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Eigenmode decomposition method for full-wave modeling of microring resonators
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We develop a theoretical predictive model for an all-pass ring resonator that enables the most complete
description of linear coupling regimes. The model is based on eigenmode decomposition of Maxwell’s equations
with a full account of the confined and leaky modes, as opposed to the existing phenomenological methods
restricted to the confined modes only. This model enables a quantitative description of all-pass ring resonators
and provides insights into the physics underlying microring-waveguide coupling. We experimentally validate
the model using transmission measurements in the linear regime of aluminum nitride resonators. The developed
model is then used to explore the field enhancement in microrings crucial for nonlinear photonic applications.
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I. INTRODUCTION

Microring resonators are small ring-shaped waveguid-
ing structures that can trap and manipulate light. Their
compact size, low power consumption, ease of fabrica-
tion, and high-speed operation make them ideal for use in
integrated photonic circuits, enabling the development of
next-generation communication systems, sensors, biomedical
devices, and quantum technologies [1]. Microring resonators
play a crucial role in nonlinear photonics [2]. They can reso-
nantly enhance nonlinear optical processes giving rise to new
effects not possible with conventional waveguides, such as
frequency comb generation [3,4]. Microring resonators are
also essential in nonlinear quantum photonics [5], where they
are used to generate and manipulate nonclassical light states
[6], such as entangled photon pairs and squeezed light [7].
They can also create nonlinear interactions between single
photons, which are important for quantum logic gates and
quantum simulations [8]. The ability of microring resonators
to enhance nonlinear effects and confine light in a small
space makes them an important tool for advancing research in
quantum technologies and developing practical applications.
As researchers continue to explore their potential in new and
exciting applications, the importance of microring resonators
in photonics and quantum optics is expected to further grow.

Although resonant optical effects in microrings have been
extensively reported experimentally, theoretical studies of
them are comparatively scarce due to the complexity of
their description. There are three groups of phenomenolog-
ical methods developed for linear and nonlinear regimes of
microring resonators: (i) Maxwell’s-equations-based methods
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[9,10], (ii) Schrödinger-equation-based methods [11–13] and
(iii) multiple-port network methods [14–16]. The Maxwell’s-
equations-based methods benefit from their full-wave descrip-
tion but lack simplicity especially for nonlinear operation of
microring resonators. The Schrödinger-equation-based meth-
ods benefit from simpler treatment provided for slowly
varying wave envelopes and adapted for nonlinear studies
for the price of lower accuracy. The multiple-port network
methods enable analytical description of the linear regime of
coupling but suffer from a number of simplifications made.

Being approximate, all the methods developed have their
own limitations caused by their natural inconsistencies. One
of the inconsistencies common to the methods given in
Refs. [9–16] is the single-point treatment of coupling. In
the context of all-pass ring resonators, the single-point cou-
pling means that the bus-waveguide and the microring interact
with each other strictly on the cross-sectional plane passing
through the position of minimal waveguide-ring gap. Be-
fore and after the coupling plane, the electromagnetic fields
of the waveguide and the microring are assumed not to
intersect. There were multiple attempts to improve the de-
scription by substituting the single-point coupling coefficients
with those computed over extended coupling areas (e.g., see
Refs. [16–18]). They helped in some aspects but left the core
physics of the methods unchanged with the same internal
inconsistencies.

Another common issue is the forward modeling of sig-
nal propagation. The methods given in Refs. [9–16] ignore
feedback from the out-coupled fields to the ring resonator. In
this paper, we will demonstrate that the feedback of the out-
coupled fields is crucial for the ring mode dynamics, defining
the gap-size dependence of the microring resonances.

The last issue to point out is the incomplete mathematical
treatment provided for the microring fields in methods [9–16].
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FIG. 1. An optical microscope image of the fabricated AlN res-
onator with the radius of 50 µm. The inset shows cross-sectional
TEM image of the fabricated AlN waveguide.

Azimuthal wave numbers of those fields appear continuous.
This violates the periodicity condition for the supported ring
fields and makes their description mathematically inconsis-
tent.

Altogether, the mentioned inconsistencies make the meth-
ods developed suitable mainly for fitting of experimental data,
rather than for predictive modeling and design of optical
resonators. To make predictive modeling possible, full-wave
solution of Maxwell’s equations for entire all-pass microring
resonator is required. Though such a solution can potentially
be obtained numerically [17–20], the huge size of typical
resonators makes the full-wave simulation computationally
expensive if not barely possible. This situation urges de-
velopment of analytical or semianalytical methods allowing
quantitative predictions without computationally expensive
simulations.

