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Stability restoration by asymmetric nonlinear states in non-Hermitian double-well potentials
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We introduce a class of one-dimensional complex optical potentials that feature a nonlinearity-induced
stability restoration, i.e., the existence of stable nonlinear modes propagating in a waveguide whose linear
eigenmodes are unstable. The optical potential is an even function of the transverse coordinate, i.e., the system
is parity symmetric but not parity-time symmetric. The stability restoration occurs for asymmetric stationary
nonlinear modes that do not respect the parity symmetry. Stable nonlinear states exist either for focusing and
defocusing nonlinearities. On the qualitative level the stability restoration can be analyzed using a simple bimodal
system. Its solutions enable systematic construction of stable stationary modes and more complex patterns with
intensity periodically oscillating along the propagation distance.
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I. INTRODUCTION

Ongoing progress in experimental realization of non-
Hermitian optical systems [1–7] intensifies the discussions on
the joint impact that non-Hermiticity and nonlinearity make
on the existence and stability of guided waves. Either non-
linearity and non-Hermiticity make the propagation of light
more intricate and are therefore expected to make the stability
more fragile. In the meantime, a few remarkable situations
are known where the nonlinearity makes the propagation of
non-Hermitian waves more stable as compared to effectively
linear states. A prominent development in this direction has
been made by the proposal of the concept of nonlinearly
induced parity-time (PT ) symmetry transition [8] (see also
[9]). For a class of periodic PT -symmetric potentials, authors
of Ref. [8] found that if the optical power is high enough, the
Bloch spectrum of nonlinear waves can become purely real,
even though the spectrum of propagation constants of linear
waves is partially complex. A similar behavior was encoun-
tered for a class of bimodal PT -symmetric systems [10–12],
where the total power remained bounded (or even constant)
along the propagation distance regardless of the value of the
gain-loss coefficient. In a weaker sense, the stabilization by
nonlinearity can be understood as the existence of dynami-
cally stable nonlinear modes in a system whose linear waves
(i.e., waves of infinitesimally small amplitude) are unstable.
Using the language of spectral stability, in these systems the
nonlinear potential suppresses eigenmodes that were unstable
in the underlying linear limit. Situations of this type have been
encountered multiple times in previous studies, either in finite-
mode setups [13] and in spatially continuous waveguides
[14–18]. Still, systematic studies of the nonlinearity-induced
stabilization are scarce and mainly limited to PT -symmetric
systems.

The main goal of this paper is to introduce a nonlinearity-
induced stability restoration in a continuous and non-PT -
symmetric system. We consider light propagating in a
parity-symmetric (but not parity-time symmetric) complex

potential whose real part has a double-well structure (or a
double-hump structure if considered as an optical potential
created by transversely varying refractive index). We show
that in the linear regime the system cannot have stable local-
ized guided modes, and instability of linear modes is protected
by the parity symmetry of the potential. The degree of insta-
bility of linear waves is mediated by the distance between
the potential wells. Most importantly, we find that nonlin-
earity suppresses the unstable eigenvalues and enables stable
propagation of stationary states and periodically oscillating
patterns. In a very unconventional manner, the nonlinearity-
induced stabilization occurs for asymmetric stationary modes
which do not respect the parity symmetry inherent to the
system. Another important feature is that stabilization occurs
for either sign (focusing and defocusing) of the optical non-
linearity.

The rest of the paper is organized as follows. In Sec. II we
introduce our model and discuss its instability in the linear
regime. Section III contains the main results on the existence
of stable nonlinear patterns. In Sec. IV we summarize and
discuss the outcomes of our study.

II. THE MODEL AND ITS LINEAR PROPERTIES

We model the light propagation using the following dimen-
sionless equation for complex-valued envelope of the electric
field �(x, z):

i�z + �xx + [w2(x) + iwx(x)]� + σ |�|2� = 0. (1)

In this nonlinear Schrödinger-type equation z and x stand for
longitudinal and transverse coordinates, and σ is a coefficient
of cubic Kerr nonlinearity. We consider both focusing (σ > 0)
and defocusing (σ < 0) cases. Equation (1) incorporates an
additional optical potential that describes the modulation of
complex-valued refractive index in the transverse direction.
The corresponding landscape is given by the term w2(x) +
iwx(x), where w(x) is a smooth real-valued function, wx(x)
is its derivative, and i is the imaginary unit. Potentials of this
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form are sometimes referred to as Wadati potentials, after the
author of Ref. [19] where their relevance was emphasized in
the context of PT symmetry.

