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Optimization of Purcell-enhanced microcavities with the cylindrical finite-difference
time-domain algorithm
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Quantum dots embedded in annular bullseye microcavities have been reported to be efficient single-photon
sources. However, the proposed structures thus far often involve gratings of fixed periodicities, which may not
be optimal considering the fact that Bessel functions are nonperiodic. In this paper, we present an optimization
scheme for chirped annular microcavities where Purcell factors larger than 80 can be achieved through astute
selection of the optimization function.
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I. INTRODUCTION

Quantum technology proposals such as quantum comput-
ing [1–3] and quantum communication [4–6] rely strongly on
the ability to engineer reliable high-quality efficient single-
photon sources. To be operational, a prerequisite is that
photons must be prepared into a single given quantum state,
with well-defined time and space properties, in order for
quantum effects such as quantum interference [7,8] and anti-
bunching [9] to be observed. Many different platforms have
been proposed to produce single photons including single
atoms [10,11], single molecules [12], trapped ions [13], and
quantum dots [14,15]. The main limitation in all these sys-
tems lies in the photon collection efficiency as well as in the
emission rate of the source.

Quantum dots (QDs) have proven to be a reliable potential
platform to support high-quality single-photon sources due to
their possible incorporation into photonic systems and narrow
spectral linewidth. In order to enhance the emission rate of
a single-photon quantum dot emitter, one may either increase
the quality of the optical system in which the QD is embedded
or reduce the effective mode volume, i.e., confine the electro-
magnetic field in the vicinity of the QD. These effects can
be achieved by carefully engineering the photonic structure
around the QD [16–21].

A proposed solution involves fabrication of annular Bragg
gratings obeying the second-order Bragg condition [22,23].
This specific way of engineering the nanostructure increases
the spontaneous emission rate of the QD by modifying the
neighboring environment and therefore both increasing the
quality factor and reducing the mode volume. This is com-
monly known as the Purcell effect [24,25]. These annular
Bragg gratings were shown to not only exhibit Purcell en-
hancement but also focus the QD’s photon emission, along
a direction in the far field and therefore improving the photon
collection efficiency. However, if a structure has cylindrical
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symmetry, the radial solutions of the wave equation are rep-
resented as nonperiodic Bessel functions making the Bragg
condition obsolete. Consequently, nonperiodic (or chirped)
annular gratings have a high potential of improving the fig-
ures of merit (FOMs), such as Purcell factors and quality
factors (Q factors), associated with the structure and therefore
the quality of the single-photon source.

The chirped annular gratings have been shown to be ideal
solutions for confining whispering gallery modes in annular
structures [26,27]. However, for applications to single-photon
sources, it is imperative that photons can be efficiently col-
lected. That is, the out-of-plane scattering of electromagnetic
fields must effectively produce a near Gaussian far field with
low numerical aperture. The motivation behind the present
paper, therefore, is the formulation of an optimization method-
ology, crafted to attain bullseye microcavities maximizing
both the emission rate and the photon collection efficiency of
a QD single-photon source.

First, we will introduce a self-developed finite-difference
time-domain (FDTD) algorithm in cylindrical coordinates and
discuss how using the azimuthal symmetry of the system
can reduce our simulations to effectively two dimensions to
reduce drastically the time of calculation. Second, we will
elaborate how FOMs such as Purcell factors, Q factors, and ef-
fective mode volume are calculated with the algorithm. Then,
we will show how a variation of the optimization function
yields microcavities exhibiting different features. Finally we
will show that by making a judicious choice of the optimiza-
tion function, individuals can attain microcavities that exhibit
properties tailored to their specific requirements.

II. FINITE-DIFFERENCE TIME-DOMAIN ALGORITHM IN
CYLINDRICAL COORDINATES

The FDTD algorithm [28,29] is a rigorous computational
method that evolves electromagnetic fields through Maxwell’s
equations. The FDTD algorithm’s remarkable precision in
describing the evolution of electromagnetic fields makes it
an invaluable tool for studying a wide range of structures.
Typically, the FDTD algorithm is constructed in Cartesian
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FIG. 1. Yee grid in cylindrical coordinates displaying the ar-
rangement of the field components.

coordinates. However, the Cartesian scheme is not efficient
in describing structures with curved geometries for two main
reasons. First, a fine resolution on the curved edges of the
structure is crucial to maintain the accuracy of the algo-
rithm. With the time step being bounded by the Courant
limit, the overall simulation time increases with finer grid
resolution. Second, boundary conditions may remain inaccu-
rate, despite having fine resolutions, owing to the “staircased”
Cartesian grids. This motivates the study of the FDTD al-
gorithm in cylindrical coordinates, which circumvents the
aforementioned issues when analyzing structures of circular
geometries.