As opposed to phenomenological approaches [9–16],
we develop a systematic, fully Maxwell’s-equations-based
predictive model for all-pass ring resonators. The model pro-
vides a complete theoretical representation of the microring
resonator and delivers an accurate linear theory in both over-
coupling and undercoupling regimes. We validate the model
by comparing its results with experimental measurements
of the transmittance quality factors obtained in the linear
regime of aluminum nitride (AlN) microresonators around the
1.3 µm wavelength. The comparison demonstrates an ex-
cellent agreement between the theoretical and experimental
results. By using the developed model, we analyze and opti-
mize the performance of AlN ring resonators for maximum
fields excited inside the microrings. The predicted optima are
further compared with the experimental data and confirmed
by the observed extinction maxima.

An optical microscope image of the fabricated AlN mi-
croresonator with the radius of 50 µm is shown in Fig. 1.
The inset shows the cross-sectional transmission electron
microscopy (TEM) image of the fabricated AlN waveguide
cladded in SiO2 (see Appendix G for fabrication details). All
the resonators are end-fire coupled, with light injected using
a lensed fiber. AlN is chosen as the resonator material for its
wideband operation from ultraviolet to infrared wavelengths
[21], large bandgap (∼6.2 eV) [22] and strong second-order
nonlinearity (χ (2) ∼ 4.7 pm/V) [23]. On top of these, AlN
thin films can be scalable up to 8-inch or 12-inch diameters
depending on the wafer size that it is deposited on, increasing

FIG. 2. Sketch of the model system marked with the notations
used. Insets give the cross-sectional dimensions (a) and the field
distribution in the waveguide (b) and the ring (c).

device output yield of integrated photonics and ring resonators
in one fabrication round. Also, AlN benefits from low temper-
atures used for its deposition that can be as low as 200 ◦C [24].

II. WAVEGUIDE-RING COUPLING MODEL

A described all-pass ring resonator is composed of a
bus straight waveguide and a microring of the same cross-
sectional profile and the same material composition. The
device dimensions and the field profiles used in experimental
validation of the model are shown in Fig. 2.

The developed model is based on full-wave solution of the
linearized Maxwell’s equations (see Appendix A for details).
For description of the ring-waveguide coupling, we ignore
all intrinsic dissipation in the structure and decompose the
fields excited inside the ring and the waveguide over their
eigenfields Er

m(r, kn) and Ew
m (r, k):

Er (r, ω) =
∑

n

∑
m

Ar
m(kn, ω)Er

m(r, kn), (1)

Ew(r, ω) =
∫ ∞

−∞
dk

∑
m

Aw
m (k, ω)Ew

m (r, k), (2)

where Ar
m(ω, kn) and Aw

m (ω, k) are the frequency- and
wave-number-dependent complex mode amplitudes of the mi-
croring and the bus waveguide. In Eqs. (1) and (2), Er

m(r, kn)
and Ew

m (r, k) are the eigensolutions of Maxwell’s equations
for the single microring and waveguide, respectively. The
eigenfields of the microring and the waveguide oscillate at
the real-valued eigenfrequencies given by ωm(kn) and ωm(k),
where m is the integer modal index, kn = n/R is the discrete
azimuthal ring wave number, and k is the continuously vary-
ing longitudinal waveguide wave number. Details of the field
decomposition over the waveguide and ring eigenfields are
given in Appendices B and C.

The real-valued eigenfrequencies make the respective
eigenfields orthogonal in the Hilbert space enabling a fast
and easy way for finding the mode amplitudes Aw

m (ω, k) and
Ar

m(ω, kn). Using the eigenfield orthogonality, the dissipation-
free Maxwell’s equations can be reduced to the follow-
ing master equations for the coupled dynamics of the

043514-2



EIGENMODE DECOMPOSITION METHOD FOR FULL-WAVE … PHYSICAL REVIEW A 109, 043514 (2024)

mode amplitudes:[
ω2

m(kn)

ω2
− 1

]
Aw,in

m (ω, k) = A0
m(ω, k), (3)

[
ω2

m(kn)

ω2
− 1

]
Aw,out

m (ω, k) = R
∞∑

n=−∞
θout

mm(kn, k)Ar
m(ω, kn),

(4)[
ω2

m(k)