To explain such a choice of the optical landscape, we
note that potentials of this form have been already used
to construct continuous families of nonlinear modes and
solitons in PT -symmetric and asymmetric non-Hermitian
waveguides [20–25]. In the PT -symmetric case [which cor-
responds to even functions w(x) = w(−x)], Wadati potentials
enable pitchfork PT -symmetry-breaking bifurcations [26]
that are unknown to occur in PT -symmetric potentials of
other shapes. Another important feature of Wadati poten-
tials is that their linear eigenvalues are either real or exist
in complex-conjugate pairs [27]. Therefore, similar to PT -
symmetric systems, Wadati potentials can undergo the phase
transition from all-real to partially complex spectra [28,29]. A
possibility of optical realization of Wadati potentials has been
suggested for light propagating in a gas of coherent multilevel
atoms driven by an external laser field [30].

Regarding the stability restoration discussed in this paper,
it becomes possible due to special properties of Wadati poten-
tials explained below. In contrast to most of previous studies
dealing with Wadati potentials, we consider w(x) to be an
antisymmetric (i.e., odd) function:

w(x) = −w(−x). (2)

We also assume that w(x) and its derivative wx(x) decay
rapidly as x → +∞ and x → −∞. For such a choice of func-
tion w(x), the resulting optical potential w2(x) + iwx(x) is
parity symmetric but not parity-time symmetric (nevertheless,
as we will discuss below, its properties can be, in a certain
sense, approximated by a PT -symmetric model).

Our first result applies to the linear case [i.e., σ = 0 in
Eq. (1)]. We argue that a linear waveguide with the potential
introduced above can not guide localized eigenmodes with
real propagation constants. Indeed, for stationary modes � =
eiβzψ (x), Eq. (1) with σ = 0 becomes a linear eigenvalue
problem:

βψ = Lψ, L = ∂2
x + w2(x) + iwx(x), (3)

where β is the propagation constant. Operator L in Eq. (3)
is a non-self-adjoint one-dimensional Schrödinger operator
(precisely speaking, −L is a Schrödinger operator). Since
potential w2(x) + iwx(x) rapidly decays to zero, operator L
has a continuous spectrum which occupies the semiaxis β ∈
(−∞, 0]. Operator L can also have discrete eigenvalues asso-
ciated with localized eigenfunctions ψ (x). These eigenvalues
(if any) are either positive real numbers or complex numbers.
Due to the parity symmetry, any localized eigenfunction ψ (x)
of operator L in (3) is either even or odd function of x. On
the other hand, from the properties of Wadati potentials it is
known [27] that if ψ (x) is an eigenfunction corresponding
to an eigenvalue β, then (ηψ (x))∗, where η = ∂x + iw(x),
is an eigenfunction corresponding to eigenvalue β∗ (the as-
terisk means complex conjugation). If β is real, then two
eigenfunctions ψ and (ηψ (x))∗ correspond to the same eigen-
value. However, it is well known that in one dimension the
Schrödinger operator cannot have multiple eigenvalues with
localized eigenfunctions [31]. Hence ψ and (ηψ (x))∗ must
be linearly dependent, which is impossible, because functions

FIG. 1. (a) Real [w2(x)] and imaginary [wx (x)] parts of an op-
tical potential generated by function (5) with W0 = 2 and � = 2.
(b) Imaginary part of the unstable propagation constant for W0 = 2
and increasing well separation �.

ψ (x) and ηψ (x) have opposite parities. Therefore, the propa-
gation constant β cannot be real.

The same result can also be deduced from earlier literature.
To this end, let us recall the well-known connection between
Eq. (3) and the Zakharov-Shabat (ZS) spectral problem [32]
that plays the central role in the inverse scattering theory for
the modified Korteweg–de Vries equation [33]. Indeed, let us
consider the ZS problem in the form

px = −iζ p + w(x)q, qx = iζq − w(x)p, (4)

for eigenvector (p(x), q(x)) and eigenvalue ζ . Then function
ψ = q − ip satisfies Eq. (3) with β = −ζ 2 [33]; see also
[1,20,21]. It is known that if w(x) decays to zero rapidly
enough, then the continuous spectrum of the ZS problem fills
the whole real axis ζ ∈ R. At the same time, the ZS problem
can also have discrete eigenvalues ζ that are always situated
symmetrically with respect to the imaginary axis, i.e., if ζ is
an eigenvalue, then so is −ζ ∗. Guided modes with localized
envelopes ψ (x) and real propagation constants β correspond
to purely imaginary eigenvalues ζ of the ZS problem. How-
ever, according to Theorem 3.4 in Ref. [34], if w(x) is an
odd function, then the ZS problem has no purely imaginary
eigenvalues.

