1)–(A4) are

M = 1

4w2
+ 1

2δ2
,

p1/2 = 2 j + |l ∓ q| + q + 2,

a1/2 = j + |l ∓ q| + 1, (A5)

�(r1, r2) = k2

8π f 2(2w)2|q| exp

[
− k2r2

1

4M f 2
− k2r2

2

4M f 2

]
,

(A6)

P1(s, t ) = M−s/2

2t!
�(

s + t

2
)

(
k2r2

1

4M f 2

)2

× 1F
1

(
t − s

2
; t + 1;

k2r2
1

4M f 2

)
, (A7)

P2(s, t ) = M−s/2

2t!
�(

s + t

2
)

(
k2r2

2

4M f 2

)2

× 1F
1

(
t − s

2
; t + 1;

k2r2
2

4M f 2

)
. (A8)

The special notations �(·) and 1F1(.; .; .) are Gamma function
and Kummer functions, respectively. In solving the above

expressions, we have used the following expansions and in-
tegrals [54,55]:

exp

[
ikρ1r1

f
cos(θ1 − φ1)

]
=

∞∑
l=−∞

il Jl

(
kρ1r1

f

)
eil (θ1−φ1 ),

(A9)∫ 2π

0
exp[−inφ1 + Nρ1ρ2cos(φ1 − φ2)]

= 2π exp(−inφ2)In(Nρ1ρ2), (A10)

In(Nρ1ρ2) =
∞∑
j=0

1

j!�( j + |n| + 1)

(
Nρ1ρ2

2

)2 j+|n|
, (A11)

∫ ∞

0
rnexp(−Sr2)Jl (μr)dr

= μl�[l + n + 1)/2]

2l+1S(l+n+1)/2�(l + 1)
1F

1

(
l + n + 1

2
: l + 1;

−μ2

4S

)
,

(A12)

1F
1

(x : y; z) = ez
1F

1
(y − x : y; −z). (A13)

Here, Jl (·) is the lth-order Bessel function of the first kind,
and In(·) is the nth-order modified Bessels function of the first
kind.
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