ω2
− 1

]
Ar

m(ω, kn) =
∫ ∞

−∞
dk θ in

mm(kn, k)Aw
m (ω, k),

(5)

where the fields excited in the microring and the bus waveg-
uide are assumed to be given by the modes with the same
index m. In these equations, we intentionally split the ampli-
tudes Aw

m (ω, k) = Aw,in
m (ω, k) + Aw,out

m (ω, k) into the two parts
Aw,in

m (ω, k) and Aw,out
m (ω, k) to separate the effects of (i) the

external source A0
m(ω, k) pumping the waveguide and (ii) the

out-coupling of the ring fields Ar
m(ω, kn) that similarly pump

the waveguide fields. As for the ring modes fields, they are
pumped by the waveguide modes with amplitudes Aw

m (ω, k).
The processes of in-coupling and out-coupling between the
ring and waveguide modes are given with the complex co-
efficients θ in

mm(kn, k) and θout
mm(kn, k). Calculation of all these

parameters is given in Appendix D.
Noteworthy that master Eqs. (3)–(5) provide mathemati-

cally complete description of energy exchange between the
discrete microring modes and the continuously distributed
over k waveguide modes. For a fixed frequency ω, only the
modes with k = km(ω) [being the inverse function of ω =
ωm(k)] are eigen and confined inside the waveguide and the
ring. Modes with wave numbers other than km(ω) are gener-
ally leaky bringing coupling-induced radiation losses to the
fields excited in the bus waveguide and the ring resonator.
Inclusion of both the confined and leaky harmonics in the field
decomposition makes the master equations the most complete
field description for the waveguide-ring coupling compared
to the existing phenomenological methods that consider the
confined modes only.

III. RING MODE LOSSES

A. Coupling losses

Under weak coupling, when the in-coupling
and out-coupling coefficients are sufficiently small:
|θ in

mm(kn, k)|, |θout
mm(kn, k)| � 1, the master equations predict

resonant excitation of the ring modes. The ring mode with the
azimuthal wave number kn experiences the resonance around
the frequency ω = ωres

m (kn) ≈ ωm(kn) with a Q factor of

Qc
m(kn) = [

2γ c
m(kn)

]−1
, (6)

where γ c
m(kn) is the coupling loss rate of the ring mode:

γ c
m(kn) = πR

4

∣∣∣∣ωm(kn)

V g
m(kn)

∣∣∣∣Re
[
θ in

mm(kn, kn)θout
mm(kn, kn)

]
, (7)

with V g
m(k) = ∂ωm(k)/∂k being the group velocity of the

eigenwave with mode index m.
The coupling loss is the wave-interaction-induced atten-

uation mechanism of the ring modes. It originates from the
coupled dynamics of the ring and waveguide modes. From

FIG. 3. The coupling loss rates of the microrings eigenmodes
around the 1.3 µm wavelength predicted by the theoretical model.

the one side, a particular ring mode out-couples to all the
confined and leaky waveguide modes. From the other side,
the same waveguide modes in-couple to the considered ring
mode back. The combined effect of the in-coupling and out-
coupling results in an effective loss for every ring mode given
by the integral contributions of the two processes and in-
volving all the leaky and confined modes of the waveguide.
Detailed derivation of the coupling loss rate γ c

m(kn) is shown
in Appendix E.

Being defined with the geometry-dependent in-coupling
θ in

mm(kn, kn) and out-coupling θ in
mm(kn, kn) coefficients, the cou-

pling loss rate γ c
m(kn) varies with the waveguide-microring

gap a and the ring radius R, as shown in Fig. 3.

B. Intrinsic losses

In addition to the coupling loss, all-pass ring resonators
exhibit intrinsic losses of absorption, bending, volume, and
surface scattering for the ring and the waveguide. To account
for these losses, we add the intrinsic decay rates γ r

m(kn) and
γ w

m (k) to the ring and waveguide eigenfrequencies ωm(kn) →

FIG. 4. The intrinsic loss rates of the microrings eigenmodes
around the 1.3 µm wavelength obtained in numerical modeling.
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FIG. 5. Theoretical and experimental quality factors of optical
resonances around the 1.3 µm wavelength in the AlN resonators with
different radii and waveguide-ring gaps.