As a side note, Wadati potentials w2(x) + iwx(x) are
strongly reminiscent of the famous Miura transformation [35]
that relates the Korteweg–de Vries equation and the modified
Korteweg–de Vries equation.

We have established that for antisymmetric function w(x)
the discrete spectrum of propagation constants is either empty
or consists of one or several complex-conjugate pairs with
eigenfunctions having opposite parities and being intertwined
by operator η. In each complex-conjugate pair, one of the
modes indefinitely grows along the propagation distance,
which renders the linear waveguide unstable. Changing the
sign of function w(x) complex conjugates the spectrum, i.e.,
attenuated and amplified modes swap.

In the rest of this paper we consider the situation where the
real part of the optical potential has a double-lobe structure. A
representative example of suitable odd function w(x) is

w(x) = W0e−(x−�)2 − W0e−(x+�)2
, (5)

where W0 is the amplitude and � is the half-distance be-
tween the lobes [see plot in Fig. 1(a)]. As the half-distance
� increases, the complex-conjugate propagation constants
become closer to the real axis, i.e., the instability weakens
[see Fig. 1(b)]. For sufficiently large � the decay of imaginary
parts is nearly exponential. Our main result demonstrates that
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even in the regime where the instability increment of the linear
propagation constant is not yet very small, the nonlinearity
enables propagation of stable modes.

III. MAIN RESULTS

A. Two-mode system

We consider the situation where the linear operator L in
Eq. (3) has exactly two discrete propagation constants which
are denoted as β±. According to the above analysis, these
values must be complex conjugate: β+ = β∗

−. We denote the
corresponding eigenfunctions as ψ±(x) and normalize them
such that

∫ ∞
−∞ |ψ±(x)|2dx = 1. As explained above, these

functions have opposite parities and are therefore orthogonal:∫ ∞
−∞ ψ∗

+(x)ψ−(x)dx = 0. This distinguishes our analysis from
the PT -symmetric case, where the eigenfunctions associated
with different eigenvalues are generically not orthogonal in
the usual sense.

We further assume that phases of eigenfunctions ψ±(x)
are chosen such that the following linear combinations cor-
respond to the superpositions localized in the right (R) and
left (L) wells:

ϕR,L(x) = [ψ+(x) ± ψ−(x)]/
√

2. (6)

These functions are normalized and orthogonal too:∫ ∞
−∞ ϕ∗

R(x)ϕL(x)dx = 0,
∫ ∞
−∞ |ϕR,L(x)|2dx = 1. We introduce

a pair of real constants

b = β+ + β−
2

, γ = β− − β+
2i

. (7)

Without loss of generality γ > 0. We look for solutions of
Eq. (1) in the form of a two-mode substitution

�(x, z) = eibz[aR(z)ϕR(x) + aL(z)ϕL(x)]. (8)

If the separation between the well (respectively, humps) of the
potential is large enough, i.e., 2� � 1 in Eq. (5), then the inte-
grals containing the cross products between ϕR and ϕL can be
assumed negligible, and one can approximate the evolution of
the envelope �(x, z) by the following coupled-mode system:

iȧR = iγ aL − χ |aR|2aR,

iȧL = iγ aR − χ |aL|2aL, (9)

where overdots mean derivatives with respect to z, and χ =
σ

∫ ∞
−∞ |ϕR|4dx = σ

∫ ∞
−∞ |ϕL|4dx.

Even though system (9) is obtained using the standard two-
mode approach, it differs dramatically from the previously
considered systems describing bosonic Josephson osillations
in real double-well potentials (see, e.g., [36,37]) due to the
imaginary unit in the coupling terms. This change renders
the dynamics non-Hermitian. In particular, the imbalance be-
tween the right and left amplitudes is conserved:

∂z(|aR|2 − |aL|2) = 0. (10)

This is in a stark contrast to the periodic tunneling between
the left and right subsystems typical of usual double-well (or
double-lobe) potentials.

In the linear case (that is for χ = 0), the general solution
of system (9) is(

aR

aL

)
= α1eγ z

(
1
1

)
+ α2e−γ z

(
1

−1

)
, (11)

where α1,2 are constants. The solution corresponding to the
growing exponent eγ z blows up to infinity as z → ∞. There-
fore, the zero equilibrium (aR, aL ) = (0, 0) is an unstable
fixed point of the nonlinear system (9).