Considering a source-free system, Maxwell’s equation in a
three-dimensional cylindrical coordinate system reads
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where ε = ε0εr with ε0 and εr being the permittivity of
free space and relative permittivity of the material, respec-
tively, and μ = μ0μr with μ0 and μr being the permeability
of free space and relative permeability of the material, re-
spectively. Similar to its Cartesian counterpart [30], the
cylindrical coordinates FDTD algorithm also employs the
half-gridding system called the Yee grid (Fig. 1). By defini-
tion, electromagnetic-field components are placed half a grid
apart with electric fields located at the edges of a cell while
magnetic fields are placed on the surfaces of the unit cell.
This convention of field arrangement portrays Maxwell’s curl
equation that describes the generation of a magnetic flux from
a circulating electric field and vice versa.

With Maxwell’s equations and the Yee grid defined, one
can discretize Eq. (1) and obtain the FDTD update equa-
tions. Special update equations are needed at the central point
(r = 0) which we describe in the Appendix. If the structure of
interest has azimuthal symmetry, a semianalytical method can
be designed to reduce the FDTD algorithm to two dimensions
via a method known as bodies of revolution (BOR) [29].

Bodies of revolution

To introduce the method of the BOR FDTD, we consider
the following scenario. Suppose there are two different dipole
orientations exciting the system. A vertically oriented dipole
(z direction) will emit cylindrical waves exhibiting azimuthal
symmetry but a horizontally oriented dipole will not since the
fields are no longer emitted parallel to the r-φ plane. That is,
while the structure has azimuthal symmetry, the correspond-
ing photonic modes may not necessarily conform to the same
symmetry, i.e., ∂/∂φstructure = 0 but ∂/∂φfield �= 0 in general.
Thus, to reduce the FDTD algorithm into two dimensions (r
and z), a technique known as bodies of revolution is employed.

If a structure has azimuthal symmetry, it is natural to ex-
pand them as Fourier harmonics of the form

E(r, φ, z) =
∞∑

m=0

Eu,m cos(mφ) + Ev,m sin(mφ),

H(r, φ, z) =
∞∑

m=0

Hu,m cos(mφ) + Hv,m sin(mφ), (2)

where the Fourier coefficients Eu,m, Ev,m, Hu,m, and Hv,m are
functions of r and z. Substituting this directly into Eq. (1)
yields two independent sets of two-dimensional Maxwell
equations (Appendix A1) in r and z for a fixed azimuthal mode
m. The first set of equations is
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where the m dependence of the Fourier coefficients is taken to
be implicit. If one is interested in multiple azimuthal modes,
the algorithm has to be iterated for each mode. Nevertheless,
the two-dimensional algorithm will retain its speed advantage
over the three-dimensional counterpart. This is due to the
algorithm’s lower memory usage and the ability to employ
larger time steps within the constraints of the Courant limit.
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III. CHIRPED ANNULAR GRATINGS

Quantum dots embedded in annular Bragg gratings have
been reported to behave as efficient single-photon sources
[22,23,31]. The geometries of the structures are often cho-
sen such that they obey the second-order Bragg condition.
However, gratings with fixed periodicities may not be an opti-
mal condition for annular structures. This is because radial
solutions of the wave equation are Bessel functions which
have nonperiodic zeros and do not obey Bloch’s theorem.
Consequently, gratings of varying periodicities could poten-
tially improve important FOMs such as Purcell factors, quality
factors (Q factors), effective mode volume, and collection
efficiencies.

A study in [26,27] has shown that chirped annular gratings
are indeed an optimal solution in confining whispering gallery
modes. However, the proposed solution is not necessarily
optimal for single-photon extraction since an out-of-plane
scattering with near Gaussian far field is required for high
collection efficiencies. Therefore, an alternative method is
required and we have opted for a numerical approach.