ωm(kn)[1 − iγ r
m(kn)] and ωm(k) → ωm(k)[1 − iγ w

m (k)]. With
intrinsic loss inclusion, eigenmode decompositions (1) and (2)
become mathematically incomplete, so the coupling loss rate
given by Eq. (7) holds as long as γ r

m(kn), γ w
m (k) � 1. In this

case, the intrinsic losses just contribute an additional Q factor:

Qr
m(kn) = [

2γ r
m(kn)

]−1
(8)

to the microring resonances.
To get the intrinsic loss rates of AlN microrings, we run

COMSOL Multiphysics eigenmode solver for standing alone
rings with the extinction coefficients of the materials used
that reproduce the experimentally measured propagation loss
of the waveguide modes, as discussed in Appendix I. The
obtained rates γ r

m(kn) are shown in Fig. 4. They account for the
absorption, scattering, and bending losses of the ring modes.
The loss rates γ r

m(kn) appear weakly dependent on ring size
for R � 20μm. The smallness of γ r

m(kn) in the fabricated
AlN microrings validates the use of Eq. (7) for estimation
of the coupling loss rate γ c

m(kn). By comparing γ r
m(kn) and

FIG. 6. Electric field enhancement ηm(kn) as a function of gap a
between the ring and the waveguide for different ring radii R.

FIG. 7. Experimentally measured waveguide transmittance min-
ima around the 1.3 µm wavelength as a function of ring-waveguide
gap for different microring radii. The arrows show the minima with
the highest microring-induced extinction.

γ c
m(kn), we expect the coupling loss to dominate for small

waveguide-ring gaps with a < 500 nm and the intrinsic losses
to prevail for large gaps with a > 500 nm.

C. Total losses

With account of the coupling and intrinsic losses, the total
Q factor of the microring resonances becomes

Qm(kn) = [
2γ c

m(kn) + 2γ r
m(kn)

]−1
. (9)

We emphasize that among γ c
m(kn) and γ r

m(kn) only the
coupling loss rate depends on the waveguide-microring gap
a and brings this dependence to Qm(kn). As γ c

m(kn) decreases
with a to zero, the highest quality factor Qmax

m (kn) = Qr
m(kn)

is reached in the uncoupled regime under infinite gap a when
both the in-coupling and out-coupling naturally vanish.

To verify the model for prediction of total losses, we cal-
culated Qm(kn) as a function of gap a and compared them
with the quality factors experimentally measured around the
wavelength of 1.3 µm for AlN all-pass ring resonators with
the radii of 20, 50, and 100 µm radius (see Appendices F
and H for details). The Q-factor comparison is shown in
Fig. 5. It demonstrates an excellent agreement between the
theoretical and experimental results for all the microring radii
considered and, thus, validates our theoretical model.

IV. FIELD ENHANCEMENT

Optical resonances are accompanied by generation of
strong microring fields. This effect is used in nonlinear
photonic applications to enhance efficiency of nonlinear pro-
cesses. For narrowband profiles Aw,in

m (ω, k), the ring fields can
be reduced to

∣∣Ar
m

(
ωres

m (kn), kn
)∣∣ ≈ ηm(kn)

∣∣∣∣
∫ ∞

−∞
dk Aw,in

m (ω, k)

∣∣∣∣, (10)

where

ηm(kn) = Qm(kn)
∣∣θ in

mm(kn, kn)
∣∣ (11)
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FIG. 8. Maximum field enhancement ηcr
m (kn) achieved at critical

gap acr as a function of R. The experimentally measured acr are
shown by the scatterers.

is the integral enhancement factor of the resonant ring mode.
To get the highest fields, the integral enhancement should
be maximized. The critical coupling that corresponds to the
maximum fields excited occurs, when all incoming power
goes into the resonant ring mode causing a drop in the bus
waveguide transmission to zero (see Appendix F for details).
Following our model, the highest fields generated in AlN
microrings are achieved at acr varying from 507 nm for
R = 20μm to 534 nm for R = 100μm, as shown in Fig. 6.
The maximum field enhancement ηcr

m (kn) observed is about
20 for R = 20μm and drops to about 8 for R = 100μm.
The predicted values for acr are in very good agreement
with the experimentally measured bus waveguide transmit-
tance minima shown in Fig. 7, following which the maximum
microring-induced extinction is observed for the gaps in the
range from 500 to 550 nm.

The critical coupling realized at acr results in Qcr
m (kn) =

α(R)Qr
m(kn). Our model predicts that the coefficient α(R)

approaches 1/2 for large rings with θout
mm(kn, k) ≈ θ in∗

mm(kn, k).
For AlN microrings with R in between of 20 and 100 µm, α(R)
varies from 0.516 to 0.504. The weak dependence of α(R) for
large rings, allows us to write

ηcr
m (kn) ≈ 1

2 Qr
m(kn)

∣∣θ in
mm(kn, kn)

∣∣. (12)

