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Nonreciprocal photon-phonon entanglement in Kerr-modified spinning cavity magnomechanics
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Cavity magnomechanics has shown great potential in studying macroscopic quantum effects, especially
for quantum entanglement, which is a key resource for quantum information science. Here we propose to
realize magnon mediated nonreciprocal photon-phonon entanglement, which exhibits asymmetry when opposite
magnetic or driving fields are respectively applied to the magnons with the Kerr effect or the photons with the
Sagnac effect. We find that the mean magnon number can selectively exhibit nonreciprocal linear or nonlinear
(bistable) behavior with the strength of the strong driving field on the cavity. Assisted by this driving field, the
magnon-phonon coupling is greatly enhanced, leading to the nonreciprocal photon-phonon entanglement via the
swapping interaction between the magnons and photons. This nonreciprocal entanglement can be significantly
enhanced with the magnon Kerr and Sagnac effects. Given the available parameters, the nonreciprocal photon-
phonon entanglement can be preserved at ≈3 K, showing remarkable resilience against the bath temperature. The
result reveals that our paper holds promise in developing various nonreciprocal devices with both the magnon
Kerr and Sagnac effects in cavity magnomechanics.
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I. INTRODUCTION

Magnons [1–5], the quanta of collective spin excitations
in magnetically ordered materials, especially for the yttrium
iron garnet (YIG, Y3Fe5O12) [6–8], have drawn consider-
able attention theoretically and experimentally in quantum
information science [1,9]. Thanks to high spin density and
low collective loss [10–12], magnons in a YIG sphere can
be strongly coupled to photons in microwave cavities for
investigating various phenomena, such as dark modes [13,14],
exceptional points [15–23], nearly perfect absorption [24],
unconventional magnon excitations [25], stationary one-way
quantum steering [26,27], and dissipative couplings [28–31].
With advanced experimental technologies, the magnetostric-
tive force, originating from the deformation of the sphere’s
geometric structure during magnetization [32], gives rise to
the nonlinear interaction between two modes (magnon mode
and phonon mode), which was previously overlooked in com-
monly used dielectric or metallic materials and has been
discovered in YIG spheres recently [33]. This coupling mech-
anism allows magnons to interact with phonons in vibrated
modes of the YIG sphere. Thus, a hybrid cavity magnome-
chanical (CMM) [33] system is built when a YIG sphere meets
a cavity. Obviously, this hybrid system combines the individ-
ual advantages of magnons, photons, and phonons, providing
great potential to investigate diverse quantum effects [34–40].
Additionally, the magnon Kerr effect (i.e., the Kerr effect
of magnons), which denotes the nonlinear interaction among
the magnon numbers caused by the magnetocrystallographic
anisotropy [4,41], was experimentally demonstrated in the
cavity magnonics frame [42,43], giving rise to nonlinear
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cavity magnonics [44] as well as Kerr-modified CMM sys-
tems [45]. This nonlinearity offers a great power in studying
multistability [41,42,45–47], long-distance spin-spin interac-
tion [48–51], quantum phase transition [52,53], and sensitive
detection [54].

In addition, macroscopic quantum entanglement has gar-
nered significant attention in quantum information science
[55–62], owing to its wide applications in quantum transduc-
tion [63,64], quantum networking [65–67], quantum sensing
[68], Bell-state tests [69,70], quantum teleportation [71,72],
and microwave-optics conversion [73–75]. To produce such
entanglement, nonlinear effects are always required [76]. This
results in the widespread exploration of macroscopic entan-
glement within nonlinear systems, including nonlinear cavity
magnonics [44], CMM systems [77], and cavity optomechan-
ics (COM) [78]. Moreover, quantum entanglement can be
well protected or enhanced in a spinning COM [79]. This is
because the spinning COM allows the emergence of the strong
correlation between the photon and the phonon in one chosen
direction but weak correlation or complete lack of correlation
in the opposite direction. Such direction-dependent entangle-
ment is called nonreciprocal entanglement, which exploits
the Sagnac-Fizeau effect to induce an opposite frequency
shift on the cavity [80,81]. Specifically, when the rotation
direction of the cavity field differs from the direction of the
driving field, the light within the cavity undergoes varying
equivalent refractive indices during propagation, resulting in
an irreversible refractive index for the clockwise and coun-
terclockwise modes. Correspondingly, the Lorentz reciprocity
is broken and nonreciprocal entanglement emerges. Besides
the Sagnac effect, the magnon Kerr effect can also be used to
achieve nonreciprocal bipartite and tripartite entanglement in
cavity optomechanics [82]; that is, by only tuning the direc-
tion of the applied magnetic field along the crystallographic
axis [100] or [110], asymmetric entanglement is produced.
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This is due to the fact that the magnon Kerr effect can give
rise to a positive or negative frequency shift on magnons
as well as an additional parametric magnon amplifier under
strong driving fields. However, nonreciprocal entanglement
with these two nonlinear effects has yet to be revealed to date.

