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Proposal for observing nonclassicality in highly excited mechanical oscillators
by single photon detection
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The preparation of pure quantum states with high degrees of macroscopicity is a central goal of ongoing exper-
imental efforts to control quantum systems. We present a state preparation protocol which renders a mechanical
oscillator with an arbitrarily large coherent amplitude in a manifestly nonclassical state. The protocol relies on
coherent-state preparation followed by a projective measurement of a single Raman scattered photon, making
it particularly suitable for cavity optomechanics. The nonclassicality of the state is reflected by sub-Poissonian
phonon statistics, which can be accessed by measuring the statistics of subsequently emitted Raman sideband
photons. The proposed protocol would facilitate the observation of nonclassicality of a mechanical oscillator that
moves macroscopically relative to motion at the single-phonon level.
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I. INTRODUCTION

In the past few decades, experimentalists have made
tremendous progress moving the boundary of quantum the-
ory’s known validity to larger scales. This is motivated by
fundamental questions related to, e.g., unknown decoherence
mechanisms [1] and quantum gravity [2,3], but also by the
prospect of new technologies taking advantage of quantum ef-
fects. The degree of macroscopicity of a quantum system can
refer to physical characteristics such as mass or volume. How-
ever, given a particular system, it can also be meaningful to
quantify how macroscopic its quantum state is or how macro-
scopically distinct the components of a quantum superposition
is [4]. While precisely defining macroscopic quantumness is
far from trivial, several attempts have been made [5].

Recent experiments in quantum optics have reported the
observation of micro-macro [6,7] and macro-macro [8,9]
entanglement of light, exploiting coherent displacement oper-
ations, and heralded creation of single quanta (photons). The
macroscopicity refers in this case to the fact that, for a bosonic
mode, a coherent state |8) = D(B)|0) and the displaced first
excited state |8, 1) = D(B)|1), where D(f) is the displace-
ment operator and |B| is the coherent amplitude in units of
zero point fluctuations, can be distinguished by a course-
grained measurement, i.e., a measurement with macroscale
resolution [10]. This is possible since, even though the average
Fock state occupation number of the states |8) and |8, 1) only
differ by 1, their number distributions differ significantly over
a number range that scales with the amplitude |8| [11].

Beyond purely optical systems, observing nonclassicality
in large-scale mechanical oscillators is also actively being pur-
sued. In cavity optomechanical systems [12], coherent driving
of optical or microwave resonators can force mechanical os-
cillators into pure Gaussian states, such as the ground state
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[13,14], the squeezed vacuum state [15—17], and the coherent
state [18]. Heralded single quanta (phonons) [19-21] have
also been realized in such systems by exploiting single-photon
detection on the mechanically induced Raman sidebands
of coherent optical drives, a technique demonstrated with
phonons in diamond [21,22], vibrational breathing modes in
silicon nanobeams [19,20,23,24], flexural modes of silicon
nitride membranes [25], elastic whispering-gallery waves in
barium fluoride microresonators [26,27], and standing density
waves in superfluid helium [28]. While heralded preparation
of a single phonon relies on initializing the oscillator in the
ground state, other state preparation proposals along these
lines assume an initial squeezed [29-31], coherent [32], or
general Gaussian [33] mechanical state. Given the increased
availability of both pure Gaussian state preparation and sin-
gle phonon operations, it is worth investigating how ideas
on macroscopicity from quantum optics could be applied to
mechanical systems.

The proposal presented here is based on initializing the
mechanical oscillator in a coherent state and subsequently
realizing a superposition of phonon-addition and phonon-
subtraction processes via detection of a single sideband
photon, as discussed in Refs. [33,34] and below. When start-
ing from a coherent state |8), such a photon detection event
projects the mechanical oscillator into a superposition |¢r) o
(kgb + kgb")|B), where b is the phonon annihilation opera-
tor and kg and kg are complex coefficients. Some properties
of this type of state have been explored in Refs. [35-37].
The case kg = 0, leading to a phonon-added coherent state
b'|B), was discussed in the context of cavity optomechan-
ics in Ref. [32], where it was pointed out that nonclassical
features, e.g., sub-Poissonian phonon statistics, vanish in the
limit |8| — oo.