This relation suggests that the main dependence of the
maximum field enhancement ηcr

m (kn) on the coupler ge-
ometry comes from the in-coupling coefficient θ in

mm(kn, kn).
As |θ in

mm(kn, kn)| continuously decreases with microring size,
caused by weaker in-coupling into larger microring res-
onators, the maximum field enhancement ηcr

m (kn) drops with
R, as shown in Fig. 8. At the same time, this trend can be
changed by modifying the coupler geometry. For instance,
the in-coupling coefficient of a pulley-type coupler shown
in Fig. 9 is much less sensitive to R and generally higher
owing to a larger effective area of coupling. Its estimate (see
Appendix D for details) gives

θ in
mm(kn, kn) = θmax

mm (kn, kn)sin(knaϕ), (13)

where θmax
mm (kn, kn) is the coupling coefficient amplitude. By

changing the coupler’s angular size 2ϕ from 0 to π/(kna),

FIG. 9. Sketch of a pulley-type microring resonator.

we can continuously increase the in-coupling efficiency and,
hence, the resonant field enhancement ηcr

m (kn) under critical
coupling to the microring.

V. CONCLUSION

In summary, we have developed the predictive model based
on linearized Maxwell’s equations that includes the leaky and
confined modes of the waveguide and the microresonator into
consideration. This is a model enabling calculation of the cou-
pling loss for microring resonators and providing full-wave
insights into the physics underlying waveguide-ring coupling.
The developed model has been verified using the quality
factors measured in the linear regime of AlN resonators and
has achieved an excellent agreement with the experimental
results. To get insight into the linear field enhancement pro-
vided by the ring resonators, we have used the developed
model to explore the regime of critical coupling crucial for
nonlinear photonic applications, such as frequency comb gen-
eration. We have identified the critical gaps resulting in the
highest linear field enhancement inside the microring and have
demonstrated that the maximum field enhancement decreases
with size of the microring resonator. The predicted critical
gaps have been further confirmed with the experimentally
measured extinction maxima for the bus waveguide transmis-
sion.
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APPENDIX A: STRUCTURAL DECOMPOSITION

Let us consider a system consisting of a coupled waveg-
uide and a microring embedded into a material with the
constant dielectric permittivity εb. We assume that the waveg-
uide and the ring are made of the same material with
the space-dependent permittivities εw,r (r) = εb + δχw,r (r),
where δχw,r (r) are their excessive susceptibilities. Linear ex-
citation of electromagnetic fields in the waveguide and their
further coupling in and out of the ring are fully described
by linearized Maxwell’s equations, which can be reduced to
the following equation for the excited electric field E in the
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frequency domain ω:

− ∇ × ∇ × E(r, ω) + εb
ω2

c2
E(r, ω)

= −ω2

c2
[δχw(r) + δχr (r)]E(r, ω) − ω2μ0P0(r, ω),

(A1)

where P0(r, ω) is the polarization field of the external current
pumping the waveguide, c is the speed of light in vacuum, and
μ0 is the magnetic constant.

Equation (A1) can be structurally decomposed into the
two coupled problems of (i) the single waveguide and (ii) the
single microring. For this, we put

E(r, ω) = Ew(r, ω) + Er (r, ω), (A2)

where Ew(r, ω) is the field excited in the waveguide problem:

− ∇ × ∇ × Ew(r, ω) + εw(r)
ω2

c2
Ew(r, ω)

= −ω2

c2
δχw(r)Er (r, ω) − ω2μ0P0(r, ω), (A3)

and Er (r, ω) is the field excited in the microring problem:

− ∇ × ∇ × Er (r, ω) + εr (r)
ω2

c2
Er (r, ω)

= −ω2

c2
δχr (r)Ew(r, ω). (A4)

We highlight that the waveguide problem contains only
εw(r) and δχw(r), while the ring problem is given by εr (r)
and δχr (r), manifesting that only the waveguide or the ring
are present in the formulated problems. The terms in the
right-hand sides of the obtained equations describe pumping
of the waveguide and coupling between the two problems.

APPENDIX B: SOLUTION OF THE WAVEGUIDE
PROBLEM

The waveguide problem can easily be solved if we assume
that the waveguide is lossless, i.e., when εw(r) ∈ R. In this
case, waveguide fields can be expanded over eigenfields as
shown in Eq. (2), where Ew

m (r, k) are continuous functions of
real-valued wave number k given by the eigenvalue problem:

∇ × ∇ × Ew
m (r, k) − εw(r)

ω2
m(k)

c2
Ew

m (r, k) = 0. (B1)

If the waveguide is aligned along the x direction, then its
eigenfields can be written as follows:

Ew
m (r − rw, k) = Em(ỹ, z̃, k)eikx̃, (B2)

where (x̃, ỹ, z̃) are the cartesian coordinates of the waveguide
system with the center at r = rw (see Fig. 2). The cross-
sectional profiles Em(ỹ, z̃, k) and eigenfrequencies ωm(k) are
unique for every eigenwave index m [16,25]. Thus, the waveg-
uide fields given by Eq. (2) represent superposition of the
guided modes with k = km(ω), where km(ω) is the inverse
function to ωm(k), and leaky modes with k 
= km(ω).