Here we present a scheme to realize a nonreciprocal
photon-phonon entanglement in a Kerr-modified spinning
CMM system, where the magnon Kerr and the Sagnac ef-
fects are both considered. The proposed system consists of
the Kerr magnons in the YIG sphere simultaneously coupled
to photons in the spinning cavity via the magnetic dipole
interaction and phonons in the mechanical mode via mag-
netostrictive interaction. In this system, the mean magnon
number can selectively exhibit linear or nonlinear (bistable)
nonreciprocal response under the strong driving field, where
the nonreciprocity is induced by the Sagnac effect, and the
linear (nonlinear) behavior is caused by the interplay between
the magnon Kerr effect and the magnetostrictive interaction.
With the enhanced magnetostrictive coupling between the
magnons and phonons by the strong driving field, magnon
mediated photon-phonon entanglement can be attained via the
magnon-phonon and magnon-photon swapping interaction.
This achieved entanglement can be nonreciprocally improved
by both the magnon Kerr and Sagnac effects with varying the
tunable system parameters. To be more clear, we can interpret
this nonreciprocal behavior from the view of our symmetrical
operations on the proposed system. Without the magnon Kerr
effect (or Sagnac effect), the symmetric photon-phonon entan-
glement is obtained when opposite magnetic fields along the
crystallographic axis of the YIG sphere (or driving fields on
the nonspinning cavity) are applied. However, the situation is
changed when the magnon Kerr or Sagnac effect is taken into
account, that is, the opposite magnetic fields (driving field)
give rise to asymmetric entanglement. Since the generated
entanglement is dependent on the direction of the magnetic
field (driving field) applied to the YIG sphere (cavity), we
here clarify that nonreciprocal entanglement is predicted in
our proposed system. Moreover, such nonreciprocal entangle-
ment is robust against the bath temperature. With the available
parameters, the photon-phonon entanglement can survive at
≈3 K, which is much higher than previous proposals. This
paper provides opportunities for the development of diverse
nonreciprocal devices in Kerr-modified spinning cavity mag-
nomechanics.

This paper is organized as follows. In Sec. II, the model and
the system Hamiltonian are described. Then the steady-state
solution and the effective Hamiltonian are given in Sec. III.
In Sec. IV, the nonreciprocal photon-phonon entanglement is
studied with system parameters by taking both the Sagnac
and magnon Kerr effects into account. Finally, a conclusion
is given in Sec. V.

II. MODEL AND THE HAMILTONIAN

We consider a hybrid Kerr-modified spinning cavity mag-
nomechanical system consisting of a spinning resonator at an
angular velocity � holding photons coupled to Kerr magnons
in the Kittel mode of a µm-YIG sphere, where the magnons
of the YIG sphere placed in a static magnetic field B0 are also
coupled to phonons in the mechanical mode [see Fig. 1(a)].

(a)

(b)

FIG. 1. (a) Schematic of the Kerr-modified spinning CMM sys-
tem. K0 is the Kerr coefficient of the magnons, which can be tuned
by the direction of the magnetic field B0. When the magnetic field
is aligned along the crystal axis [100] ([110]), K0 > 0 (< 0). For the
spinning cavity, a positive (negative) frequency shift �F is produced
via the Sagnac effect when the driving field is clockwise (counter-
clockwise). (b) The coupling configuration. The Kerr magnons with
the decay rate κm are coupled to both the photons in the spinning
cavity with the decay rate κa and the phonons in the mechanical mode
with the decay rate κb. The corresponding coupling strengths are gma

and gmb.

