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Many physically interesting quantities of the electromagnetic field can be computed using the electromagnetic
scalar product. However, none of the existing expressions for such scalar product are directly applicable when
the fields are only known in a spatially bounded domain, as is the case for many numerical Maxwell solvers. In
here, we derive an expression for the electromagnetic scalar product between radiation fields that only involves
integrals over closed spatial surfaces. The expression readily leads to formulas for the number of photons,
energy, and helicity of generic polychromatic light pulses of incoming or outgoing character. The capabilities of
popular Maxwell solvers in spatially bounded computational domains are thereby augmented, for example, by a
straightforward method for normalizing emitted fields so that they contain a single photon.
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I. INTRODUCTION AND SUMMARY

Quantum and classical nanophotonics benefit from ad-
vances in nanofabrication, such as the integration of
molecules and quantum dots into complex systems, and the
precise structuring of materials at the nanoscale [1–4]. It is
important that this progress is matched by theoretical ad-
vances enlarging the capabilities of computational tools such
as numerical Maxwell solvers. These kinds of solvers are
often used for the design and optimization of functional de-
vices that exploit modern fabrication possibilities. Generic
numerical Maxwell solvers may be broadly classified as either
time-domain or frequency-domain solvers. A very popular
approach in time-domain solvers is the finite-difference time-
domain method (FDTD) [5], where Maxwell equations are
discretized in space and time and a time-marching algorithm
is used to propagate the field from a source through a given
photonic structure. Frequency-domain solvers, appropriate for
linear problems, use the finite-element method (FEM) [6]
or the finite-difference frequency-domain method (FDFD)
[7]. Additionally, there are approaches adapted to specific
settings. For example, plane-wave expansion techniques are
suitable for periodic structures [8] and the boundary element
method is particularly useful when considering localized scat-
terers [9,10]. Another popular tool is the T -matrix formalism
[11–13], where, for a given object, a set of illuminations and
their resulting scattered fields are used to build its T matrix
for later use. The T matrix encodes the response of the object
to generic illuminations. The upfront computational price is
typically offset by the efficiency with which the response of
a composite system can be obtained from the T matrices of
its components, in particular, for periodic arrangements such
as metasurfaces [14,15]. Recently, the formalism has been
reworked and made to rest on an inherently polychromatic
framework [16], as opposed to the typical monochromatic
one. The polychromatic framework is directly applicable to
the interaction of material objects with light pulses and to
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the description of emissions from molecules or quantum dots.
The T matrices can then be seen as operators in M, the
Hilbert space of general polychromatic solutions of Maxwell
equations.

A core element of the Hilbert space formalism is the elec-
tromagnetic scalar product [17], which has important uses
beyond underpinning the mathematical structure of M. For
example, given an electromagnetic field | f 〉 ∈ M, its norm
squared 〈 f | f 〉 is equal to the number of photons in the field
[18]. The total energy and helicity contained in the field are
equal to 〈 f |H | f 〉 and 〈 f |�| f 〉, where H and � are the energy
and helicity operators, respectively. Actually, the total amount
of any quantity represented by a self-adjoint operator �, such
as energy, helicity, linear momentum, and angular momentum,
is equal to 〈 f |�| f 〉. The scalar product can also be used to
obtain the coefficient functions of the expansions of the elec-
tromagnetic fields in a different basis, such as plane, spherical,
or cylindrical waves.

Knowledge of the number of photons of a given field in
a simulation can be used to re-scale such a field so that it
contains any desired number of photons, in particular, one.
This is needed in quantum nanophotonics to model single-
photon emitters or the interaction of single photons with
molecules, for example. Also, in a semi-classical or full-
quantum treatment of the light-matter interaction [19] using,
e.g., a Jaynes-Cummings model [20], one needs to know the
number of photons contained in a modal field: The coupling
strength of an emitter to a mode needs to be calculated from a
normalized field distribution where the mode contains exactly
one photon. In another example, the total number of photons
and the helicity of the field radiated by an emitter nearby a
(chiral) nanostructure is a quantity of interest in the study of
luminescence enhancement, in particular, in chiral lumines-
cence enhancement [21]. While these physically interesting
quantities can be computed with scalar products, the currently
available expressions are not directly compatible with popular
Maxwell solvers. None of the expressions is directly appli-
cable to fields known only in a spatially bounded domain,
which is the information available when using, for example,
COMSOL, MEEP, JCMSUITE, CST, or LUMERICAL. Some of the
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FIG. 1. In a numerical simulation, the electromagnetic scalar
products resulting in the number of photons, energy, and helicity of
the pulse emitted by the object in (a) can be obtained as integrals on
the ∂D1 surface using Eqs. (19) to (21). Adjustments to the simulated
emission can then be done, for example, by scaling the field so that it
contains a single photon. In (b), the adjusted emitter is placed close
to other objects, which interact with the emission. Integrals on the
∂D2 surface provide the same quantities for the total outgoing field.

expressions for the scalar product involve the fields in the
entire infinitely extended space ([18, Eq. (1)], [17, Eq. (6)],
Eq. (4). Others require the coefficients of the expansion of the
fields into a basis, such as plane waves or spherical waves,
also known as multipolar fields ([22], Eqs. (5) and (6)).

To overcome such limitations, we derive here a new ex-
pression for the electromagnetic scalar product between two
radiation fields, either incoming or outgoing. The new ex-
pression involves only the fields on a closed spatial surface
(see Fig. 1). For outgoing fields, the surface must enclose
the sources of radiation, and for incoming fields, the surface
must exclude the sources. The new expression readily leads
to formulas for the number of photons, helicity, and energy
of a given radiation field. The expressions are given in SI
units, and feature explicit physical constants, which facilitates
their implementation. The formulas are derived for polychro-
matic fields with general frequency dependence, and are hence
applicable to generic light pulses. The results for monochro-
matic simulations are the frequency-dependent densities of
the different computed quantities, such as, for example, the
density of photons per frequency.