A. Basic FDTD calculations

In theory, the Purcell Factor, Fp, of a microcavity can be
approximated as [25]

Fp ≈ 3Q(λ0/n)3

4π2Veff
(4)

where Q represents the Q factor; λ0 represents the resonant
cavity mode wavelength; n represents the refractive index of
the cavity; Veff represents the cavity’s effective mode volume
which is calculated with the expression

Veff =
∫

V ε(r)|E(r)|2d3r

max{ε(r)|E(r)|2} (5)

where ε(r) represents the medium’s relative permittivity and
E(r) represents the electric field. The Purcell factor of a
microcavity is described by the Q factor and the effective
mode volume. These two quantities describe the temporal and
spatial confinement of the field respectively. A larger Q factor
leads to more interactions between the cavity mode and the
quantum dot before leaking out of the structure; a smaller
effective volume leads to stronger interactions between the
cavity mode and the quantum dot. Combining these two ef-
fects will enhance the rate of spontaneous emission of the
quantum dot, leading to larger Purcell factors.

While the Purcell factor may have a rather simple ex-
pression [Eq. (4)], the quantities involved are not easily
predetermined. Nevertheless, the versatility of the FDTD al-
gorithm enables efficient calculation of the Purcell factor and
associated quantities by adhering to a few procedures.

The computational domain is illuminated with a horizon-
tally oriented (r direction) electric dipole pulsed source placed
in the middle of the cavity, exciting TE slab waves. Hence, we
set m = 1 for all calculations as the fundamental mode of the
cavity is of our main interest. The pulsed source, S(t ), takes
the form of a Gaussian:

S(t ) = Aexp

(
− (t − t0)2

τ

)
exp

(
− iE0t

h̄

)
(6)

FIG. 2. Schematic of a (suspended) chirped bullseye cavity. θ

represents the angle of emission.

where A is an arbitrary amplitude; τ ≈ 0.97/	 f , where 	 f
represents the frequency bandwidth of interest, is the pulse
duration; t0 ≈ 4.5τ is a pulse delay to ensure that the algo-
rithm detects a Gaussian signal; E0 is the central energy of
the Fourier-transformed pulse and h̄ is the reduced Planck
constant [28].

Fields penetrating through a surface area S, enclosing both
the dipole and the structure (Fig. 2), are Fourier transformed
in time to calculate the power emission spectrum, P(ω), which
is prescribed by the Poynting integral as

P(ω) = 1

2
Re

{∫
S
[Ẽ(r, ω) × H̃∗(r, ω)] · dS

}
(7)

where Re denotes taking the real part of the integral and ω

represents the angular frequency. When calculating the power
spectrum, it is vital that fields leaving surface S do not bounce
back into the system, i.e., the fields escape to infinity. This is
done by introducing perfectly matched layers (PMLs) on the
edges of the computational domain to absorb fields as they
penetrate through the PML interface [32].

By definition, the Purcell factor refers to an enhancement
of spontaneous emission of a quantum dot in a cavity as
compared to a homogeneous medium. Therefore, in the FDTD
algorithm, the Purcell factor is calculated as

Fp(ω) = Pcav(ω)

Phom(ω)
(8)

where Pcav(ω) and Phom(ω) denote the power spectrum mea-
sured with the structure and in a homogeneous medium
respectively. In this particular case, the homogeneous medium
is a simulation space filled entirely by the material of the
cavity. With Fp(ω) at hand, the normalized power spectrum
can be fitted with a Lorentzian model:

L(ω) = A

(ω − ω0)2 + (�/2)2 + B (9)

where ω0 represents the resonant frequency; � represents the
inverse lifetime; A and B are fitting parameters corresponding
to the signal amplitude and background noise respectively.
The Q factor of the cavity can be obtained as Q = ω0/�; the
resonant wavelength can be obtained as λ0 = 2πc/ω0, where
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c represents the speed of light in free space; the Purcell factor
can be interpolated as Fp = L(ω0) = 4A/�2 + B.

B. Optimization process

With simulations running in the scale of minutes (compu-
tational time), the BOR-FDTD algorithm can be incorporated
into an optimization algorithm to search for geometrical
parameters.

Our annular microcavity consists of a suspended GaAs
(n ≈ 3.53) grating with geometrical parameters such as the
central disk radius, trench width, groove width, and thickness
to be determined. Each trench width and groove width are
treated as an independent free variable. If the structure con-
sists of N layers, there would be a total of 2N + 1 degree of
freedom (since the final groove width is assumed to stretch
to infinity). When optimizing the geometrical parameters, it
is crucial that they can be varied continuously in the opti-
mization process. This can be achieved by implementing a
nonuniform grid system [28,29].

Due to the large number of degrees of freedom, the par-
ticle swarm optimization (PSO) [33] was used to optimize
our chirped microcavity system. Since the PSO is a stochas-
tic method, the attained microcavity structure may differ for
each run. Nevertheless, for a chosen optimization function,
the inherent properties of the microcavity should remain
similar.