After a simple transformation, the coupled-mode system
(9) can be brought to the form of a PT -symmetric nonlinearly
coupled dimer. Representing aR = u + v, aL = u − v, where
u and v are new functions, from system (9) we obtain

iu̇ = iγ u − χ [(|u|2 + 2|v|2)u + v2u∗],

iv̇ = −iγ v − χ [(|v|2 + 2|u|2)v + u2v∗]. (12)

A very similar (yet not fully identical) dynamical system has
been earlier considered in [10] as an exactly solvable PT -
symmetric dimer. For that system the authors of Ref. [10]
found that the nonlinearity “softens” the PT phase transition,
i.e., stable nonlinear states can be found for arbitrarily large
non-Hermiticity coefficient γ , provided that the solution am-
plitude is large enough. In contrast to our system in Eqs. (12),
the PT -symmetric dimer considered in Ref. [10] contained
additional linear coupling, i.e., terms κv and κu in the first and
second equations, respectively, where κ > 0 was the coupling
coefficient. In our system, that linear coupling is absent. This
difference leads to a moderate modification of our two-mode
analysis as compared to that developed in Ref. [10].

Dynamics of the bimodal system (9) can be analyzed in
terms of the Stokes parameters defined as

{X,Y, Z} = (a∗
R, a∗

L )σ{x,y,z}(aR, aL )T , (13)

where σx,y,z are the Pauli matrices, and superscript T means
transposition. In those variables system (9) transforms into

Ẋ = 2γ A + χY Z,

Ẏ = −χXZ, (14)

Ż = 0.

These equations additionally involve the length of the Stokes
vector A which characterizes the total energy stored in both
modes:

A = (X 2 + Y 2 + Z2)1/2 = |aR|2 + |aL|2. (15)

Its dynamics obeys the following equation:

Ȧ = 2γ X. (16)

Equations (14) and (16) can be combined into a simple
linear equation

Ẍ + ν2X = 0, (17)

where we have introduced

ν2 = (χZ )2 − 4γ 2. (18)

Bounded orbits are possible only if the condition ν2 > 0 is
satisfied, that is for |χZ| > 2γ . Since the Stokes parameter
Z = |aR|2 − |aL|2 corresponds to the imbalance between the
amplitudes of right and left modes, we conclude that, in terms
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of the starting Eq. (1), any stable solution (if exists at all) must
be asymmetric with respect to the parity reversal: |�(x, z)| �=
|�(−x, z)|.

Equations (14) and (16) are fully solvable [10]. For ν2 > 0
the general solution reads as

X (z) = ρ0 cos φ, (19)

Y (z) = −1

ν

[
2γ

√
Z2 + ρ2

0 sgn (χZ ) + χZρ0 sin φ
]
, (20)

Z = const, (21)

where φ = ν(z − z0), and z0 and ρ0 are arbitrary constants of
integration. The value of the conserved quantity Z is arbitrary
too, provided that inequality ν2 > 0 holds. For the length of
the Stokes vector A we compute

A(z) = 1

ν

[√
Z2 + ρ2

0 |χZ| + 2γ ρ0 sin φ
]
. (22)

If ν2 < 0, all nontrivial solutions of equations (14) and (16)
grow indefinitely as z → +∞. We do not consider this case.

B. Fixed points of the two-mode system

The conserved quantity Z can be used to parametrize
found solutions in the phase space (X,Y, Z ). Any motion
is restricted to the plane Z = const, and every solution
(X (z),Y (z)) given by Eqs. (19) and (20) forms an ellipse in
the corresponding Z plane. Moreover, each plane Z = const
is filled by nested ellipses that correspond to different values
of the integration constant ρ0 in Eqs. (19) and (20). Each
plane Z = const contains exactly one fixed point which can
be found by setting ρ0 = 0:

X0 = 0, Y0 = −2ν−1γ Z sgn χ, A0 = ν−1|χ |Z2. (23)

Hereafter, we use subscript 0 to distinguish values of Stokes
parameters X , Y , and A that pertain to fixed points.This fixed
point lies inside all nested ellipses hosted in the corresponding
Z plane and is therefore stable. Each fixed point corresponds
to a solution of the form aR(z) = UReiωz, aL(z) = ULeiωz−iα ,
where UR,L, α, and ω are real constants. Value of ω can be
retrieved from the two-mode system (9):

ω = χ
A2

0 + Z2

2A0
= sgn χ

χ2Z2 − 2γ 2√
χ2Z2 − 4γ 2

. (24)

Parameter ω is physically relevant because it gives the dis-
tance between the propagation constant β of a nonlinear mode
and the point where the linear modes are situated, i.e., from
b = (β+ + β−)/2 [see Eqs. (7) and (8)]:

β = b + ω. (25)

It is therefore natural to scan Eq. (24) for different ω and
solve it with respect to Z . Simple analysis shows that Eq. (24),
considered as an equation with respect to Z , has real roots if
and only if

sgn ω = sgn χ and |ω| � ωC := 2
√

2γ , (26)

where subscript “C” refers to points C± in Fig. 2 (see dis-
cussion below). If conditions (26) hold, then all solutions are

FIG. 2. Schematic diagram of fixed points of the two-mode sys-
tem (9) displayed as dependencies A0(ω) in focusing and defocusing
media. In terms of the full system, quantities A0 and ω transform
in squared norm and propagation constant of stationary nonlinear
modes, respectively; compare this figure with Fig. 3 which shows
analogous dependencies produced from full envelope Eq. (1). Arrows
show directions which correspond to the increase of the normalized
asymmetry parameter Z from its asymptotic minimal value Z = 0
up to the maximal asymptotic value Z = 1. Labels C± mark the
points where the upper and the lower subbranches meet pairwise.
Labels M± mark the points where the minimal values of A0 are
achieved.

given as

Z = ± 1√
2|χ |

√
ω2 + 4γ 2 ± |ω|

√
ω2 − ω2

C, (27)

where all four combinations of signs + and − are possible.
If |ω| is strictly larger than the critical value ωC , then there
are four different solutions. In fact, the analysis can be limited
only to two positive roots Z because negative Z correspond to
the parity reversal aR ↔ aL.

In terms of the full model (1), Eq. (27) predicts that stable
asymmetric nonlinear modes emerge as the propagation con-
stant β gets far enough from the point b, where the unstable
linear modes are situated. The critical difference between β

and b is given by ±ωC ; this difference must be positive (neg-
ative) for focusing (defocusing) nonlinearity. It also readily
follows from (27) that for either sign of nonlinearity, two
physically distinct nonlinear solutions are born simultane-
ously at a foldlike bifurcation corresponding to ω = ±ωC .

Equations (23) and (27) provide all the necessary informa-
tion to compute all Stokes parameters corresponding to the
fixed points and trace their dependence on the propagation
constants mismatch ω. In Fig. 2 we show a representative
schematics that illustrates the behavior of the Stokes param-
eters on the plane A0 vs ω. We choose these parameters to
display because they can be easily transformed to physically
relevant squared norm and propagation constant of nonlinear
modes. Indeed, if �(x, z) = eiβzψ (x) is a stationary nonlin-
ear mode, then the two-mode substitution (8) implies that∫ ∞
−∞ |ψ (x)|2dx = A0 and β = ω + b [see Eq. (25)]. The di-

agram in Fig. 2 presents two curves: one for a focusing and
another one for a defocusing medium, and each curve con-
sists of two subbranches (upper branch and lower branch)
which merge pairwise exactly at ω = ±ωC , where ωC is the
threshold value defined in (26). In Fig. 2, we use labels C±

043510-4



STABILITY RESTORATION BY ASYMMETRIC NONLINEAR … PHYSICAL REVIEW A 109, 043510 (2024)

to highlight the points where solutions from upper and lower
subbranches meet pairwise:

C± : A0,C = 3
√

2γ

|χ | , ωC± = ±2
√

2γ . (28)

The diagram in Fig. 2 also contains two other special points
denoted as M±. They correspond to the minimal possible
value of A0:

M± : A0,M = 4γ

|χ | , ωM± = ±3γ . (29)

This result is natural: the larger the increment of instability
of linear waves γ , the larger norm A0,M is necessary for non-
linear modes to overcome the instability of linear waves and
get born; in a similar way, the larger mismatch is necessary
between propagation constants of nonlinear and linear modes.

In Fig. 2 we also illustrate the behavior of the normalized
asymmetry parameter Z defined as

Z = Z

A0
= |aR|2 − |aL|2

|aR|2 + |aL|2 . (30)

Simple calculation gives the dependence of the normalized
asymmetry measure Z on A0:

Z2 = 1

2

⎛
⎝1 ∓

√
1 − A2

0,M

A2
0

⎞
⎠, (31)

where A0,M is the minimal value of A0 which is defined in (29).
Here the minus sign corresponds to A0 decreasing from +∞
down to its minimal possible value A0,M , and, respectively,
Z increasing from 0 up to 1/

√
2. The plus sign corresponds

to A0 increasing from A0,M up to +∞, and, respectively, Z
further increasing from 1/

√
2 up to its asymptotic maximal

value equal to unity. In Fig. 2 we use arrows to indicate
the directions along the plotted curves that correspond to the
increase of asymmetry parameter Z . Since Z is different from
zero for all solutions, we conclude that either upper and lower
subbranches consist of asymmetric modes, that is |ψ (x)| �=
|ψ (−x)| for all stationary envelopes ψ . At the same time,
the modes that correspond to lower subbranches are more
asymmetric because the corresponding asymmetry parameter
Z is larger as compared to upper subbranches.