Naively, one would also think that the state |[¢) more
generally is not of particular interest in the high-displacement
limit |8] — oo, since the single-phonon operations should
only result in microscopic deviations from a coherent state.
However, this is not necessarily true. To see this, we define
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r = B* 4 Bkg/kp and write

1
V) = ——=(1B) +IB. 1)), (D
1+ |r?

which is a superposition of a coherent state and a displaced
single-phonon Fock state. By choosing the complex coef-
ficients kg, kg appropriately, the state produced can be a
displaced number state (if » = 0) or a comparably weighted
superposition of macroscopically distinct states (if || ~ 1).
The displaced number state is manifestly nonclassical in the
sense that its Wigner distribution has a region of negativ-
ity which in principle can be verified by full quantum state
tomography [24,26]. Another, more accessible, signature of
nonclassicality is negativity of the Mandel Q parameter, which
reflects sub-Poissonian phonon statistics. This can be mea-
sured in the proposed setup, as described below. We will show
that, for particular nonzero r, the Mandel Q parameter of
the superposition (1) can be negative, also in the limit where
the coherent amplitude |8| — oo. In this sense, the proposed
protocol prepares a macroscopically moving mechanical os-
cillator in a manifestly nonclassical state. While motion is
a relative concept, here it refers to the laboratory frame or
any other inertial frame. We also investigate how robust the
observable nonclassicality is in the more realistic case where
the initial state is not exactly the ideal coherent state but has
some residual thermal fluctuations.

While we focus on cavity optomechanics below, we
note that the proposed protocol can apply to other de-
grees of freedom that cause Raman scattering of light,
e.g., magnons [38,39].

II. NONCLASSICALITY IN THE HIGH-
DISPLACEMENT LIMIT

The Mandel Q parameter [40] is defined as
(An?)
(n)

where n = b'b is the number operator and (An?) = ((n —
(n))?) is the number variance. The Q parameter is the frac-
tional deviation of the number variance from the Poisson
variance (n) and thus related to the Fano factor F by Q =
F — 1. In aclassical description, n represents the square of the
oscillator’s amplitude, which necessarily gives Q > 0. Sub-
Poissonian statistics (Q < 0) is thus a clear signature of the
nonclassical nature of the oscillator.
For a bosonic mode in the superposition (1), we find that

1 — |r|? cos(2¢)
(1 +|r[?)?

in the high-displacement limit, when defining arg(8r) = ¢. In

this limit, Q is minimized by the phase relation cos(2¢) = 1,

with a minimal value of Qni, = —1/4 at |r| = V3. Con-

versely, Q is maximized by r = 0, i.e., when [¢) = |8, 1) and
(An?)/(n) = 3 [11], taking the value Qpax = 2.

Q:

-1 2)

lim Q=2

[Bl—>00

3)

III. MODEL

We consider a standard optomechanical setup consisting
of an optical cavity mode with (angular) resonance frequency

Qr ﬁ Qp
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AP Ni% Filter
Hanbury Brown &
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FIG. 1. Diagram of the Raman scattering processes in the sys-
tem, where A, =0 and frequencies are relative to the cavity
resonance frequency. Anti-Stokes photons from the red (2g) drive
and Stokes photons from the blue (25) drive pass through a filter
with bandwidth W < w,,. The backaction from detecting a sideband
photon is ambiguous, i.e., it produces a superposition of a phonon-
added and a phonon-subtracted mechanical state.

wopt coupled to a mechanical oscillator mode with resonance
frequency w,, via the radiation pressure interaction. As shown
in Fig. 1, the cavity mode is coherently driven by two lasers
whose frequencies are, respectively, blue and red detuned
by w,, from their average frequency way = wept + A, Where
ideally A, = 0. We note that the proposed protocol is not very
sensitive to nonzero |A.| < « and that the frequency spacing
between the two drives can be controlled with great accuracy
when the two tones originate from the same laser. In frames
rotating at w,y, for the cavity mode and w,, for the mechanical
mode, the system is described by the Hamiltonian

H(l) = — ﬁAca*a+hgoafa(e—iwmtb_i_eiwmtb—r)

ik Y [a"Qit)e " —aQi)e "], (@)
J=IRB)

where g is the single-photon optomechanical coupling rate,
wg/B = Fw,, are the drive frequencies in the rotating frame,
and Qg/p(t) are the corresponding drive amplitudes propor-
tional to the square root of the power of the respective laser
drives. The operators a, a' and b, b' are the photon and
phonon ladder operators of the cavity and oscillator modes,
respectively.