The Hamiltonian of the proposed hybrid system can be written
as (setting h̄ = 1)

H = HSCM + K0(m†m)2 + iεd (a†e−iωd t − aeiωd t ), (1)

with

HSCM =(ωa − �F )a†a + ωbb†b + ωmm†m

+ gma(a†m + am†) + gmbm†m(b + b†), (2)

where ωa is the resonance frequency of the nonspinning mag-
nomechanical cavity, ωb is the resonance frequency of the
mechanical mode, and ωm = γ H is the resonance frequency
of the Kittel mode when the mechanical mode is at its equilib-
rium position, determined by the gyromagnetic ratio γ and
the external bias magnetic field H . gma describes the cou-
pling between the Kittel mode and the spinning cavity via the
magnetic-dipole interaction, and gmb characterizes the single-
magnon magnomechanical coupling between the Kittel mode
and the mechanical mode via the magnetostrictive interaction
[see Fig. 1(b)]. Experimentally, the strong magnon-photon
coupling strength (gma) has been demonstrated [10–12], that
is, gma is larger than the dissipation rates of the cavity and
Kittel modes, κa and κm, i.e., gma > κa, κm. Typically, the
magnon-phonon coupling gmb in the single-magnon level is
weak, but it can be indirectly (directly) enhanced by imposing
a strong driving field on the cavity (Kittel mode). The param-
eter �F is the Sagnac-Fizeau shift of the cavity resonance
frequency, induced by the light circulating in the spinning
cavity, which can be given by [80,81]

�F = ±�
nrωa

c

(
1 − 1

n2
− λ

n

dn

dλ

)
. (3)
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Here, n is the refractive index, r is the radius of the resonator,
and λ (c) is the wavelength (speed) of the light in vacuum. The
dispersion term dn/dλ in Eq. (3) denotes the relativistic origin
of the Sagnac effect, which is small (≈1%) [80,81] and thus
can be ignored. The sign “+” (“ − ”) in Eq. (3) corresponds
to the clockwise (counterclockwise) driving field, where the
direction of the cavity spinning is assumed to be along
the clockwise direction. This means �F > 0(�F < 0) for the
clockwise (counterclockwise) driving field [see Fig. 1(a)].

The second term in Eq. (1) related to K0 depicts the Kerr
nonlinearity of the magnons in the Kittel mode of the YIG
sphere, arising from the magnetocrystallographic anisotropy.
The Kerr coefficient K0 is inversely proportional to the volume
of the YIG sphere [41], and it can be tuned either positive or
negative by varying the direction of the static magnetic field
[42]. Specifically, when the magnetic field is aligned along
the crystallographic axis [100] ([110]), we have K0 > 0 (< 0)
[42]. Experimentally, K0 can be tuned from 0.05 to 100 nHz
for the diameter of the YIG sphere from 1 mm to 100 µm.
The last term in Eq. (1) is the Hamiltonian of the driving field
acting on the spinning cavity, where εd = √

2κaP/ωd is the
Rabi frequency, with P being the power and ωd the frequency.
The operators a (a†), b (b†), and m (m†) are the annihilation
(creation) operators of the spinning cavity, the mechanical
mode, and the Kittel mode, respectively. In the rotating frame
with respect to ωd , the Hamiltonian in Eq. (1) becomes

H = HSCM + K0(m†m)2 + iεd (a† − a), (4)

where HSCM = HSCM − ωd (a†a + m†m).

III. QUANTUM LANGEVIN EQUATION AND THE
EFFECTIVE HAMILTONIAN

A. Steady-state solution

By defining the frequency detuning of the spinning cavity
(Kittel) mode from the driving field, i.e., �a(m) = ωa(m) − ωd ,
the dynamics of the considered system with dissipation can be
governed by the quantum Langevin equations [83]:

ȧ = − [κa + i(�a − �F )]a − igmam + εd +
√

2κaain,

ḃ = − (κb + iωb)b − igmbm†m +
√

2κbbin,

ṁ = − (κm + i�m)m − igmaa − igmbm(b + b†)

− 2iK0m†mm +
√

2κmmin. (5)

Here σin (σ = a, b, m) are the vacuum input noise operators
of the spinning cavity, the mechanical mode, and the Kittel
mode, respectively. All these operators have zero mean values,
i.e., 〈σin〉 = 0. The correlation functions of these operators
within the Markovian approximation satisfy

〈σ †
in(t ′)σin(t )〉 = Nσ δ(t − t ′),

〈σin(t )σ †
in(t ′)〉 = (Nσ + 1)δ(t − t ′), (6)

where Nσ = [exp(h̄ωσ/kBT − 1)]−1 is the mean thermal ex-
citation number in the mode σ , with kB being the Boltzmann
constant and T the bath temperature.