Apart from the fixed-point stationary solutions, two-mode
system (9) predicts a variety of stable closed orbits which, in
terms of full Eq. (1), correspond to localized modes whose
intensity |�(x, z)| changes periodically along the propagation
distance.

C. Stability restoration in the full equation

To check the predictions obtained from the simple two-
mode system, we have computed stationary states of full
Eq. (1). These have been sought in the form �(x, z) =
eiβzψ (x), where β is real propagation constant and ψ (x) is
stationary envelope. Numerical search of stationary states has
been performed using a modified shooting approach adapted
for peculiar properties of Wadati potentials [21,25]. The main
results are presented in Fig. 3 as dependencies of the energy
flow (or squared norm) U = ∫ ∞

−∞ |ψ (x)|2dx on the propaga-
tion constant β. In the same figure we plot the analogous

FIG. 3. Families of stationary nonlinear modes of full Eq. (1)
(black curves) on the plane (U, β ), where U is the energy flow
and β is the propagation constant, juxtaposed with the analogous
dependencies obtained from the fixed points of the two-mode system
(gray curves). Solid and dashed segments of curves for the full equa-
tion correspond to stable and unstable stationary modes, respectively.
Small panels next to the energy flow curves illustrate schemati-
cally spatial shapes of nonlinear modes |ψ | at the corresponding
subbranches: weakly and strongly asymmetric states are situated at
the upper and lower subbranches, respectively. Points (a)–(c) at the
two-mode curves in the focusing medium correspond to solutions
used for dynamical simulations in Fig. 6. This figure is obtained for
potential given by (5) with W0 = 2 and � = 2. Nonlinear modes ob-
tained for focusing (σ = 1) and defocusing (σ = −1) nonlinearities
are displayed simultaneously.

dependencies computed from fixed points of the two-mode
system. We observe a reasonably good qualitative agreement
between the results produced from the full equation and from
the two-mode reduction. As the power flow becomes large
enough, families of stationary modes get born in either fo-
cusing and defocusing media through foldlike bifurcations. It
should be stressed that localized modes with real propagation
constants form continuous families on the plane (U, β ): this
is a special feature of Wadati [21] and PT -symmetric [38]
potentials as compared to complex-valued potentials of other
shapes.

As the power flow U increases, the quantitative agreement
between the analytical and numerical U (β ) curves becomes
worse. This is not surprising because the two-mode analysis
uses the linear eigenfunctions as a basis to represent the non-
linear solution. Due to the growth of discrepancy, we display
only lower parts of the analytical curves for nonlinear families
in Fig. 3.

All fixed points of the bimodal system are stable. How-
ever, this does not yet guarantee that corresponding nonlinear
modes of the full equation are stable too. We have there-
fore performed a numerical stability check for stationary
solutions of Eq. (1). It proceeds in a standard way by consid-
ering a perturbed envelope �(x, z) = eiβz[ψ (x) + u(x)eiλz +
v∗(x)e−iλ∗z], linearizing Eq. (1) with respect to small pertur-
bations u, v, and computing the instability increments given
by imaginary parts of eigenvalues λ. Fragments of energy
flow curves that contain stable and unstable solutions are
shown, respectively, with solid and dotted lines in Fig. 3.
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FIG. 4. Dynamical solutions of full Eq. (1) for initial conditions
obtained from slightly perturbed stationary modes ψ (x) with relative
perturbation amplitude η = 0.01, under the focusing nonlinearity
with σ = 1: (a) lower subbranch, β = 2 (stable); (b) lower sub-
branch, β = 3 (unstable); (c) upper subbranch, β = 1.7 (stable);
(d) upper subbranch, β = 2.3 (unstable). Four lower panels (a1)–(d1)
display the corresponding dependencies n(z), i.e., the energy-flow
fraction stored in both left and right modes as defined by Eq. (32).

We observe that in the focusing medium both subbranches are
stable close to the foldlike bifurcation, but become unstable
for sufficiently large energy flow U . In the defocusing medium
the lower (i.e., the strongly asymmetric) subbranch is totally
stable while the upper one is unstable. Therefore, even though
the linear modes of the system are unstable, the stability
restoration takes place for asymmetric nonlinear modes in
both focusing and defocusing media.