In our consideration, we intentionally limit the dielectric
permittivity εw(r) to reals. This results in real-valued ωm(k)

necessary for the eigenfields Ew
m (r, k) to be orthogonal in the

Hilbert space and feature finite norms ‖Ew
m (k)‖:∫

εw(r) Ew
n

∗(r, k) · Ew
m (r, k)d3r

= 2π
∥∥Ew

m (k)
∥∥2

δnmδ(k − k′), (B3)

∥∥Ew
m (k)

∥∥2 =
∫

εw(ỹ, z̃)|Em(ỹ, z̃, k)|2dỹ dz̃. (B4)

By applying eigenmode decomposition (2) for waveguide
Eq. (A3) with the use of eigenfield orthogonality (B3), we get
the equation

[
ω2

m(k)

ω2
− 1

]
Aw

m (k, ω)

=
∫

Ew∗
m (r, k) · [

δχw(r) Er (r, ω) + P0(r,ω)
ε0

]
d3r

2π
∥∥Ew

m (k)
∥∥2

(B5)

for evolution of the waveguide mode amplitudes in the fre-
quency domain.

APPENDIX C: SOLUTION OF THE RING PROBLEM

Solution of the ring problem is slightly more complicated
compared to the waveguide one. Even if the ring material
is lossless, eigenfrequencies of the ring are always complex
due to their bending loss. As a result, ring eigenfields are not
orthogonal in the Hilbert space and cannot be used for field
decomposition. However, bending losses of ring eigenfields
decrease with the ring radius R (see Fig. 4 for total intrinsic
loss rates). Thus, microring eigenfrequencies can be approx-
imated with the real-valued ones for the rings sufficiently
large compared to the excited wavelength. In this case, the
ring eigenfields can be approximately written with waveguide
eigenfields (B1). If the ring cross-sectional profile is the same
as that of the waveguide, then the ring eigenfields can be
written as follows:

Er
m(r − rr, kn) = Em(r̃, z̃, kn)eiknRφ̃ , (C1)

where (r̃, φ̃, z̃) are the cylindrical coordinates of the ring
system with the center at r = rr (see Fig. 2). The ring field
periodicity supports only the discrete azimuthal wave num-
bers kn = n/R. Finally, the ring fields can be expanded over
eigenfields (C1) of large indices |n|  1 obeying the con-
dition of small bending losses, as shown in Eq. (1). Note,
most of the ring modes in this decomposition are leaky at a
given frequency ω. Only the modes that satisfy the condition
kn = km(ω) are guided and confine their energy inside the
ring.

Finally, with the use of orthogonality of the ring eigenfield
in the Hilber space:
∫

εr (r) Er
n
∗(r, ks) · Er

m(r, kp)d3r = 2πR
∥∥Er

m(ks)
∥∥2δnmδsp,

(C2)∥∥Er
m(ks)

∥∥2 =
∫

εr (r̃, z̃)|Em(r̃, z̃, ks)|2dr̃ dz̃, (C3)
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we can get the equation[
ω2

m(kn)

ω2
− 1

]
Ar

m(kn, ω) =
∫

Er∗
m (r, kn) · Ew(r, ω)δχr (r)d3r

2πR
∥∥Er

m(kn)
∥∥2

(C4)

for the ring mode amplitudes Ar
m(kn, ω) in the frequency do-

main.