By rewriting each operator (σ ) as the sum of its expectation
(σs) and fluctuation (δσ ) in Eqs. (5), i.e., σ → σs + δσ , a
set of equations related to the operator expectation can be

given by

ȧs = − [κa + i(�a − �F )]as − igmams + εd ,

ḃs = − (κb + iωb)bs − igmb|ms|2,
ṁs = − [κm + i(�̃m + �K )]ms − igmaas, (7)

where �̃m = �m + 2gmbRe[bs] is the frequency detuning
induced by the displacement of the mechanical mode
(2gmbRe[bs]), and �K = 2K0|ms|2 is the frequency shift
caused by the magnon Kerr effect. In the long-time limit,
the proposed system reaches its steady state, i.e., σ̇s = 0, so
Eqs. (7) reduce to

[κa + i(�a − �F )]as + igmams − εd = 0,

(κb + iωb)bs + igmb|ms|2 = 0,

[κm + i(�̃m + �K )]ms + igmaas = 0. (8)

By directly solving these equations, we have

as = εd − igmams

κa + i(�a − �F )
,

bs = − igmb|ms|2
κb + iωb

,

ms = − igmaas

κm + i(�̃m + �K )
. (9)

Since �F > 0 (< 0) is dependent on the direction of the
clockwise (counterclockwise) driving field, so the mean pho-
ton number (|as|2) has different values for the opposite driving
fields, indicating that |as|2 in the spinning cavity behaves
nonreciprocally. This nonreciprocity can indirectly give rise
to nonreciprocal mean magnon (|ms|2) and phonon (|bs|2)
numbers because of the direct coupling between the spin-
ning cavity and the Kittel mode of the YIG sphere, and the
magnon-mediated coupling between the spinning cavity and
the mechanical mode [see the last two equations in Eqs. (9)].
It is worth mentioning that such a nonreciprocal situation can
also be induced by the magnon Kerr effect, even for a non-
spinning cavity (�F = 0). This is because K0 > 0 or K0 < 0,
depending on the direction of the magnetic field, leads to
�K > 0 or �K < 0. Thus, nonreciprocal mean magnon num-
ber is directly obtained [see the last equation in Eqs. (9)] and
causes the nonreciprocal mean photon and phonon numbers.

B. Nonreciprocal bistability

From Eqs. (9), a cubic equation related to the mean magnon
number |ms|2 = M can be given by[

κ ′2
m + (�′

m + K ′
0M )2]M = ηaε

2
d , (10)

where

κ ′
m = κm + ηaκa,

�′
m = �m − ηa(�a − �F ),

K ′
0 = 2(K0 − ηbωb),

ηa = g2
ma

κ2
a + (�a − �F )2

,

ηb = g2
mb

κ2
b + ω2

b

. (11)
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(a) (b)

FIG. 2. The mean magnon number vs the normalized ampli-
tude of the driving field with (a) K0 = ηbωb and (b) K0 = 0.1ηbωb,
where ωb/2π = 10 MHz, κa = κm = 0.1ωb, κb/2π = 100 Hz, gma =
0.2ωb, gmb = 10−3ωb, |�F | = 0.2ωb, �a = −ωb, and �m = ωb.

As K0 can be tuned via adjusting the direction of the mag-
netic field, so K ′

0 in Eq. (10) can be zero or nonzero. This
is because pure magnomechanical coupling [m†m(b + b†)],
similar to optomechanics, is equivalent to an effective magnon
Kerr Hamiltonian by performing the unitary transformation
U = exp[m†m(b − b†)] [84]. When K ′

0 = 0, the cubic equa-
tion given by Eq. (10) becomes a linear equation in the mean
magnon number M. Obviously, it is proportional to the square
of the Rabi frequency of the driving field and nonreciprocally
responses to the driving fields from opposite directions, as
shown in Fig. 2(a). When K ′

0 �= 0, the mean magnon number
M determined by Eq. (10) can have two switching points for
bistability under specific parameter conditions [see Fig. 2(b)],
at which there must be dεd/dM = 0, i.e.,