D. Dynamics of nonlinear modes

Examples of nonlinear dynamics computed from Eq. (1)
with initial conditions taken in the form of stationary modes
perturbed by a small-amplitude noise are shown in Fig. 4 (this
figure corresponds to the focusing nonlinearity). In presented
simulations, the numerical stationary envelope {ψ j} computed
on the finite grid {x j}, j = 1, . . . , N , was perturbed by replac-
ing ψ j with [1 + η(r j + is j )]ψ j , where 0 < η � 1 is small
relative amplitude, and sequences {r j} and {s j} were generated
as vectors of pseudorandom numbers drawn from the stan-
dard normal distribution. In each case the dynamical behavior
agrees with the linear stability prediction. In the same Fig. 4
we additionally show fraction of the energy stored in the left
and right eigenfunctions which is computed as

n(z) = [|ãL(z)|2 + |ãR(z)|2]/U (z), (32)

FIG. 5. Dynamical solutions of full Eq. (1) for initial conditions
obtained from slightly perturbed stationary modes ψ (x) with relative
perturbation amplitude η = 0.01, under the defocusing nonlinearity
with σ = −1: (a), (b) lower subbranch, β = 0.6 and 0.2 (both sta-
ble); (c), (d) upper subbranch β = 0.6 for perturbation with η = 0.01
(c) and η = 0.025 and 5% (d). Four lower panels (a1)–(d1) display
the corresponding dependencies of the energy-flow fraction stored in
left and right modes as defined by Eq. (32).

where U (z) = ∫ ∞
−∞ |�(x, z)|2dz is the total energy flow, and

coefficients ãL,R are obtained by projecting the solution onto
the right and left states:

ãR,L (z) =
∫ ∞

−∞
�∗(x, z)ϕR,L(x)dx. (33)

By definition, 0 � n(z) � 1, and n = 1 corresponds to the
situation when the total energy flow is perfectly stored in
the two modes. For stable evolutions in Fig. 4, we observe
that n(z) remains close to unity, while unstable dynamics is
accompanied by excitation of modes that are not taken into
account by the reduced model.

Examples of stable and unstable dynamics for stationary
modes under the defocusing nonlinearity are shown in Fig. 5.
In accordance with the linear stability predictions, solutions
from the lower subbranch are stable, while those from the
upper subbranch are unstable. We have found that behavior of
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FIG. 6. Examples of evolutions computed from full Eq. (1) with initial data obtained as fixed points (ρ0 = 0) and periodic orbits (ρ0 �= 0)
of the two-mode reduction. Panels in the first, second, and third rows show the energy flow U (z) = ∫ ∞

−∞ |�(x, z)|2dx, amplitudes |ãR,L (z)| of
projections of the solution �(x, z) onto the left and right eigenmodes [see Eq. (33)], and the fraction of the energy conserved in the two modes
n(z) defined in Eq. (32). Points (a)–(c) referred to in the upper row correspond to those labeled in Fig. 3. Full dynamical plots are shown in the
bottom row. (b) This figure corresponds to the focusing nonlinearity.

unstable modes can be sensitive to the initial perturbation: for
different amplitudes of random noise perturbed initial condi-
tions can feature extreme broadening [Fig. 5(c)] or transform
to an oscillating state [Fig. 5(d)]. In the latter case the fraction
of energy stored in the left and right modes remains close
to unity [Fig. 5(d1)]. This indicates that a perturbed unstable
stationary mode dynamically transforms into a stable solution
corresponding to a closed orbit in the reduced bimodal system.

E. Periodic dynamics from the two-mode approximation

The two-mode approximation developed above can also
be used for systematic generation of initial conditions that
feature nontrivial dynamics in the full equation. We illustrate
this result using three points labeled as (a)–(c) in Fig. 3: point
(a) belongs to the lower subbranch of the two-mode curve, and
points (b) and (c) belong to the upper subbranch. We use the
corresponding fixed points and periodic orbits of the reduced
two-mode system to prepare initial conditions for full Eq. (1).

The results are shown in Fig. 6 as dependencies of the energy
flow U (z) (upper row), amplitudes |ãR,L(z)| of projections of
the solution onto the right and left states [see the definition
in (33)], and the fraction of energy stored in the two modes
defined in (32).