The rest of the article is structured as follows. In Sec. II, we
derive the new expressions, which are numerically verified in
Sec. III. The new expression for the scalar product is written
in Eq. (17), and used to derive formulas for the number of
photons, helicity, and energy, in Eqs. (19), (20), and (21),
respectively. In Sec. IV, we discuss practical aspects for us-
ing the formulas in the context of popular Maxwell solvers.
Section V concludes the article. We expect the new expres-
sions to be useful in classical and quantum computations in
nanophotonics.

II. SCALAR PRODUCT BETWEEN OUTGOING
OR INCOMING FIELDS CAN BE COMPUTED

ON A CLOSED SPATIAL SURFACE

SI units and the helical combinations of electric and mag-
netic fields for λ = ±1 will be used throughout this article:

Fλ(r, t ) =
√

ε0

2
[E(r, t ) + iλc0B(r, t )], (1)

where E(r, t ) and B(r, t ) are the total electric field and
magnetic induction, respectively, and c0 and ε0 denote the
speed of light and permittivity of vacuum, respectively. For
the purposes of this work, a nonabsorbing homogeneous and
isotropic background medium different than vacuum can be
accommodated in the formalism. One can just use the corre-
sponding permittivity and permeability instead of the values
for vacuum. Both E(r, t ) and B(r, t ) are complex fields, as
explained below.

The helical Fλ(r, t ) fields can be built as the following sum
of plane waves:

Fλ(r, t ) =
∫
R3−{0}

d3k√
(2π )3

Fλ(k) exp(ik · r − ic0|k|t ), (2)

where k · Fλ(k) = 0, and, importantly, the time-harmonic an-
gular frequency is restricted to positive values ω = c0|k| >

0. The Fλ(r, t ) are eigenstates of the helicity operator with
eigenvalue +1 and −1, and they split the electromagnetic
field into its left-handed and right-handed circular polarization
components, respectively. Such splitting works for general
fields: Far fields, near fields, cavity modes, and so on. The
restriction to positive frequencies, which makes E(r, t ) and
B(r, t ) necessarily complex valued, is crucial for Fλ(r, t )
to actually separate the two handedness of the fields. It
readily follows from Eq. (1) that, if E(r, t ) and B(r, t ) are
real-valued, then |F+(r, t )| = |F−(r, t )|, which negates the
handedness separation. The Fλ(r, t ) are the positive frequency
restriction of the Riemann-Silberstein vectors [24], and their
monochromatic components are also known as Beltrami fields
[25].

Let us consider the conformally invariant scalar product for
Maxwell fields [17], which can be written as

〈 f |g〉 =
∫
R3−{0}

d3k
h̄c0|k|

[
F+(k)
F−(k)

]†[
G+(k)
G−(k)

]
, (3)
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where h̄ is the reduced Planck’s constant. By using the rules
of Fourier transforms1, Eq. (3) can also be written as

2π2h̄c0〈 f |g〉

=
∫
R3

d3r
∫
R3

d3r̄
F+(r, t )†G+(r̄, t ) + F−(r, t )†G−(r̄, t )

|r − r̄|2 .

(4)

Other expressions of the scalar product can be written
down using the coefficient functions of the expansions of the
electromagnetic fields in different bases. For example,

〈 f |g〉 =
∑
λ=±1

∫
R3−{0}

d3k
|k| f∗

λ (k)gλ(k), (5)

where the fλ(k) and gλ(k) are the complex scalar coefficient
functions of the plane wave expansions, and

〈 f |g〉 =
∑
λ=±1

∫ ∞

>0
d|k| |k|

∞∑
j=1

j∑
m=− j

f ∗
jmλ(|k|)g jmλ(|k|), (6)

where the f jmλ(|k|) and g jmλ(|k|) are the coefficient functions
of the expansions in spherical waves, also known as multipolar
fields. The form of the expressions (5) and (6) is achieved
using the conventions in Ref. [16], which we include in
Appendix A.

The choice of scalar product is actually rather forceful. To
begin with, this is the scalar product that produces the cor-
rect values for the fundamental quantities in electrodynamics.
That is, for example, the result of 〈 f |H | f 〉 coincides with
the result of the typical integral for the energy of the field∫
R3 d3r (ε0|E|2 + 1

µ0
|B|2), and the same is true for the other

quantities [27, Chap. 3, Sec. 9]. Moreover, the meaningful
frame-independent definition of the number of photons and of
projective measurements is possible thanks to the conformal
invariance of the chosen scalar product [28, Sec. III]. For
example, the number of photons 〈 f | f 〉 is only meaningful
and suitable for quantization if its value is the same under all
the possible changes of reference frame allowed by Maxwell
equations, that is, under all the transformations in the confor-
mal group in 3 + 1 Minkowski space-time [29].

We highlight that none of the above expressions for the
scalar product is directly applicable when the fields emitted
by or scattered off an object under a particular illumina-
tion, are available in numerical calculations in a spatially
bounded domain. An indirect method is possible by multi-
polar decomposition via surface integrals inside the domain
[30]. However, this indirect route can become computation-
ally expensive. One is first required to establish an appropriate
truncation value for the multipolar order j � jmax in Eq. (6)
by sequentially increasing jmax until some convergence cri-
terium is fulfilled. The number of surface integrals is equal
to 2 jmax

2 + 4 jmax. The appropriate jmax often implies that
hundreds of surface integrals need to be computed for each
frequency, in particular, for the incoming fields and for fields

1In particular, that from [26, Eqs. (B.3) and (B.4) and Table II
in Sec. I.B.2] it follows that F−1

3D {Fλ(k) exp(−ic0|k|t ) × 1
|k| } =

1
2π2

∫
R3 d3r̄ Fλ(r̄, t ) × 1

|r−r̄|2 .

scattered by wavelength-sized objects with moderate to high
refractive index, where jmax will easily be higher than 10.
Saving computational resources is particularly important in
the context of optimization algorithms, where computations
have to be done at each iteration because the object has
changed. Moreover, in gradient-based optimizations, bypass-
ing the multipolar decomposition can save one step in the
derivative chain rule that connects the computed fields to the
optimization target.