APPENDIX D: MASTER EQUATIONS

The right-hand sides of Eqs. (B5) and (C4) give us the con-
tributions of pumping, in-coupling, and out-coupling. To sepa-
rate those processes, we split the waveguide mode amplitudes:
Aw

m (ω, k) = Aw,in
m (ω, k) + Aw,out

m (ω, k), where Aw,in
m (ω, k) is

the waveguide field in-coupling to the ring, and Aw,out
m (ω, k)

is the field out-coupling from the ring. Then, the in-coupling
field is given by Eq. (3) with

A0
m(ω, k) = 1

2πε0

∫
Ew∗

m (r, k) · P0(r, ω)∥∥Ew
m (k)

∥∥2
d3r, (D1)

while the out-coupling fields obey the equation[
ω2

m(k)

ω2
− 1

]
Aw,out

m (ω, k) = R
∞∑

n=−∞

∑
m′

θout
mm′ (kn, k)Ar

m′ (ω, kn)

(D2)

with the out-coupling coefficients

θout
mm′ (kn, k) =

∫
δχw(r)

2πR

Ew∗
m (r, k) · Er

m′ (r, kn)∥∥Ew
m (k)

∥∥2
d3r. (D3)

For the ring modes, we obtain the following equation:[
ω2

m(kn)

ω2
− 1

]
Ar

m(ω, kn) =
∫ ∞

−∞
dk

∑
m′

θ in
mm′ (kn, k)Aw

m′ (ω, k),

(D4)

where

θ in
mm′ (kn, k) =

∫
δχr (r)

2πR

Er∗
m (r, kn) · Ew

m′ (r, k)∥∥Er
m(kn)

∥∥2
d3r (D5)

are the in-coupling coefficients.
Note, the master equations were derived under the assump-

tion of a straight waveguide. However, they are also valid for
a curved waveguide, if its bending loss is negligibly small,
similar to those of the microring ones. In this case, the derived
theory is readily applicable to pulley-type ring resonators
shown in Fig. 9. These resonators provide an additional degree
of control for the effective coupling by varying the coupler’s
angular size 2ϕ and feature generally higher coupling effi-
ciency. Their out-coupling and in-coupling coefficients can be
estimated as follows:

θout
mm′ (kn, k) = sin([k(R + a) − knR]ϕ)

k(R + a) − knR

∫
δχw(r̃, z̃)

π

Ew∗
m (r̃ − a, z̃, k) · Em′ (r̃, z̃, kn)∥∥Ew

m (kn)
∥∥2

dr̃ dz̃, (D6)

θ in
mm′ (kn, k) = sin([k(R + a) − knR]ϕ)

k(R + a) − knR

∫
δχr (r̃, z̃)

π

Er∗
m (r̃, z̃, kn) · Em′ (r̃ − a, z̃, k)∥∥Er

m(kn)
∥∥2

dr̃ dz̃, (D7)

where the waveguide fields are written in the cylindrical sys-
tem of the microring. The above estimates are obtained after
integration over the angle φ from −ϕ to ϕ for the coupler
section (see Fig. 9).

APPENDIX E: COUPLING LOSS RATES

To get the ring mode coupling loss rates, we use Eqs. (D2)
and (D4). Together, they result in the following evolution
equation for the ring modes:[

ω2
m(kn)

ω2
− 1 − βm(ω, kn, kn)

]
Ar

m(ω, kn)

= Bin
m (ω, kn) +

∑
n′ 
=n

βm(ω, kn, kn′ )Ar
m(ω, kn′ ) (E1)

with

Bin
m (ω, kn) =

∫ ∞

−∞
dk

∑
m′

θ in
mm′ (kn, k)Aw,in

m′ (ω, k), (E2)

βm(ω, kn, kn′ ) = R
∫ ∞

−∞
dk

∑
m′

ω2θ in
mm′ (kn, k)

ω2
m′ (k) − ω2

∑
m′′

θout
m′m′′ (kn′ , k).

(E3)

The imaginary part of βm(ω, kn, kn) in the left-hand side of
Eq. (E1) defines the ring modes coupling loss rates

γ c
m(ω, kn) = 1

2
Im[βm(ω, kn, kn)]

= πR

4
Re

∑
m′

∣∣∣∣ ω

V g
m′ (km′ (ω))

∣∣∣∣θ in
mm′ (kn, km′ (ω))

×
∑
m′′

θout
m′m′′ (kn, km′ (ω)). (E4)

Note that in a multiple-eigenwave case, the coupling loss
rate of a particular ring mode with index m depends on char-
acteristics of all m′ eigenwaves supported by the ring and
the waveguide. However, if the coupling is mainly driven by
the m−m type of interaction, with the leading θ in

mm and θout
mm

coefficients, then Eq. (E4) reduces to Eq. (7) for a single
eigenwave operation regime.