3K ′2
0 M2 + 4K ′

0�
′
mM + κ ′2

m + �′2
m = 0. (12)

This equation has two real roots, corresponding to two switch-
ing points of the bistability, only when the root discriminant
satisfies the inequality �′2

m − 3κ ′2
m > 0, i.e.,

�′
m >

√
3κ ′

m or �′
m < −

√
3κ ′

m. (13)

In particular, when �′2
m − 3κ ′2

m = 0, i.e., �′
m = ±√

3κ ′
m,

Eq. (12) has two equal real roots (M1(2) = −2�′
m/3K ′

0), that
is, two switching points coalesce to one point, indicating no
bistability. This give rise to a critical driving strength:

εc
d =

√
−8κ ′2

m �′
m/9ηaK ′

0 =
√

±8κ ′3
m /9ηaK ′

0, (14)

where the positive (negative) symbol denotes K ′
0 > 0 and

�′
m < 0 (K ′

0 < 0 and �′
m > 0). Equation (14) indicates that

magnonic bistability can be predicted when the strength of the
driving field exceeds the critical value, i.e., εd > εc

d , as shown
in Fig. 2(b). Due to different responses of the spinning cavity
to the CW or CCW driving field, nonreciprocal bistability
can be apparently observed [see the red and blue curves in
Fig. 2(b)].

C. Fluctuation dynamics

Apart from the steady-state dynamics when the transforma-
tion σ → σs + δσ is substituted into Eqs. (5), the fluctuation

dynamics can also be obtained:

δȧ = − [κa + i(�a − �F )]δa − igmaδm +
√

2κaain,

δḃ = − (κb + iωb)δb − i(Gmbδm† + G∗
mbδm)

+ gmbδm†δm +
√

2κbbin,

δṁ = − [κm + i(�̃m + 2�K )]δm − igmaδa +
√

2κmmin

− igmbδm(δb + δb†) − 2iK0m2
s δm† − iGmb(δb + δb†)

− 2iK0(m∗
s δm2 + 2msδm†δm + δm†δm2), (15)

where Gmb = gmbms is the effective magnomechanical cou-
pling strength significantly enhanced by multiple magnons.
Below we assume that ms is real for simplicity. This can be
realized by choosing the proper phase of the driving field
according to Eqs. (9). Under the strong driving field, the
condition |as| 
 1 can be realized. Because of the beam-
splitter interaction (∝ a†m + am†) between the photons and
magnons, we have |ms| 
 1, which directly requires the sys-
tem parameters to satisfy

ε2
d g2

ma 
 ∣∣[κm + i(�̃m + �k )][κa + i(�a − �F )] + g2
ma

∣∣2

(16)

according to Eqs. (9). This indicates that the mean-field ap-
proximation can be applied to Eqs. (15) when Eq. (16) is kept,
so that the high-order fluctuations in Eqs. (15) can be safely
ignored. As a result, Eqs. (15) reduce to

δȧ = − [κa + i(�a − �F )]δa − igmaδm +
√

2κaδain,

δḃ = − (κb + iωb)δb − iGmb(δm† + δm) +
√

2κbbin,

δṁ = − [κm + i(�̃m + 2�K )]δm − i�Kδm† − igmaδa

− iGmb(δb + δb†) +
√

2κmmin. (17)

We then rewrite the above equations as δσ̇ = i[Heff , δσ ] −
κσ δσ + √

2κσσin, so the effective Hamiltonian of the lin-
earized system can be given by

Heff = (�a − �F )δa†δa + ωbδb†b + (�̃m + 2�K )δm†δm

+ gma(δa†δm + δaδm†) + �K

2
(δm†δm† + δmδm)

+ Gmb(δm† + δm)(δb† + δb). (18)

Note that the two-magnon effect (i.e., δm†δm† + δmδm) stems
from the magnon Kerr nonlinearity in the presence of the
strong driving field, which can be well tuned by varying the
strength of the driving field.