We will now obtain a new expression for the scalar product
between two outgoing fields. Fields emitted from a quantum
dot and the fields scattered off a nanostructure under a given
illumination are examples of outgoing fields. The new expres-
sion only involves the values of the fields on any piecewise
smooth surface enclosing a compact volume containing the
object, and is hence directly applicable to fields computed
in a spatially bounded domain (see Fig. 1). The extension
to incoming fields is straightforward and will be explained
afterwards. For incoming fields, the surface must exclude the
sources, and for outgoing fields, it must enclose the sources of
radiation.

We start by considering the asymptotic behavior of Eq. (2)
for large |r|. To such an end, we consider the expansion2 of
the r-dependent exponential in Eq. (2):

exp (ik · r) = 4π

∞∑
l=0

l∑
m=−l

il jl (|k||r|)Ylm(k̂)Ylm(r̂)∗. (7)

The large-|r| behavior of Eq. (7) is only determined by the
spherical Bessel function, as in Ref. [31, Eq. (9.89)]:

jl (|k||r|)
∣∣∣∣∣
|r|→∞

→ 1

|k||r| sin

(
|k||r| − lπ

2

)

= 1

|k||r|2i

[
exp

(
i|k||r| − ilπ

2

)
− exp

(
−i|k||r|+ ilπ

2

)]
.

(8)

We take now only the outgoing part of the last line of Eq. (8)

(−i)l+1 exp (i|k||r|)
2|k||r| , (9)

and plug it into the right-hand side of Eq. (7) in substitution
of jl (|k||r|). After such a substitution, we obtain

− i2π
exp (i|k||r|)

|k||r|
∞∑

l=0

l∑
m=−l

Ylm(k̂)Ylm(r̂)∗

= −i2π
exp (i|k||r|)

|k||r| δ(cos θk − cos θr )δ(φk − φr ), (10)

where φk(φr ) and θk(θr ) are the polar and azimuthal angles
of k(r) in spherical coordinates, respectively, and the equality
follows from Ref. [32, Eqs. (8.6) to (10)]. The delta distribu-
tions clearly indicate that Eq. (10) cannot be used outside of
integrals. In particular, it would not produce the correct result
for a single component exp(ik0 · r).

2Explicit definitions for the spherical Bessel functions jl (|k||r|),
and for the spherical harmonics Ylm(r̂) can be found in Eqs. (3.111)
and (3.82) and Eq. (3.53) of Ref. [31], respectively.
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We can now take Eq. (10) into Eq. (2), express the d3k volume integral in spherical coordinates3, and manipulate it into

Fλ(r, t )

∣∣∣∣∣
|r|→∞

→ −i√
2π

∫ ∞

|k|>0
d|k||k|2 exp(−ic0|k|t )

exp (i|k||r|)
|k||r|

∫
dk̂Fλ(k)δ(k̂ − r̂)

= −i√
2π

∫ ∞

|k|>0
d|k||k| exp(−ic0|k|t )

exp (i|k||r|)
|r| Fλ(|k|r̂), (11)

where
∫

dk̂ stands for
∫ 1
−1 d(cos θk )

∫ π

−π
dφk, and δ(k̂ − r̂) for δ(cos θk − cos θr )δ(φk − φr ).

We now consider a different expression for Fλ(r, t ), namely, its expansion into monochromatic fields Fλ(r, |k|),

Fλ(r, t ) =
∫ ∞

>0

d|k|√
2π

Fλ(r, |k|) exp(−ic0|k|t ), (12)

and examine its asymptotic behavior

Fλ(r, t )

∣∣∣∣∣
|r|→∞

→
∫ ∞

>0

d|k|√
2π

exp(−ic0|k|t )Fλ(r, |k|)
∣∣∣∣∣
|r|→∞

. (13)

The following result is readily obtained by comparing the last line of Eq. (11) with Eq. (13):

−i|k|exp (i|k||r|)
|r| Fλ(|k|r̂) = Fλ(r, |k|)

∣∣∣∣∣
|r|→∞

. (14)

Let us now use such result to work on the integrand in Eq. (3):

∑
λ=±1

Fλ(k)†Gλ(k) =
∑
λ=±1

⎡
⎣ |r|

|k|Fλ(|r|k̂, |k|)
∣∣∣∣∣
|r|→∞

⎤
⎦

†⎡
⎣ |r|

|k|Gλ(|r|k̂, |k|)
∣∣∣∣∣
|r|→∞

⎤
⎦

=
∑
λ=±1

[ |r|2
|k|2 Fλ(|r|k̂, |k|)†Gλ(|r|k̂, |k|)

]
|r|→∞

, (15)

and now substitute it in Eq. (3)

〈 f |g〉 =
∑
λ=±1

∫
R3

d3k
h̄c0|k| Fλ(k)†Gλ(k) =

∑
λ=±1

∫
R3

d3k
h̄c0|k|

[ |r|2
|k|2 Fλ(|r|k̂, |k|)†Gλ(|r|k̂, |k|)

]
|r|→∞

=
∑
λ=±1

∫ ∞

>0

d|k|
h̄c0|k|

[∫
dk̂|r|2Fλ(|r|k̂, |k|)†Gλ(|r|k̂, |k|)

]
|r|→∞

, (16)

where the third equality follows from splitting the d3k integral into its radial and angular parts.
The expression inside the square brackets in the last line of Eq. (16) is an integral over the surface of a sphere with radius

|r| → ∞. The core result of this article is reached after using a result from Ref. [30] to exchange such integral4 with the integral
over any piecewise smooth surface ∂D enclosing a compact volume containing the sources of radiation (see Appendix B):

〈 f |g〉 =
∑
λ=±1

(−τ )iλ
∫ ∞

>0

d|k|
h̄c0|k|

∫
y∈∂D

dS(y) · [Fλ(y, |k|)∗ × Gλ(y, |k|)] (17)

The result in Eq. (17) with τ = 1 is valid for outgoing
fields. With τ = −1 it is valid for incoming fields. The deriva-
tion for incoming fields is very similar to the one written
for outgoing fields. It starts from the complex conjugate of
Eq. (2), and one takes then the incoming part of the plane
wave in Eq. (8), instead of the outgoing part. The end result
is the same as Eq. (17) but multiplied by −1. This change

3
∫

d3k = ∫
d|k||k|2 ∫

d cos θ
∫

dφ = ∫
d|k||k|2 ∫

dθ sin θ
∫

dφ.
4The following equations in Ref. [30] are missing a multiplication

by −1 on their right-hand sides: (21), (23), (24), and (25).

of sign comes from the sign difference between the inward
and outward radiation conditions at infinity. For incoming
fields the surface ∂D must exclude the sources of incoming
radiation.