APPENDIX F: WAVEGUIDE TRANSMISSION

According to Eqs. (3) and (D2), ring mode amplitudes
define the waveguide fields:

Aw
m (ω, k)

Aw,in
m (ω, k)

= 1 + R
∞∑

n=−∞

∑
m′

θout
mm′ (kn, k)Ar

m′ (ω, kn)

A0
m(ω, k)

. (F1)
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If Q factors of the ring resonances are sufficiently high and
the microring spectral lines with different eigenwave indices
m do not overlap, then in the vicinity of the resonant angular
frequency ωres

m (kn) Eq. (F1) can be reduced to the following
relation:

Aw
m (ω, k)

Aw,in
m (ω, k)

≈ 1 + R
θout

mm(kn, k)Ar
m(ω, kn)

A0
m(ω, k)

. (F2)

Under critical coupling to the resonant ring mode, when the
waveguide transmission drops to zero, the waveguide mode
amplitude is Aw

m (ωres
m (kn), kn) = 0. Finally, this gives us the

following relation for the critically coupled ring amplitude
Ar,cr

m (kn):

Ar
m

(
ωres

m (kn), kn
) ≈ Ar,cr

m (kn) = −A0
m

(
ωres

m (kn), kn
)

R θout
mm(kn, kn)

. (F3)

With introduction of Ar,cr
m (kn), we can rewrite the waveg-

uide fields ratio as follows:

Aw
m (ω, k)

Aw,in
m (ω, k)

≈ 1 − Ar
m(ω, kn)

Ar,cr
m (kn)

. (F4)

This ratio demonstrates the direct link between a minimum
in the waveguide transmittance given by the left-hand side of
Eq. (F4) and a maximum of the ring fields, allowing us to use
any of them for Q-factor characterization.

APPENDIX G: FABRICATION

AlN microring resonators were fabricated on 8-in. silicon
(Si) wafer. The wafer was first deposited with 2.4-µm-thick
silicon dioxide (SiO2) as the bottom cladding layer. AlN of
thickness ∼500 nm was then deposited on top of the bottom
cladding layer using the physical vapor deposition (PVD)
method. This layer of AlN was subsequently subjected to high
temperature annealing to improve its quality. A thin layer of
SiO2 (∼200 nm thickness) was then deposited on AlN to act
as a hard mask for AlN for subsequent process steps. Pho-
tolithography and etching were then conducted to imprint the
resonators patterns on photoresist and transfer these patterns
down to the SiO2 hard mask and AlN device layer via etching.
After the AlN resonators patterns were formed, a layer of SiO2

of ∼1.5 µm was blanket deposited on the AlN devices as a
final top cladding layer. More details of the fabrication can be
found in Refs. [26–28].

APPENDIX H: TRANSMISSION MEASUREMENTS

The Q-factor measurements were done for the waveguide
transmittance using a Yenista Tunics 100S-HP tunable laser
around the wavelength of 1.3 µm. The laser was edge coupled
to the waveguide using a lensed fiber. The polarization of the
laser was fixed to TE to ensure only a single transverse mode
is excited inside the waveguide. A brightfield imaging system
was used to align the fiber tip to the waveguide. The output
from the fiber was collected using an objective lens (50X,
0.42N.A) on to a high-speed IR detector (FPD510-FS-NIR,
250 MHz). The laser was scanned at the speed of 100 nm/s
across multiple resonances and then transmission of the ring-
waveguide system was observed on an oscilloscope. The input
power was controlled to ensure additional thermal effects,

FIG. 10. Experimental setup used for transmission measurement.

which can result in the broadening of the resonances, are
avoided. The schematic for the experimental setup is shown
in Fig. 10.

APPENDIX I: INTRINSIC LOSS ESTIMATION

By using the cutback method, experimental propagation
loss of the fundamental mode at the wavelength of 1.3 µm
excited in the waveguide was estimated to be 1.18 dB/cm,
as shown in Fig. 11. This estimation gave us the waveguide
intrinsic loss rate γ w

m of 1.3 × 10−6.
The experimentally estimated rate γ w

m was reproduced
in COMSOL Multiphysics eigenmode solver for a straight
waveguide by introducing finite dissipation to the materials
used. Those material data were then input in the same eigen-
mode solver for standing alone ring resonators modeling the
intrinsic loss rates γ r

m that account for both propagation and
bending losses. Calculation of the rates γ w

m and γ r
m was done

in the two-dimensional eigenmode solver. In both the cases,
the number of mesh elements over the wavelength was >13

FIG. 11. Experimental output coupled power as a function of
waveguide length.
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for the external area and >26 for the internal part of the
waveguide/ring (compared to the minimum requirement of
eight mesh elements per wavelength) that guaranteed high

accuracy for the derived loss rates. The obtained microring
loss rates appear weakly dependent of ring radius R, as shown
in Fig. 4.
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