IV. NONRECIPROCAL PHOTON-PHONON
ENTANGLEMENT

A. Entanglement calculation

With the effective Hamiltonian Heff in hand, its dy-
namics governed by Eqs. (17) can be rewritten in a
more compact form as u̇(t ) = Au(t ) + f (t ), where uT (t ) =
(Xa,Ya, Xm,Ym, Xb,Yb) is the vector operator of the system,
f T (t ) = (

√
2κaX in

a ,
√

2κaY in
a ,

√
2κmX in

m ,
√

2κmY in
m ,

√
2κbX in

b ,
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√
2κbY in

b ) is the input noise of the system, and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−κa �a − �F 0 gma 0 0
−�a + �F −κa −gma 0 0 0

0 gma −κm �̃m + �K 0 0
−gma 0 −�̃m − 3�K −κm −2Gmb 0

0 0 0 0 −κb ωb

0 0 −2Gmb 0 −ωb −κb

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)

is the drift matrix. Here Xσ = (δσ † + δσ )/
√

2, Yσ = i(δσ † −
δσ )/

√
2, X in

σ = (σ †
in + σin )/

√
2, and Y in

σ = i(σ †
in − σin )/

√
2.

Since the input quantum noises are zero-mean quantum
Gaussian noises, the quantum steady state for the fluctu-
ations is a zero-mean continuous variable Gaussian state,
fully characterized by a 6 × 6 correlation matrix V (6)

i j =
〈ui(∞)u j (∞) + u j (∞)ui(∞)〉 (i, j = 1, 2, . . . , 6). The ma-
trix V can be obtained by directly solving the Lyapunov
equation,

AV + VA† = −D, (20)

where the diffusion matrix D = diag[κa(2Na + 1), κa(2Na +
1), κm(2Nm + 1), κm(2Nm + 1), κb(2Nb + 1), κb(2Nb + 1)] is
defined by Di jδ(t − t ′) = 〈vi(t )v j (t ′) + v j (t ′)vi(t )〉/2. Once
the matrix V is obtained, one can investigate arbitrary bipar-
tite entanglement of interest in the proposed system via the
logarithmic negativity

EN ≡ max[0,−ln2η−], (21)

with

η− = 2−1/2[� − (�2 − 4detV4)1/2]1/2, (22)

where � = detA + detB − 2detC and V4 = ( A C
CT B) is the

4 × 4 block form of the correlation matrix, associated with
two modes of interest. A, B, and C are the 2 × 2 blocks of V4.
A positive logarithmic negativity (EN > 0) denotes the pres-
ence of bipartite entanglement of the interested two modes in
the considered system.

B. Nonreciprocal entanglement exploration

We first plot the logarithmic negativity Eab as functions of
the normalized �a/ωb and �̃m/ωb in the presence of both
the Sagnac and the magnon Kerr effects in Fig. 3. The cho-
sen parameters are the same as those in Fig. 2 except for
Gmb = 0.2ωb, |�F | = |�K | = 0.1ωb, and the bath tempera-
ture T = 10 mK. These parameters can ensure the system is
stable according to the Routh-Hurwitz criterion.

From Fig. 3, one can see that the photon-phonon entangle-
ment can be tuned by changing the frequency detunings �a

and �̃m. In particular, its optimal value is predicted at �a ≈
−ωb + �F and �̃m ≈ ωb − 2�K . The mechanism of this opti-
mal entanglement can be interpreted as follows: When �̃m ≈
ωb − 2�K , the magnomechanical subsystem is driven to the
red sideband, where the mechanical mode can be well cooled
for allowing considerable magnon-phonon entanglement ow-
ing to the enhanced magnomechanical coupling Gmb. Then
the magnon-phonon entanglement is significantly transferred
to the photon-phonon entanglement via the beam-splitter

magnon-photon interaction at �a ≈ −ωb + �F . Moreover,
from Fig. 3, we also find that the predicted photon-phonon
entanglement nonreciprocally responds to the change of the
frequency detunings �K or �F , i.e., the magnon Kerr or the
Sagnac effects. This means that the nonreciprocal photon-
photon entanglement can be achieved by including these
two effects. Specifically, when �F > 0, the optimal cavity
frequency detuning is fixed at �a ≈ −0.8ωb, but the opti-
mal magnon frequency detuning is �̃m ≈ 0.6ωb for �K > 0
[Fig. 3(a)] and �̃m ≈ 1.4ωb for �K < 0 [Fig. 3(c)]. This in-
dicates that the photon-phonon entanglement nonreciprocally
changes with the magnon Kerr effect when the Sagnac effect
is fixed. A similar result can also be obtained from Figs. 3(b)
and 3(d). By comparing Figs. 3(a) and 3(b) [or Figs. 3(c)
and 3(d)], the optimal photon-phonon entanglement has left
shifts on the frequency detuning �a, which means the non-
reciprocal photon-phonon entanglement can be induced by
the Sagnac effect when the magnon Kerr effect is fixed. Fig-
ures 4(a) and 4(b) further show the nonreciprocal behavior of
the photon-phonon entanglement with the normalized �̃m/ωb

with both the nonlinear effects, where �a = −ωb is fixed.
For �F > 0 [see Fig. 4(a)], we find that the photon-phonon
entanglement can be nonreciprocally enhanced (�K > 0) or