Some clarifications are in order at this point. The scalar
product applies to free fields, that is, fields that are not inter-
acting with matter. A radiation field is free between the time
when its sources have finished radiating and the time when
it enters into contact with another material object. During
such a period, the result of Eq. (4) is actually independent
of time. In practice, this means that, for obtaining complete
and undisturbed information in a time-domain simulation, the
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outgoing fields on the surface, Fλ(y, t ) and Gλ(y, t ), need to
be recorded for as long as the emissions lasts, and that during
such periods of time there should not be reflections of the
emitted fields coming back into the volume enclosed by the
surface. Similarly, for incoming fields, there should not be re-
flections going back out of the enclosed volume. It is precisely
during the periods when a field is free that, in the polychro-
matic setting, the incoming and outgoing fields are equal to
their regular versions [16, Sec. 3.2.3]. This follows from the
fact that, in sharp contrast with their eternal monochromatic
counterparts, incoming (outgoing) polychromatic fields are
zero after (before) some instance of time. For free fields, one
may as well use regular fields for computing scalar products
between two incoming or two outgoing fields, and then it
follows that Eqs. (6) and (3) can be used even though the
expressions do not include evanescent plane waves. Regular
fields are the sum of incoming and outgoing fields, and are
often referred to as standing or stationary, on account of such
fields not producing a net flux of energy or photons at spatial
infinity.

We note that the derivation leading to Eq. (17) cannot
be adapted to include regular fields. The sum in Eq. (10)
that leads to the angular delta function cannot be performed
because of the remaining l dependence of il sin(|k||r| −
lπ/2)/(|k||r|). The derivation of Eq. (17) from Eq. (3) re-
quires that the fields are of pure outgoing character. Similarly,
the pure incoming character of the fields is required to obtain
the corresponding expression of the scalar product as a surface
integral. Actually, it is straightforward to show that, if both
Fλ(r, t ) and Gλ(r, t ) are regular fields, the surface integral in
Eq. (17) vanishes (see Appendix D). This, of course, does not
mean that the scalar product between any two regular fields
is zero. It rather reflects the fact that such surface integrals

cannot be used to compute the scalar product between two
regular fields. The surface integral in Eq. (17) also vanishes if
one of the fields is outgoing and the other is incoming. Besides
a direct derivation, this result can also be seen as follows. For
a given helicity λ, and a point in the far field, the polarization
vector of a plane wave whose momentum points from the
origin to such a point is orthogonal to the polarization vector
for a plane wave whose momentum points from such a point
towards the origin

[êλ(k)]†êλ(−k) = −[êλ(k)]†ê−λ(k) = 0, (18)

where the first equality follows from, e.g., Ref. [16, Eq. (180)],
and the second from the well-known orthogonality of the
polarization vectors of two plane waves with the same mo-
mentum direction but opposite handedness.

The orthogonality between incoming and outgoing fields
can be used to compute the scalar product between a given
incoming (outgoing) first field and a second field. The second
field can be implemented as a regular field, in which case
Eq. (17) will result in the scalar product between the first
incoming (outgoing) field and the incoming (outgoing) part of
the second field. This possibility has been shown already for
the particular case of monochromatic multipolar fields: The
use of spherical Bessel functions instead of spherical Hankel
functions was shown in Ref. [30] to produce the same result
and to be preferable because of a much improved numerical
stability.

Section III contains examples that illustrate and numeri-
cally verify these results.

Using the new expression in Eq. (17), the number of
photons, helicity, and energy of a given outgoing (τ = 1) or
incoming (τ = −1) field can be computed as

where the second and third equalities follow from the respec-
tive actions of the helicity � and energy H , operators on
the rightmost set of monochromatic components Fλ(y, |k|).
Namely, helicity is just a multiplication by h̄λ and energy
a multiplication by h̄c0|k|. The corresponding equation for
momentum squared [33], P2 = P2

x + P2
y + P2

z , can readily be
obtained from the action of the P2 operator, which is a multi-
plication by h̄2|k|2.

The equations for the energy and helicity actually con-
tain the respective fluxes of each quantity. The real part
of the term (−τ )

∑
λ=±1 iλ[Fλ(y, |k|)∗ × Fλ(y, |k|)] in the

energy formula in Eq. (21) can be shown to correspond
to the Poynting vector, and the real part of the term

(−τ )
∑

λ=±1 i[Fλ(y, |k|)∗ × Fλ(y, |k|)] in the helicity for-
mula in Eq. (20) can be shown to correspond to the helicity
flux vector [34, Sec. 1(a)]. The imaginary parts must vanish in
both cases because the average values 〈 f |H| f 〉 and 〈 f |�| f 〉
must be real numbers, as both H and � are self-adjoint with
respect to this scalar product.