We start with point (a) and use the initial conditions corre-
sponding to a fixed point. In terms of the two-mode solution
this corresponds to the zero integration constant: ρ0 = 0. The
energy flow and coefficients ãR,L computed from the full
numerical solution (and shown in the first column of Fig. 6)
feature oscillations of relatively small amplitude and there-
fore agree well enough with the predictions of the two-mode
system (since the considered initial conditions correspond
to the fixed point, the two-mode system obviously predicts
that the plotted dependencies must be constant). Further, we
increase the integration constant by taking ρ0 = 0.2. In terms
of the two-mode system this choice corresponds to a periodic
orbit. The numerical solution obtained from the correspond-
ing initial data (and shown in the second column of Fig. 6)
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indeed features more appreciable oscillations than the previ-
ous solution. However for points (b) and (c) presented in third
and fourth columns of Fig. 6 we observe that initial condi-
tions corresponding to fixed points with ρ0 = 0 develop in
full solutions with strong oscillations: in other words, instead
of stationary modes corresponding to fixed points we ex-
cite solutions whose amplitudes |�(x, z)| periodically change
along the propagation distance. Even though these dynamics
disagree with the predictions of the bimodal reduction, the
latter still remains useful, for it enables systematic preparation
of initial conditions that develop in stable periodic solutions of
full Eq. (1). Oscillations of ãR,L (z) obtained from numerical
solutions �(x, z) are always in phase, which agrees with the
prediction of the reduced system. We additionally note that for
all data presented in Fig. 6 the energy flow is almost perfectly
stored in left and right modes with n(t ) � 0.96.

IV. CONCLUSION

We have demonstrated a phenomenon of nonlinearity-
induced stabilization for a class of non-Hermitian optical
potentials whose real part has a double-lobe structure. In con-
trast to most of the previous studies where a similar behavior
has been encountered, our system is parity symmetric but not
parity-time symmetric. Another salient difference from earlier
results is that the stabilization occurs for asymmetric nonlin-
ear states that do not respect the parity symmetry inherent to
the potential. Moreover, the stabilization takes place for either
sign of cubic nonlinearity. Analysis of the stability restoration
has been developed using a simple two-mode system ob-
tained by projecting the solution onto superpositions of linear
eigenmodes centered in right and left wells of the potential.
Dynamical simulations of full envelope equation confirm the
existence of stable nonlinear modes and reveal the ubiquity of
oscillating patterns with intensity periodically changing along
the propagation distance. In contrast to familiar oscillations in
double-well potentials that are most usually accompanied by

the tunneling between the wells, periodic patterns that we ob-
serve feature distinctively different behavior with the energies
stored in the left and in the right wells oscillating in phase.

Our results have been obtained for a special class of com-
plex potentials that correspond to the form w2(x) + iwx(x),
where w(x) is a real-valued and antisymmetric function and
wx(x) is its derivative. In a real-world system the optical
landscape will never perfectly match this shape, and the prop-
agation of light will be governed by a perturbed potential
w2(x) + iwx(x) + εr(x), where r(x) describes a complex-
valued perturbation and 0 < ε � 1. Let us first address the
situation when the perturbed potential is still Wadati type, i.e.,
it can be represented as y2(x) + iyx(x) for some y(x) which is
real valued, but not necessarily antisymmetric. In this case the
effect of the perturbation is expected to be merely quantitative,
and families of stable nonlinear modes are expected to exist.
The difference between y(x) and w(x) will only result in
a slight deformation of solutions. However, if the perturbed
potential does not belong to the Wadati class, then the effect
of the perturbation becomes stronger. For this case we expect
that stationary nonlinear modes predicted in our study will
transform into “pseudomodes,” i.e., approximate solutions
with propagation constants having small imaginary parts (of
order of ε). In the mathematical sense, those pseudomodes are
not authentic solutions of the governing envelope equation.
However, these objects are expected to be dynamically robust,
i.e., to feature nearly stationary evolution for sufficiently long
propagation distances. Therefore, they can still be regarded
as meaningful physical entities, and their quasistable behavior
is expected to be distinctively different from the authentically
unstable propagation of linear waves. Some properties of such
pseudomodes in a different class of complex potentials have
been recently discussed in Ref. [39].

ACKNOWLEDGMENTS

The research was supported by the Priority 2030 Federal
Academic Leadership Program.

[1] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in
PT -symmetric systems, Rev. Mod. Phys. 88, 035002 (2016).

[2] V. Suchkov, A. A. Sukhorukov, J. Huang, S. V. Dmitriev, C.
Lee, and Y. S. Kivshar, Nonlinear switching and solitons in
PT-symmetric photonic systems, Laser Photon. Rev. 10, 177
(2016).

[3] L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photonics
based on parity–time symmetry, Nat. Photonics 11, 752 (2017).

[4] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11 (2018).
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