FIG. 3. Density plot of the photon-phonon entanglement Eab as
functions of �a/ωb and �̃m/ωb with (a) �K > 0, �F > 0, (b) �K >

0, �F < 0, (c) �K < 0, �F > 0, and (d) �K < 0, �F < 0. Other
parameters are the same as those in Fig. 2 except for Gmb = 0.2ωb,
|�F | = |�K | = 0.1ωb, and the bath temperature T = 10 mK.
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FIG. 4. The photon-phonon entanglement vs �̃m/ωb with and
without the magnon Kerr effect (a, b) and �K and �F (c), where
(a) �F > 0 and (b) �F < 0. Other parameters in panels (a)–(c) are
the same as those in Fig. 3.

reduced (�K > 0), compared to the case without the magnon
Kerr effect. In the case of �F < 0 [see Fig. 4(b)], the situation
becomes opposite. From Figs. 4(a) and 4(b), one can see that
the photon-phonon entanglement can also be nonreciprocally
enhanced or reduced by the Sagnac effect with the magnon
Kerr effect. Figure 4(c) directly shows the behavior of the
photon-phonon entanglement with these two effects. We show
that the nonreciprocal photon-phonon entanglement can be
predicted in a broad range of �K and �F , and its optimal value
can be obtained around the region of �K�F < 0.

C. Magnomechanical coupling effect

In fact, the magnomechanical coupling strength Gmb can
be fine tuned by adjusting the amplitude of the driving field
on the cavity [see Eqs. (9)] in our proposal. So how does
the magnomechanical coupling affect the photon-phonon en-
tanglement with or without the magnon Kerr and Sagnac
effects? To show this, we plot Eab versus the normalized
coupling strength Gmb/gma in Figs. 5(a)–5(c). Obviously, the

FIG. 5. The photon-phonon entanglement vs Gmb/gma with
(a) �K = 0, (b) �K > 0, and (c) �K < 0, where the Sagnac effect
is considered. (d) The nonreciprocity of the photon-phonon entan-
glement induced by the magnon Kerr effect vs Gmb/gma with and
without the Sagnac effect. Other parameters in panels (a)–(c) are the
same as those in Fig. 3.

FIG. 6. The photon-phonon entanglement vs κm/κa with
(a) �K = 0, (b) �K > 0, and (c) �K < 0, where the Sagnac effect is
considered. (d) The nonreciprocity of the photon-phonon entangle-
ment induced by the magnon Kerr effect vs κm/κa with and without
the Sagnac effect. Other parameters in panels (a)–(c) are the same as
those in Fig. 3.

photon-phonon entanglement increases first to its maximal
value and then decreases to zero with the magnomechanical
coupling strength Gmb/gma. Specifically, the Sagnac effect can
only give a weak nonreciprocity on the photon-phonon entan-
glement in the absence of the magnon Kerr effect �K = 0
[see Fig. 5(a)]. In the presence of the magnon Kerr effect
(�K �= 0), we find that a visible nonreciprocity on the photon-
phonon entanglement can be induced by the Sagnac effect
[see Figs. 5(b) and 5(c)]. This is because the photon-phonon
entanglement can be significantly enhanced (reduced) when
�K�F < 0 (�K�F > 0). From Figs. 5(a)–6(c), the magnon
Kerr effect induced nonreciprocity on the photon-phonon en-
tanglement can also be revealed with or without the Sagnac
effect. More intuitively, we plot the difference (�Eab) of the
logarithmic negativities between the cases of �K > 0 and
�K < 0 in Fig. 5(d), where �Eab is defined as

�Eab = |Eab(�K > 0) − Eab(�K < 0)|. (23)

When the Sagnac effect is included, we find that large �Eab

can be obtained, as shown by the red square and blue diamond
curves.