We allow the drive amplitudes €2; to be time dependent, as
the protocol presented below relies on the application of laser
pulses similarly as in previous relevant experiments [19,20].
However, we emphasize that the experiment we propose can
also be adjusted to continuous-wave operation. We present
details of such a steady-state scheme in Appendix C, which
is relevant to experiments where optical absorption is not a
concern, such as with dielectric membranes [25] or superfluid
helium [18,28].

The system’s coupling to the environment leads to dis-
sipation and we denote the energy damping rates of the
optical and mechanical modes by « and y, respectively, where
typically y <« x. We also assume that the drive frequencies
obey |A.| <« «, which means that the “innermost” sidebands,
i.e., the upconverted (or anti-Stokes) mechanical sideband
from the red detuned laser drive and the downconverted (or
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Stokes) sideband from the blue detuned drive depicted in
Fig. 1, both fall well within the cavity linewidth. Dissipation is
associated with vacuum noise from the electromagnetic envi-
ronment, assuming a temperature 7' such that fiwey > kgT,
and vacuum and thermal noise from the mechanical envi-
ronment with associated thermal occupation number ng =
1/[exp(hw,,/kgT ) — 1] in the Markovian approximation [12].

We assume that light emitted from the cavity is sent
through a frequency filter with bandwidth W centered around
the cavity resonance frequency wqp, where the bandwidth
satisfies |A.| <« W <« w,,. This ensures that the frequency
filter lets the two innermost mechanical sidebands through,
but rejects light at the carrier frequencies of the blue and red
detuned drives as well as the “outermost” sidebands [i.e., the
downconverted (upconverted) sideband from the red (blue)
detuned drive]. The filtered light eventually reaches single
photon detectors in a Hanbury Brown and Twiss interfer-
ometer, as indicated in Fig. 1 and implemented in several
experimental platforms [19,20,23-28].

IV. STATE PREPARATION
BY PROJECTIVE MEASUREMENT

Let us now consider that the optomechanical system at a
time ¢ = 0 is in the initial state p(0) = |0){(0| ® p,,, Where
|0) is the vacuum of the cavity mode and where p,, is the
initial reduced density matrix of the mechanical mode, which
is ideally the coherent state |8)(B|. This can for example
come about from optical driving with an intensity beat note
at the mechanical frequency combined with sideband cooling
[18,32,41]. For details, see Appendix B.

Starting att = 0, we assume that both red and blue detuned
drive pulses are applied for a time t,, and we consider flattop
pulses for simplicity. The cavity field is then displaced ac-
cording to a(t) — age "% + age~"*' + a(t), where ag/p =
Qp/p/lc/2 — i(A: F wy)] and a(t) now describes the cav-
ity field beyond the coherent tones. We ignore the transient
buildup of the cavity field amplitudes a@; on the time scale
1/k < 1, as the mechanical oscillator’s evolution is approx-
imately free over such short times. We apply the standard
linearization procedure of only retaining terms of first or-
der in a(¢) in the optomechanical interaction Hamiltonian
[12]. Linearization is a good approximation in the experimen-
tally relevant regime « /go > max(1, /(b'h)), i.e., when the
frequency modulation due to the motion of the mechanical
oscillator is small compared to the cavity linewidth.

For short pulse times 7, < 1/[y (ny + 1)], we can neglect
the mechanical mode’s interaction with its intrinsic bath and
its dc response to a shift in the average radiation pressure
force. We also assume that the system is in the resolved
sideband regime « < w,, which allows the neglect of off-
resonant scattering to the outermost sidebands relative to
resonant scattering to the innermost sidebands. The equa-
tions of motion during the pulse can then be approximated by

a = —5a— i(Grb+ Gib') + v/cain, )
b= —i(Gia + Gpa"), (©)

where Gg/p = godr/p and a;, is the quantum vacuum noise
entering the cavity from the electromagnetic environment.