III. NUMERICAL VERIFICATION

For the rest of the article, we extend our notation to
indicate explicitly the regular | f 〉reg, incoming | f 〉in, or out-
going | f 〉out character of electromagnetic fields. The relation
| f 〉reg = | f 〉in + | f 〉out holds in our conventions (Appendix A

043506-5
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FIG. 2. Energy density of the outgoing pulse from Eq. (22) at different times, plotted in the zx plane with horizontal z axis and vertical x
axis. The number of photons, helicity, and energy of the pulse can be computed with electromagnetic scalar products implemented as surface
integrals on generic surfaces. The same results are obtained on spherical and cubical surfaces. The sphere centered at the origin has a radius of
2.5 µm and is drawn with a solid line. The cube has sides of length 5.0 µm and is drawn with dashed lines.

and Ref. [16]). The character of a given field is easily ap-
preciated in its decomposition into multipolar fields. Such
fields feature spherical Bessel functions for regular fields,
and spherical Hankel functions of the first or second kind for
outgoing or incoming fields, respectively. Substituting jl (·) by
h1

l (·)/2 changes the version of a field from regular to outgo-
ing; substituting h1

l (·)/2 by h2
l (·)/2, changes it from outgoing

to incoming, and so on. The same holds for cylindrical vector
wave functions, which feature Bessel and Hankel functions.
We first numerically verify Eqs. (19) to (21) by computing the
quantities contained in a given outgoing electromagnetic field.
Consider an outgoing electromagnetic pulse defined by its two
helicity components | f 〉out ≡ {Fout

+ (r, t ), Fout
− (r, t )}:

Fout
+ (r, t ) = A

√
ε0

∫ ∞

>0
d|k| |k|

× exp

(
− (|k| − k1)2

22

)
Sout

331(|k|, r, t ),

Fout
− (r, t ) = A

√
ε0

∫ ∞

>0
d|k| |k|

× exp

(
− (|k| − k2)2

22

)
Sout

2−2−1(|k|, r, t ), (22)

with a constant of A = 4 × 1010 nm, characteristic pulse time
span −1 = 2 fs, and center wavelengths 2π

k1
= 800 nm and

2π
k2

= 400 nm. For visualization purposes, we assume that the
outgoing field is generated by sources confined inside a sphere
of radius 200 nm, which can be seen in the center of the plots

in Fig. 2. The explicit definition of Sout
jmλ(|k|, r, t ), which are

multipolar fields and include the harmonic time dependence
exp(−ic0|k|t ), can be found in Appendix A. Figure 2 shows
the energy density of the outgoing pulse from Eq. (22) at three
different times.

We compute the amount of photons, helicity, and energy
contained in the field by using Eqs. (19) to (21) on five differ-
ent surfaces: A spherical surface ∂D1 of diameter 5.0 µm, the
surface of a cube ∂D2 with sides of 5.0μm, both centered in
the origin of the reference frame, as seen in Fig. 2, and then the
three spherical surfaces that result from shifting the centered
one by 1.5μm in the positive x, y, and z directions.

The integration over the spheres is implemented as a Rie-
mann sum with discretization of polar and azimuthal angles
in Nθ = 400 and Nφ = 200 equidistant points, respectively.
The integration over the surface of the cube is performed as a
Riemann sum with Nx = Ny = Nz = 200 points. All integrals
over |k| are computed as a Riemann sum with Nk = 200
equidistant discretization points in the region 6.6μm−1 �
|k| � 17.0μm−1, which covers the most significant part of
the spectrum of the field.

Table I shows the comparison of the results of Eqs. (19) to
(21) compared to the result of a conventional method based
on Eq. (6), which we use as reference (see Appendix C).
The agreement is excellent, with numerical noise affecting
the third significant digit. The closer agreement between the
reference and the integrals on the spherical surfaces is likely
because the reference is computed with the coefficients of the
expansion of the fields in multipolar fields, which fit natu-
rally to spherical surfaces. Importantly, additional calculations

TABLE I. Number of photons, helicity, and energy computed in six different ways. A reference value computed in a conventional way, and
Eqs. (19) to (21) computed with integrals on different closed surfaces: A sphere centered at the origin with radius 2.5μm, spheres of the same
radius but displaced in the positive x, y, and z directions by 1.5μm, and the surface of a cube. The units of each quantity are written in the first
row, after the comma.

out〈 f | f 〉out out〈 f |�| f 〉out, Js out〈 f |H | f 〉out, J

Reference 2.7841638840385884×1016 −9.787001828407123×10−19 0.011633883766510636
Sphere 2.7841638841872064×1016 −9.787001829974468×10−19 0.011633883767253363
Sphere, shifted in x 2.7841598095399108×1016 −9.7869715786171×10−19 0.011633864885618727
Sphere, shifted in y 2.78415980953991×1016 −9.786971578617121×10−19 0.011633864885618714
Sphere, shifted in z 2.784163884061041×1016 −9.78700182864386 ×10−19 0.011633883766622862
Cube 2.779822499549024×1016 −9.76576139048995×10−19 0.011615046402458412
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TABLE II. Scalar product between an outgoing field | f 〉out and the regular, incoming, and outgoing versions of a different field.

out〈 f |g〉out out〈 f |g〉in out〈 f |g〉reg

Sphere 5.842862654438759 × 1015 −1.2349056843014804×10−2 5.842862654438761 × 1015

Sphere, shifted in x 5.842858857885211 × 1015 5.8384755088009945×10−3 5.842858857885217 × 1015

Sphere, shifted in y 5.842858857885208 × 1015 5.734217017572405×10−3 5.842858857885215 × 1015

Sphere, shifted in z 5.842862654438791 × 1015 13.899064370402524 5.842862654438798 × 1015

Cube 5.835536831748690 × 1015 1.9192729636550432 5.835536831748691 × 1015

show that the results are identical, up to the same levels of nu-
merical noise, when the lengths that determine the integration
surfaces of the cube and the centered sphere are increased ten
times, or decreased 20 times. In the latter case, the integration
surfaces are very close to the 200 nm spherical volume in the
center of Fig. 2.

We now numerically confirm other useful results. Namely,
that the incoming and outgoing field types are orthogonal, and
that, as a consequence, the value of the scalar product between
a given outgoing field with the regular and outgoing versions
of another given field are equal out〈 f |g〉reg = out〈 f |g〉out. We
will use the previously defined | f 〉out in Eq. (22), and the
regular, incoming, and outgoing versions of the following field
|g〉reg/in/out ≡ {Greg/in/out

+ (r, t ), Greg/in/out
− (r, t )}:

Greg/in/out
+ (r, t ) = A

√
ε0

∫ ∞

>0
d|k| |k|

× exp

(
− (|k| − k3)2

22

)
Sreg/in/out

331 (|k|, r, t ),

Greg/in/out
− (r, t ) = 0, (23)

with central wavelength 2π
k3

= 600 nm.
Table II contains the numerical results which again show

an excellent agreement with the expectations. We similarly
verified that in〈 f |g〉reg = in〈 f |g〉in.