D. Magnon decay rate effect

Besides the magnomechanical coupling strength, the decay
rate of the magnons in the Kittel mode of the YIG sphere
can also be adjusted experimentally via changing the distance
between the YIG sphere and the microwave antenna. We find
that the optimal photon-phonon entanglement can be realized
by tuning κm when other parameters are fixed, as shown in
Figs. 6(a)–6(c). In the absence of the magnon Kerr effect, i.e.,
�K = 0, one can see that the photon-phonon entanglement is
robust against the Sagnac effect for the small decay rate of the
Kittel mode [see Fig. 6(a)], but when the magnon Kerr effect
is taken into account, i.e., �K �= 0, the visible nonreciprocity
induced by the Sagnac effect can be predicted [see Figs. 6(b)
and 6(c)]. We also show that the nonreciprocity induced by
the Sagnac effect in the presence or absence of the magnon

043512-6



NONRECIPROCAL PHOTON-PHONON ENTANGLEMENT IN … PHYSICAL REVIEW A 109, 043512 (2024)

FIG. 7. The photon-phonon entanglement vs the bath tempera-
ture T with (a) �K = 0, (b) �K > 0, and (c) �K < 0, where the
Sagnac effect is considered. (d) The nonreciprocity of the photon-
phonon entanglement induced by the magnon Kerr effect vs T with
and without the Sagnac effect. Other parameters in panels (a)–(c) are
the same as those in Fig. 3.

Kerr effect can be suppressed by increasing κm. This means
that the nonreciprocity induced by the Sagnac effect can only
be observed for the proper value of κm. A similar result can
also be obtained for the magnon Kerr effect induced nonre-
ciprocity of the photon-phonon entanglement with or without
the Sagnac effect [see Fig. 6(d)].

E. Temperature effect

Next, we check the effect of the bath temperature on the
photon-phonon entanglement in our proposal. For this, we
plot the logarithmic negativity Eab versus the temperature T
with or without the magnon Kerr or the Sagnac effect in
Figs. 7(a)–7(c). Figure 7(a) shows that the Sagnac effect can
only cause a slight improvement on both the photon-phonon
entanglement and its survival temperature at �K = 0. Mean-
while, we also observe the same slight improvement on both
the photon-phonon entanglement and its survival temperature,
as indicated by the black lines in Figs. 7(a)–7(c) at �F = 0.
But when both the magnon Kerr and Sagnac effects are in-
cluded, we find that the photon-phonon entanglement and its

survival temperature can be significantly improved (reduced)
at �K�F < 0 (�K�F > 0) [see the blue line in Figs. 7(b)
and the red line in Figs. 7(c)]. This indicates that the high
survival temperature for the photon-phonon entanglement can
only be obtained by utilizing the negative synergistic effect
(i.e., the coefficients of the Kerr and Sagnac effects have
opposite signs). When the positive synergistic effect (i.e., the
coefficients of the Kerr and Sagnac effects have the same
signs) of the Kerr and Sagnac effects is considered, the en-
tanglement and its survival temperature reduce. Notably, the
survival temperature of the photon-phonon entanglement in
our proposal can be improved to ≈3 K, which is about 15
times more than the previous proposal [34]. Figure 7(d) also
demonstrates that the magnon Kerr effect has the same effect
on photon-phonon entanglement as the Sagnac effect.

V. CONCLUSION

In summary, we have proposed to generate a nonrecipro-
cal photon-phonon entanglement in a Kerr-modified spinning
cavity magnomechanics. The mean magnon number here can
selectively display nonreciprocal linear or nonlinear (bistable)
behavior with the strength of the strong driving field, where
the nonreciprocity arises from the Sagnac effect, and the linear
(nonlinear) behavior is the result of the interplay between the
magnon Kerr effect and the magnetostrictive effect. With the
enhanced magnon-phonon coupling and the swapping interac-
tion between the magnons and the photons, magnon mediated
photon-phonon entanglement is generated. This entanglement
can be nonreciprocally enhanced with taking both the Sagnac
and the magnon Kerr effects into account. We also show
that the achieved nonreciprocal entanglement can be kept up
to ≈3 K with accessible parameters, exhibiting great poten-
tial for robustness against the bath temperature. Our paper
provides a promising way to engineer various nonreciprocal
devices with the magnon Kerr and the Sagnac effects in cavity
magnomechanics.
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