The optimization function used in our simulations takes the
form

M =
∑

i

Xiwiqi (10)

where qi represents the FOM to be optimized, each being
weighted by wi with

∑
i wi = 1; Xi is defined as

Xi =
{−1 if qi needs to be maximized
+1 if qi needs to be minimized . (11)

The choice of the optimization function in Eq. (10) allows us
to prioritize on which qi needs optimization by associating
them with a larger wi. Before defining the FOMs explicitly,
we introduce the collection efficiency, Ceff, of the microcavity
as

Ceff(θ ) = Pθ

Ptot

=
Re

{∫ θ

0

[
E(r, t ) × H∗(r, t )

] · dS
}

Re
{∫

Supp

[
E(r, t ) × H∗(r, t )

] · dS
} (12)

where θ represents the acceptance angle of the far-field emis-
sion (Fig. 2) and Supp denotes an integral over the upper half
of surface S. We considered only the upper half of the struc-
ture since the microcavities simulated have mirror symmetry
in z.

In this paper, we choose to optimize four FOMs:

q1 = Q

Qmax
, (13)

q2 = Veff

(λ0/n)3 , (14)

q3 =
∫

cav |E(r)|2d3r∫
str |E(r)|2d3r

, (15)

q4 =
∫

θ (Ceff ) dCeff

(π/2)max(Ceff )
, (16)

with X = [−1,+1,−1,+1]. The FOMs defined from
Eqs. (13)–(16) are normalized quantities to ensure that they
have the same order of magnitude. This allows all the FOMs
to be treated on an equal footing (or a footing defined solely
by wi).

In Eq. (13), q1 represents the normalized quality factor and
Qmax represents an upper bound on the quality factor. The
value of Qmax can be increased accordingly if one wants a
microcavity of higher quality factors. In Eq. (14), q2 repre-
sents the normalized effective mode volume. In Eq. (15), q3

represents the confinement factor of the microcavity defined
as the total intensity in the central disk (or cavity) normal-
ized to the total intensity in the entire structure. In Eq. (16),
q4 represents the average emission angle normalized to the
maximum emission angle π/2. The integral in q4 accounts
for power emission from 0◦ to 90◦. Thus, minimizing q4 not
only optimizes the emission angle but also mitigates potential
side losses.

For application to experiments, the cavity mode of the
nanostructure needs to be in resonance with the quantum dot.
However, the FOMs defined in Eqs. (13)–(16) are indepen-
dent of the quantum dot’s resonance energy. Consequently,
the energy of the cavity mode becomes arbitrary during the
optimization process. This can be fixed easily by modifying
the expression in Eq. (10) as

M ′ =
∑

i

Xiwiqi + 	E ′ 	E ′ = |E0 − EQD|
EQD

(17)

where E0 represents the simulated resonance energy of the
trial microcavity and EQD represents the resonance energy of
the quantum dot. The quantity 	E ′ is not treated as part of
the qis but rather as a fine tuning mechanism. Here, we set
EQD = 1.347 eV (around 920 nm).

IV. RESULTS AND DISCUSSION

Figure 3 shows four different structures attained with four
different choices of M ′. Structure A was attained with w1 =
1, w2 = 0, w3 = 0, w4 = 0, and Qmax = 600. Structure B
was attained with w1 = 0.5, w2 = 0.5, w3 = 0, w4 = 0, and
Qmax = 600. Structure C was attained with w1 = 0.1, w2 =
0.5, w3 = 0.2, w4 = 0.2, and Qmax = 600. Structure D was
attained with w1 = 0.05, w2 = 0.5, w3 = 0.2, w4 = 0.25, and
Qmax = 300. The steady-state field profiles of each structure
are shown in Fig. 4. In Figs. 4(a), 4(d), 4(g), and 4(j) it is
evident that half of the photons are emitted upwards and the
other half are emitted downwards. This results in the collec-
tion efficiency being reduced by 50%. Nevertheless, the issue
can be easily remedied by adding a substrate and a gold layer
below the microcavity to redirect photons upwards [34].