IV. PRACTICAL CONSIDERATIONS

In time-domain simulations such as FDTD, the complex-
valued electric and magnetic fields are often available as time
and spatially dependent vector functions. This is the case in
MEEP [35], for example. If only real-valued fields are avail-
able, their complex versions can be obtained by combining
the results of two separate simulations. Here, we shall write
the incident field as a product between a time-harmonic carrier
field and an envelope whose Fourier transform expresses the
launched spectrum. Then, the complex field can be obtained
by running the simulations twice and ensuring that the carrier
fields oscillate with a π/2 phase offset with respect to each
other in these two simulations. Practically speaking, once a
cosine dependency is chosen and once a sine dependency.
Then, summing the fields resulting from the cosine simula-
tion with i times the fields resulting from the sine simulation
produces the desired complex fields. The Fλ(r, t ) can then be
obtained from Eq. (1), and the Fλ(y, |k|) fields on the surface
∂D can be obtained by inverting Eq. (12):

Fλ(y, |k|) =
∫ ∞

−∞

dt√
2π

Fλ(y, t ) exp (ic0|k|t ), (24)

where the integration limits will be finite in practice because
the fields on the surface will only be nonzero during a bounded
period of time. Similarly, the limits in the d|k| integrals in
Eqs. (19) to (21), from >0 to ∞, will, in practice, be reduced
to the finite bandwidth of the simulated fields. The formalism
in Sec. II is then directly applicable to numerical techniques
such as FDTD, where the fields have a nonzero bandwith.
However, numerical simulations that consider a single fre-
quency of the field, such as FEM, are also commonly used.
In the later case, the formalism in Sec. II can be used and
interpreted as follows. In Eqs. (17) and (19) to (21), we may
move the

∫
d|k| to the left, up to immediately after the equal

sign. Then, the integrand under the
∫

d|k| can be interpreted
as the density of the corresponding quantity per wave number.
The value of such densities at a discrete frequency is what
can be obtained from a monochromatic simulation, where the
Fλ(y, |k|) are easily accessible.

The formulas in Eqs. (19) to (21) apply, in particular, to
radiation from emitters such as molecules, quantum dots, or
artificial metaatoms excited by an external illumination, em-
bedded in photonic systems. In such a case, the value of the
fields on a surface enclosing the emitter and the surrounding
structures of interest are readily available in simulations (see
Fig. 1). The case of radiation from antennas fed by electric
currents is treated similarly, and ∂D can be conveniently cho-
sen as the surface of the volume that defines the antenna,
which must already be defined in the simulation domain.
The quantities obtained with the formulas can be of interest
by themselves, and also constitute a necessary step for fur-
ther theoretical treatments. For example, when dealing with
quantum-optical systems, the field from an emitter may need
to be normalized in amplitude so that it contains exactly a
single photon. Such field normalization is an initial step, e.g.,
in the Jaynes-Cummings formalism to study strong coupling
in nanophotonic systems [20], or in other modal approaches
[19]. In current approaches, the value of an integral over
the entire infinitely extended space involving the field pro-
file identified as a mode needs to be known. This value is
frequently approximated by integrating across a finite volume
while changing its size, and extrapolating the result of the inte-
gral to the infinite volume. However, this is notoriously prone
to errors, especially for systems with large radiative losses
such as plasmonic antennas. With our approach, the required
normalization can be readily performed using the result of
Eq. (19). Similarly, the energy radiated by a given modal field,
which is part of the definition of the mode volume, is equal
to the surface integral in Eq. (20), which avoids considering
another integral in an infinitely large volume.

When the illumination source is outside the computation
domain, we speak of a scattering scenario, where a scattered

043506-7



VAVILIN, ROCKSTUHL, AND FERNANDEZ-CORBATON PHYSICAL REVIEW A 109, 043506 (2024)

outgoing field is produced by the interaction of the specified
illumination with the object under study. Quantization of light
in scattering scenarios is also of interest [36,37]. Formulas in
Eqs. (19) to (21) are directly applicable to the scattered field,
which is available in simulations as the total field outside the
object minus the illumination.

Scattering scenarios are also amenable to the study of the
transfer of fundamental quantities between light and matter.
The amount of fundamental quantities such as energy is typ-
ically different in the incoming and outgoing fields, and the
difference can potentially be transferred onto the object. The
change of any quantity represented by a self-adjoint operator
� can be readily be written as

� = in〈 f |�| f 〉in − out〈g|�|g〉out, (25)

where | f 〉in is the incoming field and |g〉in the outgoing field,
which, with the aid of the scattering operator S and transfer
operator T , or T matrix, can be written as5

|g〉out = S| f 〉in = (I + T )| f 〉in = | f 〉out + T | f 〉in

= | f 〉out + |h〉out, (26)

where |h〉out = T | f 〉in is the scattered field. Substitution of the
last line of Eq. (26) in Eq. (25) results in

� = in〈 f |�| f 〉in − [out〈 f |�| f 〉out + 2R{out〈 f |�|h〉out}
+ out〈h|�|h〉out]

= −2R{out〈 f |�|h〉out} − out〈h|�|h〉out, (27)

5The difference with the typical convention S = I + 2T is due to
the conventions in [16], which are more appropriate for the poly-
chromatic case. See also Appendix A.