From the steady-state field profiles shown in Fig. 4, it is
evident that q4 is crucial in obtaining a near Gaussian far field
for high collection efficiencies. This is further illustrated with
Fig. 5(b) where the collection efficiency curves of structures
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FIG. 3. Four different structures attained from the PSO algo-
rithm. Structure A (blue; first) was attained with w1 = 1, w2 = 0,
w3 = 0, w4 = 0, and Qmax = 600. Structure B (green; second) was
attained with w1 = 0.5, w2 = 0.5, w3 = 0, w4 = 0, and Qmax = 600.
Structure C (purple; third) was attained with w1 = 0.1, w2 = 0.5,
w3 = 0.2, w4 = 0.2, and Qmax = 600. Structure D (red; fourth)
was attained with w1 = 0.05, w2 = 0.5, w3 = 0.2, w4 = 0.25, and
Qmax = 300.

A and B are well below those of structures C and D. In
addition, Fig. 5(e) shows that the average emission angles of
structure A and B are approximately 49◦ and 40◦ respectively
as compared to structure C which has an average emission

FIG. 4. Figure showing the steady-state fields (with normalized
intensities) of structure A (a–c), structure B (d–f), structure C (g–i),
and structure D (j–l). (a), (d), (g), (j) Emission field profiles in the x-z
plane plotted in the logarithmic scale for clarity. (b), (e), (h), (k) Far-
field profiles in the horizontal plane. (c), (f), (i), (l) In-plane dipole
emission at the position of the dipole source.
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FIG. 5. Plots summarizing data and FOMs obtained from the
four structures. (a) Purcell factor as a function of energy (in eV).
(b) Collection efficiency against acceptance angle. (c) Comparison of
Q factors attained. (d) Comparison of the normalized effective mode
volume V ′

eff = Veff/(λ0/n)3. (e) Comparison of the average angle of
emission calculated with the expression for q4 in Eq. (16) (neglecting
the π/2 at the denominator). (e) Comparison of the confinement
factor calculated with Eq. (15).

angle of about 25◦. Thus, even though structures A, B, and C
have similar Purcell factors of Fp ≈ 80 [Fig. 5(a)], we con-
sider structure C as superior for applications to single-photon
extraction due to its larger collection efficiency.

With a large Q factor of Q ≈ 600, the Purcell factor of
structure C (Fp ≈ 82) is almost four times larger as compared
to previously reported results of Fp ≈ 20, V ′

eff ≈ 1.5, and Q ≈
200 [22,34]. While this result shows that chirped gratings
indeed allow us to achieve larger Purcell factors as compared
to the standard design with fixed periodicities, a large Q factor
(small linewidth) leaves smaller room for errors in experi-
ments as the cavity mode needs to be precisely tuned to be in
resonance with the quantum dot. In light of this, the wis were
modified slightly and the upper bound on the quality factor
was lowered to Qmax = 300 to attain structure D. Figure 4(k)
shows that structure D has a near Gaussian far-field profile
with collection efficiency curves almost matching those of
structure C [Fig. 5(b)] and an emission angle similar to that of
structure C [Fig. 5(e)]. Even though the Q factor of structure C
is two times that of structure D, the Purcell factor of structure
D (Fp ≈ 45) is slightly larger than half that of structure C
(Fp ≈ 82). This is due to the lower effective mode volume of
structure D as compared to structure C [Fig. 5(d)]. Despite the
lower Purcell factor of structure D as compared to structure
C, it is still an improvement from past results. This shows that
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chirped annular gratings not only improve the results obtained
in the past, but also allow users to design microcavities that are
tailored to their own needs or experimental limitations.

The quantity q3 or confinement factor is introduced to
ensure that the central disk plays the role of a cavity where
a large fraction of the intensity resides within the central disk.
In Fig. 5(f), it is apparent that the inclusion of q3 in M allows
a larger intensity to be confined within the cavity (≈80%).

V. CONCLUSION

Overall, the optimization scheme presented has shown
success in attaining chirped annular microcavities that im-
prove figure of merit of current annular grating structures.
For instance, a higher Purcell factor was obtained without
sacrifice of the collection efficiency. In addition, with direct
control of the wis and the freedom to define the qis [Eq. (10)],
users will be able to design structures that exhibit properties
suited to their own requirements. It is therefore evident that
the optimization scheme presented here is versatile, making
it a potential tool for optimizing a wide range of photonic
structures.
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APPENDIX

1. Bodies of revolution derivation

We start our derivation from substituting Eq. (2) into
Eq. (1).