where one uses that � is self-adjoint, and that in〈 f |�| f 〉in =
out〈 f |�| f 〉out, as deduced from Ref. [16, Sec. 2.3.2]. When �

represents the identity, the energy, or the helicity operators, the
last line of Eq. (27) could potentially be computed with Eqs.
(19) to (21) because it only involves outgoing fields. There
is, however, an obstacle. While the value of the scattered
field |h〉out on a surface is explicitly available from numer-
ical simulations in bounded domains, the outgoing version
of the illumination | f 〉out is typically not. The illumination
is specified as a regular field, often called the incident field,
without singularities inside the computational domain. This is
in sharp contrast to the case of emitters within the simulation
domain which, when modeled as point-like emitters, do con-
tain singularities that are numerically avoided by excluding a
small volume around such points. The obstacle is overcome
by the fact that the surface integral in Eq. (17) between an
outgoing field and a regular field is equal to the scalar product
between the outgoing field and the outgoing part of the regular
field. Such a result has been numerically verified in Sec. III.
Therefore, the explicitly available regular incident field can be
used to compute out〈 f |�|h〉out as

out〈 f |�|h〉out = reg〈 f |�|h〉out. (28)

For example, when � is the identity we have that

out〈 f |h〉out =
∑
λ=±1

−iλ
∫ ∞

>0

d|k|
h̄c0|k|

∫
y∈∂D

dS(y)·

× [
Freg

λ (y, |k|)∗ × Hout
λ (y, |k|)], (29)

where the Freg
λ (y, |k|) are the regular incident fields. Continu-

ing with the example of the number of photons, we can then
use Eqs. (28) and (29) to write

in〈 f | f 〉in − out〈g|g〉out = 2R

⎧⎨
⎩

∑
λ=±1

iλ
∫ ∞

>0

d|k|
h̄c0|k|

∫
y∈∂D

dS(y) · [
Freg

λ (y, |k|)∗ × Hout
λ (y, |k|)]

⎫⎬
⎭

+
⎧⎨
⎩

∑
λ=±1

iλ
∫ ∞

>0

d|k|
h̄c0|k|

∫
y∈∂D

dS(y) · [Hout
λ (y, |k|)∗ × Hout

λ (y, |k|)]
⎫⎬
⎭. (30)

The formulas for the helicity and the energy changes are similarly obtained, and read

in〈 f |�| f 〉in − out〈g|�|g〉out = 2R

⎧⎨
⎩

∑
λ=±1

i
∫ ∞

>0

d|k|
c0|k|

∫
y∈∂D

dS(y) · [Freg
λ (y, |k|)∗ × Hout

λ (y, |k|)]
⎫⎬
⎭

+
⎧⎨
⎩

∑
λ=±1

i
∫ ∞

>0

d|k|
c0|k|

∫
y∈∂D

dS(y) · [
Hout

λ (y, |k|)∗ × Hout
λ (y, |k|)]

⎫⎬
⎭, (31)

and

in〈 f |H| f 〉in − out〈g|H|g〉out = 2R

⎧⎨
⎩

∑
λ=±1

iλ
∫ ∞

>0
d|k|

∫
y∈∂D

dS(y) · [Freg
λ (y, |k|)∗ × Hout

λ (y, |k|)]
⎫⎬
⎭

+
⎧⎨
⎩

∑
λ=±1

iλ
∫ ∞

>0
d|k|

∫
y∈∂D

dS(y) · [
Hout

λ (y, |k|)∗ × Hout
λ (y, |k|)]

⎫⎬
⎭, (32)

respectively.
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V. CONCLUSION

This work uses the abstract formalism of the electromag-
netic Hilbert space to augment the capabilities of numerical
solvers of Maxwell equations in spatially bounded domains.
A new expression of the electromagnetic scalar product that
involves only the fields on a closed spatial boundary allows the
computation of the number of photons, helicity, and energy
of incoming or outgoing radiation fields with general time
dependence. We expect the new expressions to be useful for
classical and quantum computations in nanophotonics. For
example, the calculation of the number of photons in numer-
ically obtained fields allows one to rescale such fields so that
they contain a single photon. In another example, the total
number of photons and the helicity of the field radiated by
an emitter nearby a (chiral) nanostructure can be readily used
to quantify luminescence enhancement, in particular, chiral
luminescence enhancement.

The computer source codes used to produce the numerical
results can be downloaded from Ref. [23].
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APPENDIX A: CONVENTIONS

This Appendix contains the conventions for field expan-
sions that we use in this article. They are taken from Ref. [16].

The electric field is expanded into plane waves of well-
defined helicity |k λ〉 as

E(r, t ) =
∑
λ=±1

∫
d3k
|k| fλ(k) |k λ〉, (A1)

and the plane waves are defined as

|k λ〉 ≡
√

c0 h̄

ε0

1√
2

1√
(2π )3

|k| êλ(k̂)

× exp(−i|k|c0t ) exp(ik · r). (A2)

We highlight the factor of |k| in the definition of the plane
waves, which ensures that they transform unitarily under
Lorentz transformations, and the factor of 1/|k| in Eq. (A1),
which makes the volume measure d3k

|k| invariant under trans-
formations in the Poincaré group.

The expansion in multipoles of well-defined helicity reads

E(r, t )reg/in/out ≡
∫ ∞

0
d|k| |k|

∑
λ=±1

∞∑
j=1

j∑
m=− j

f jmλ(|k|) ||k| jmλ〉reg/in/out, (A3)

and the regular, incoming, and outgoing multipoles ||k| jmλ〉reg/in/out are defined as

||k| jmλ〉reg ≡ Sreg
jmλ(|k|, r, t ) = −

√
c0 h̄

ε0

1√
2π

|k| i j × (
exp(−i|k|c0t ) Nreg

jm (|k||r|, r̂) + λ exp(−i|k|c0t ) Mreg
jm (|k||r|, r̂)

)
,

||k| jmλ〉in/out ≡ Sin/out
jmλ (|k|, r, t )= − 1

2

√
c0 h̄

ε0

1√
2π

|k| i j × (
exp(−i|k|c0t ) Nin/out

jm (|k||r|, r̂) + λ exp(−i|k|c0t ) Min/out
jm (|k||r|, r̂)

)
,

(A4)

where the M and N have the usual definitions (see, e.g.,
Ref. [16, Eqs. (50) and (51)]). We note the extra factor of
1/2 in the definition of the incoming and outgoing mul-
tipoles, with respect to the regular multipoles. With this
convention, the decomposition of a regular field into its in-
coming and outgoing components holds in the following way:
| f 〉reg = | f 〉in + | f 〉out. The typical relation between the T
matrix and the S matrix changes then from S = I + 2T to
S = I + T .

APPENDIX B: DETAILED STEPS

We now write the detailed steps leading from Eqs. (16) to
(17). In Ref. [30], it was shown that, given two monochro-
matic electric fields A(y, |k|) and B(y, |k|), both meeting
the outgoing radiation conditions at infinity, the following

holds:

− 2i|k| lim
|r|→∞

∫
dr̂|r|2B(r, |k|)†A(r, |k|)

=
∫

y∈∂D
dS(y) · {[∇ × A(y, |k|)] × B(y, |k|)∗

−[∇ × B(y, |k|)]∗ × A(y, |k|)}, (B1)

which is Ref. [30, Eq. (21)] in slightly different notation,
except for a difference in sign, which is incorrect in Ref. [30].
The following equations in Ref. [30] are missing a multipli-
cation by −1 on their right-hand sides: Eqs. (21), (23), (24),
and (25). Equation (B1) states that an integral over the surface
of a sphere, when the radius tends to infinity, coincides with a
different integral over a general surface ∂D that encloses the
radiating matter. The surface should be piecewise smooth and
enclose a compact volume.
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To reach the form in Eq. (17) from Eq. (16), we first con-
sider that if A(r, |k|) and B(r, |k|) are fields of well-defined
but opposite circular polarization handedness, their far fields
are point-wise orthogonal6, and hence the left-hand side of
Eq. (B1) vanishes, and its right-hand side must consequently
be zero. This means that Eq. (B1) must hold separately for
each helicity, and we can write

− 2i|k| lim
|r|→∞

∫
dr̂|r|2Fλ(r, |k|)†Gλ(r, |k|)

=
∫

y∈∂D
dS(y) · {[∇ × Gλ(y, |k|)] × Fλ(y, |k|)∗

− [∇ × Fλ(y, |k|)]∗ × Gλ(y, |k|)}. (B2)

We now divide each side by |k| and use that ∇×
|k| is

the helicity operator for monochromatic fields, which im-
plies that ∇×

|k| Fλ(y, |k|) = λFλ(y, |k|), and ∇×
|k| Gλ(y, |k|) =

λGλ(y, |k|), we can then rewrite Eq. (B2) as

lim
|r|→∞

∫
dr̂|r|2Fλ(r, |k|)†Gλ(r, |k|)

= −iλ
∫

y∈∂D
dS(y) · [Fλ(y, |k|)∗ × Gλ(y, |k|)], (B3)

which is the substitution that takes us from the last line of
Eqs. (16) to (17).

APPENDIX C: REFERENCE VALUES FOR SCALAR
PRODUCTS

With the definitions in Eq. (A4), the | f 〉out in Eq. (22) can
be written as

| f 〉out = A
√

ε0

∫ ∞

0
d|k| |k|

[
exp

(
− (|k| − k1)2

22

)
||k| 331〉

+ exp

(
− (|k| − k2)2

22

)
||k| 2 − 2 − 1〉

]
. (C1)

Since multipoles are orthogonal unless their discrete jmλ

labels coincide, the scalar products computed with Eq. (6)
reduce to

out〈 f | f 〉out =
∑
λ=±1

∞∑
j=1

j∑
m=− j

∫ ∞

0
d|k| |k| | f jmλ(|k|)|2

= A2ε0

∫ ∞

0
d|k| |k|

[
exp

(
− (|k| − k1)2

2

)

+ exp

(
− (|k| − k2)2

2

)]
, (C2)

6At each point of the far field, A(r, |k|) and B(r, |k|) will be
essentially determined by a single plane wave with the same wave
vector but opposite polarization handedness, hence the point-wise
orthogonality.

for the number of of photons

out〈 f |�| f 〉out = h̄
∑
λ=±1

λ

∞∑
j=1

j∑
m=− j

∫ ∞

0
d|k| |k| | f jmλ(|k|)|2

= A2ε0h̄
∫ ∞

0
d|k| |k| | f jmλ(|k|)|2

×
[

exp

(
− (|k| − k1)2

2

)

− exp

(
− (|k| − k2)2

2

)]
, (C3)

for the helicity, and

out〈 f |H| f 〉out = h̄c0

∑
λ=±1

∞∑
j=1

j∑
m=− j

∫ ∞

0
d|k| |k|2 | f jmλ(|k|)|2

= A2ε0h̄c0

∫ ∞

0
d|k| |k|2

[
exp

(
− (|k| − k1)2

2

)

+ exp

(
− (|k| − k2)2

2

)]
(C4)

for the energy.

APPENDIX D: VANISHING OF THE SURFACE
INTEGRALS FOR REGULAR FIELDS

Let us try to use Eq. (17) to compute the scalar product
between two regular fields reg〈 f |g〉reg. The first problem is
that one cannot really choose an appropriate value of τ . If
we ignore this first difficulty and insist on using the surface
integrals with regular fields, we can use that a regular field is
the sum of its outgoing and incoming versions to obtain the
following integrands in Eq. (17):

[
Fout

λ (y, |k|) + Fin
λ (y, |k|)]∗ × [

Gout
λ (y, |k|) + Gin

λ (y, |k|)].
(D1)

For the final result, however, only the following terms con-
tribute:

Fout
λ (y, |k|)∗ × Gout

λ (y, |k|) + Fin
λ (y, |k|)∗ × Gin

λ (y, |k|),
(D2)

because, as argued in the paragraph containing Eq. (18), the
terms that feature the cross product between an incoming field
and an outgoing field will not contribute to the overall result.
Then, for any value of τ , the overall integral expression will
actually be proportional to

out〈 f |g〉out − in〈 f |g〉in, (D3)

which is equal to zero because out〈 f |g〉out = in〈 f |g〉in ([16,
Sec. 2.3.2]). The vanishing of the result has been verified
numerically.
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