Collecting cos(mφ) terms,
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Collecting sin(mφ) terms,
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r
Hz,u − ∂Hφ,v

∂z

]
,

∂Eφ,v

∂t
= 1

ε

[
∂Hr,v

∂z
− ∂Hz,v

∂r

]
,

∂Ez,v

∂t
= 1

εr

[
∂ (rHφ,v )

∂r
+ mHr,u

]
,

∂Hr,v

∂t
= 1

μ

[
∂Eφ,v

∂z
+ m

r
Ez,u

]
,

∂Hφ,v

∂t
= 1

μ

[
∂Ez,v

∂r
− ∂Er,v

∂z

]
,

∂Hz,v

∂t
= 1

μr

[
−mEr,u − ∂ (rEφ,v )

∂r

]
. (A2)

From Eqs. (A1) and (A2), it is evident that the equations in-
volving the fields Er,v , Eφ,u, Ez,v , Hr,u, Hφ,v , and Hz,u are
decoupled from the equations involving the other six field
components. Thus, two sets of six equations are obtained.

The first set (involving fields Er,v , Eφ,u, Ez,v , Hr,u, Hφ,v , and
Hz,u) is

∂Er,v

∂t
= 1

ε

[
−m

r
Hz,u − ∂Hφ,v

∂z

]
,

∂Eφ,u

∂t
= 1

ε

[
∂Hr,u

∂z
− ∂Hz,u

∂r

]
,

∂Ez,v

∂t
= 1

εr

[
∂ (rHφ,v )

∂r
+ mHr,u

]
,

∂Hr,u

∂t
= 1

μ

[
∂Eφ,u

∂z
− m

r
Ez,v

]
,

∂Hφ,v

∂t
= 1

μ

[
∂Ez,v

∂r
− ∂Er,v

∂z

]
,

∂Hz,u

∂t
= 1

μr

[
mEr,v − ∂ (rEφ,u)

∂r

]
. (A3)

The second set (involving fields Er,u, Eφ,v , Ez,u, Hr,v , Hφ,u, and
Hz,v) is

∂Er,u

∂t
= 1

ε

[
m

r
Hz,v − ∂Hφ,u

∂z

]
,

∂Eφ,v

∂t
= 1

ε

[
∂Hr,v

∂z
− ∂Hz,v

∂r

]
,

∂Ez,u

∂t
= 1

εr

[
∂ (rHφ,u)

∂r
− mHr,v

]
,

∂Hr,v

∂t
= 1

μ

[
∂Eφ,v

∂z
+ m

r
Ez,u

]
,

∂Hφ,u

∂t
= 1

μ

[
∂Ez,u

∂r
− ∂Er,u

∂z

]
,

∂Hz,v

∂t
= 1

μr

[
−mEr,u − ∂ (rEφ,v )

∂r

]
. (A4)

Since the two sets of equations above are independent from
one another, we may choose to only discretize either (A3)
or (A4) to form the FDTD update equations. This is because
choosing one over the other merely results in a 90◦ rotation
of the fields due to a different choice of basis representation.
However, when the material of interest is anisotropic, the
fields from Eqs. (A3) and (A4) will couple with one another
and no longer be independent.

As discussed in the main text, the fields are positioned
according to the Yee grid (Fig. 1). On top of the field com-
ponents being half a grid apart in space, magnetic fields are
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defined to be updated at half-integer time steps (n + 1/2)
while electric fields are updated at integer time steps (n). This
is a consequence of having two coupled fields propagating
together at the same time, but only one field can be updated
before the other in the algorithm. As a result, the conventional
choice in the FDTD algorithm is to update the magnetic
fields first. Discretizing the first set of equations [Eq. (A3)]
with the central finite-difference scheme, the FDTD update
equations are obtained as (i and k indexes the r and z com-
ponents respectively; the superscript n denotes the time step;
ri+1/2 = ri + 	r/2)

H
n+ 1

2
r,u (i, k) = H

n− 1
2

r,u (i, k)

+ 	t

μ

[
En

φ (i, k + 1) − En
φ (i, k)

	z

− mEn
z (i, k)

ri

]
, (A5)

H
n+ 1

2
φ,v (i, k) = H

n− 1
2

φ,v (i, k)

+ 	t

μ

[
En

z,v (i + 1, k) − En
z,v (i, k)

	r

− En
r,v (i, k + 1) − En

r,v (i, k)

	z

]
, (A6)

H
n+ 1

2
z,u (i, k) = H

n− 1
2

z,u (i, k) + 	t

μri+ 1
2

[
mEn

r,v

− ri+1En
φ,u(i + 1, k) − riEn

φ,u(i, k)

	r

]
, (A7)

En+1
r,v (i, k) = En

r,v (i, k) + 	t

ε

[
− mH

n+ 1
2

z,u (i, k)

ri+ 1
2

− H
n+ 1

2
φ,v (i, k) − H

n+ 1
2

φ,v (i, k − 1)

	z

]
, (A8)

En+1
φ,u (i, k) = En

φ,u(i, k)

+ 	t

ε

[
H

n+ 1
2

r,u (i, k) − H
n+ 1

2
r,u (i, k − 1)

	z

− H
n+ 1

2
z,u (i, k) − H

n+ 1
2

z,u (i − 1, k)

	r

]
, (A9)

En+1
z,v (i, k) = En

z,v (i, k)

+ 	t

riε

[ ri+ 1
2
H

n+ 1
2

φ,v (i, k) − ri− 1
2
H

n+ 1
2

φ,v (i − 1, k)

	r

+ mH
n+ 1

2
r,u (i, k)

]
. (A10)

2. On-axis updates for Ez, Eφ, and Hr

An unavoidable consequence of the central finite-
differencing scheme is the existence of nonupdatable points.
These points lie on the boundary nodes, i.e., α = 1 or Nα ,
where α = {i, j, k} and Nα denotes the total number of points
in a particular direction. For example, when i = 1 is substi-
tuted into Eq. (A9), the term Hn+1/2

z,u (0, k), which does not

exist, is required. This does not create complications in the
Cartesian scheme since computational domains are typically
truncated with PMLs which extend a few cells away from
the boundary. However, in cylindrical coordinates, the bound-
ary computational node at i = 1 represents r = 0 that sits
at the center of the grid space. If the update at this point
is neglected, it effectively translates to a nonphysical effect
where a Dirichlet boundary is present at the center of the
computational domain. Therefore, it is imperative that field
components affected by such boundary nonupdatability are
specially treated.

The fields that require these special updates lie on the
r = 0 axis, namely Ez, Eφ , and Hr . Ez is only nonzero when
m = 0 while Eφ and Hr are only nonzero when m = 1. While
it is crucial that Ez on the axis has to be updated whenever
necessary, the special updates for Eφ and Hr are optional. This
is because Ez(1, k) is coupled into Eq. (A6) while the other
two on-axis fields, Eφ (1, k) and Hr (1, k), do not couple to
any of the FDTD updating equations. For instance, although
Eφ (1, k) couples to Hz(1, k) in Eq. (A7), it is multiplied by
r1 = 0. On the other hand, Hr (1, k) does not couple to the
standard updates in Eqs. (A9) and (A10). This is because of
the r derivatives present in the Eφ and Ez updates that fail to
work at the boundaries (i = 1). Nevertheless, updating Eφ and
Hr at r = 0 may still be useful in analyzing field profiles.

a. Ez special update (m = 0)

For the Ez on-axis update, consider the integral form of
Maxwell’s equations:∮

C
H · dl =

∮
S
ε
∂E
∂t

· dS. (A11)

If m �= 0, the closed loop integral of H will be zero. Thus, the
Ez on-axis update is only necessary whenever m = 0. From
here on, we assume m = 0 and derive the required update
equation:

Hφ

∣∣∣∣n+ 1
2

1
2 ,k+ 1

2

(
2πr 1

2

) = ε
∂Ez

∂t

∣∣∣∣n+ 1
2

0,k+ 1
2

(
πr2

1
2

)
. (A12)

Writing r 1
2

= 	r/2, the on-axis Ez update equation reads

Ez

∣∣∣∣n+1

0,k+ 1
2

= Ez

∣∣∣∣n

0,k+ 1
2

+ 4	t

ε	r
Hφ

∣∣∣∣n+ 1
2

1
2 ,k+ 1

2

. (A13)

This is written computationally as

En+1
z (1, k) = En

z (1, k) + 4	t

ε	r
H

n+ 1
2

φ (1, k). (A14)

b. Eφ special update (m = 1)

The Eφ special update equation can be obtained using a
similar method done with Ez. The contour chosen now will be
along the r-z plane, enclosed by Hr and Hz:

	r

2

[
Hr

∣∣∣∣n+ 1
2

0,k+ 1
2

− Hr

∣∣∣∣n+ 1
2

0,k− 1
2

]
− 	zHz

∣∣∣∣n+ 1
2

1
2 ,k

= ε	z
	r

2

∂Eφ

∂t

∣∣∣∣n+ 1
2

0,k

. (A15)
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Rearranging gives the Eφ special update equation

Eφ

∣∣∣∣n+1

0,k

= Eφ

∣∣∣∣n

0,k

− 2	t

ε	r
Hz

∣∣∣∣n+ 1
2

1
2 ,k

+ 	t

ε	z

[
Hr

∣∣∣∣n+ 1
2

0,k+ 1
2

− Hr

∣∣∣∣n+ 1
2

0,k− 1
2

]
. (A16)

This is written computationally as

En+1
φ (1, k) = En

φ (1, k) − 2	t

ε	r
H

n+ 1
2

z (1, k)

+ 	t

ε	z

[
H

n+ 1
2

r (1, k) − H
n+ 1

2
r (1, k − 1)

]
.

(A17)
c. Hr special update (m = 1)

For the Hr special update, the integral form is not required
since there is no r derivative term in the standard updating
equation. Immediately using Eq. (A5) and using the value of
Ez at r = 	r as an approximation (since Ez = 0 on the axis if
m �= 0), the Hr special update equation is obtained as

H
n+ 1

2
r (1, k) = H

n− 1
2

r (1, k) − 	t

μ	r
En

z (2, k)

+ 	t

μ	z

[
En

φ (1, k + 1) − En
φ (1, k)

]
. (A18)

3. Pareto front optimization

In Sec. III B, we demonstrated the optimization of chirped
annular microcavities and illustrated how distinct choices of
optimization functions yield different geometrical parameters,
each exhibiting its own unique properties (Figs. 4 and 5).
The optimization scheme outlined in Sec. III B was based
on the implementation of the PSO algorithm that generates
structures exhibiting Purcell factors surpassing those obtained
by previous schemes for periodic gratings [22,34]. To support
the assertion that chirped gratings are superior, we conducted
an additional optimization by the construction of a Pareto
front.

The Pareto front is defined as a set of nondominated solu-
tions. That is, there are no structures in the parameter space
that can improve all FOMs located at the Pareto front simulta-
neously. For example, suppose there are two general FOMs to
be optimized η1 and η2. In our case, η1 represents the Purcell
factor (to be maximized) and η2 represents the emission angle
(to be minimized). A structure with FOMs η1 and η2 lies on
the Pareto front if there are no alternative structures such that
η′

1 > η1 and η′
2 < η2 simultaneously where η′

1 and η′
2 repre-

sent the Purcell factor and emission angle of an alternative
(general) structure in the parameter space respectively.

The PSO algorithm was executed multiple times with the
optimization function being

M = η1η3η4

η2
(A19)

where

η1 = Fp(ω0), (A20)

η2 =
∫

θ (Ceff ) dCeff

max(Ceff )
, (A21)
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FIG. 6. A Pareto front (black outlines) interpolation based on
multiple runs of the PSO algorithm. Each individual iteration is rep-
resented by different symbols as shown in the legend. The optimized
structures from both the main text and an existing periodic structure
[34] are included as well.

η3 =
∫

cav |E(r)|2d3r∫
str |E(r)|2d3r

, (A22)

η4 =
∫

|Ẽ(r, z0)|2G̃(r) d2r. (A23)

η1 represents the Purcell factor at the resonance frequency ω0;
η2 represents the average angle, similar to the expression of q4

in Eq. (16); η3 represents the field confinement factor, similar
to the expression of q3 in Eq. (15); η4 represents an overlap
integral of the far-field intensity at z0 with a Gaussian function
G(r). The tilde signs on the expression in Eq. (A23) indicate
that the functions are normalized, ensuring that the overlap
integral is between 0 and 1 and amplitude independent. We
note here that the optimization function in Eq. (A19) is inde-
pendent of the Purcell factor’s resonance energy [as compared
to Eq. (17)]. This lifts off a constraint on the optimization
function, opening up the potential for achieving higher Purcell
factors and lower emission angles. An additional rescaling to
the structural geometry can be done to fine tune the energy
peak of the Purcell factor without impact on any of the FOMs.

After multiple executions of the PSO algorithm for both
chirped and periodic gratings, a Pareto front was constructed
on the scattered plot, consisting of all the swarm parameters,
highlighted by the black outlines in Fig. 6. In addition, we
verified that all the points on the Pareto front and structures
C and D have an overlap integral [Eq. (A23)] of larger than
99%. We further compared our results obtained with results
obtained in [34] for a periodic grating (shown as a red cross
in Fig. 6). Even though periodic structures can yield Purcell
factors exceeding 20, the utilization of chirped gratings offers
the potential for achieving higher Purcell factors with smaller
emission angles.
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