We define the phases of the drive amplitudes such that
Im (GrGg) = 0, without loss of generality. Using standard
input-output theory [42], we define the total output operator
as dou = +/kKa — a;,. For a narrow bandwidth signal, aoy is
proportional to the positive frequency part of the electric field
emitted from the cavity.

In the following, we consider the limit |Gg/p| < k, mean-
ing that the cavity field adiabatically follows the mechanical
oscillator dynamics. We define the femporal input and output
modes [43]

+2G, fu
Ainjout = m/o dt eingain/out(t)v @)

with G, = (yg — y8)/2 and y;, = 4|G;|*/k, which obey
[A;, AiT] = 1 and are well defined also for G,, — 0. In terms
of these modes, the system’s time evolution during the pulse
can, in the adiabatic limit, be expressed as Aoy = U TALU,
b(t,) = UTh(0)U, where the evolution operator is

U = exp{—ilA] [keb(0) + kzb'(0)] + H.e.]}  (8)

and we define the coefficients kg and kp by kg/kp = Gr/Gp
and cos(+/|kg|? — |kg|?) = e~9»™. Note that this is well de-
fined for both signs of G,,. This means that, in the Schrodinger
picture, the state of the system at the end of the pulse
is p(t,) =UpO)UT = Yl ® oS0 For short pulses
such that y;7,, < 1, the probability of detecting more than one
photon at the cavity resonance frequency becomes negligible.
In this limit, where |k;| ~ ,/yiT,, we find that, conditioned on
a single photon detection event, the mechanical state p,, . =
pS-D at the end of the pulse is

__Pp, P’
© Tr[PTPp,]’

with P = kgb + kgb'. If the initial state is a coherent state,
i.e., pn = |B)(B|, the conditional state (9) becomes p,, =
|¥) (¥ |, which is the pure state defined by Eq. (1).

Defining A = |Gg/Gg|land 6 = arg(GRGz,Bz), we can now
write |7]? = |B2[(1 — 1)* +2A(1 + cos0)], where r is the
coefficient in Eq. (1). This shows that, to realize |r| ~ 1 (or
|r| = 0) for a large initial amplitude |B|, we must tune the
drive amplitudes such that their strength ratio A is close to
unity and their phases (relative to the phase of the coher-
ent state) satisfy 6 =~ . More specifically, for cos(2¢) = 1
[where ¢ = arg(Br) as before] or |r| = 0, we need to tune
) to the optimal value A = 1 & |r|/|B] and @ to the optimal
6 = m. Physically, these conditions reflect that the coherent
contributions to the two innermost sidebands must interfere
destructively (for |r| = 0) or almost destructively (for |r| ~ 1)
at the detectors in order for the quantum backaction from the
single-photon detection event to have a large impact on the
mechanical state. We note that the phase matching require-
ment can most easily be met if the initial coherent state is also
produced optically by the application of an intensity beat note.
Assuming two beams of equal amplitude, a small deviation of
A from unity can simply be implemented by slightly detun-
ing both beams by a frequency ~=[«?/(4w,,) + wn]/171/1B]
from the mechanical sidebands, as long as the beams are
locked more accurately than this to variations in the cavity
resonance frequency.

Pm.c ©)
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FIG. 2. Mandel Q parameter (11) for the conditional state (9)
when the initial state p,, is a displaced, thermal state, in the high
displacement limit || > 1, as a function of |r| and the initial aver-
age phonon number #,,. We have assumed the ideal phase relation
cos(2¢) = 1. The dotted line separates the regions of positive and
negative Q.

An alternative method of preparing the state (1) is by
displacing the superposition (r|0) + |1)) of number states by
the application of a coherently oscillating mechanical force
with negligible noise on a time scale much faster than the
oscillator’s decoherence time. However, for r # 0, this sim-
ply corresponds to a different order of the operations in the
proposed protocol which is more sensitive to decoherence. It
is also possible to prepare the state by replacing the phonon
annihilation term b|8) by an identity operation, i.e., |)
(ul + b%)|B) with w = r — B*, which in principle can be
implemented by adding a weak coherent tone at the cavity
resonance frequency to the signal reaching the photodetectors
[33]. This also has no obvious advantage, as it would require
the same level of control over the relative power and the
phases of pulses at different frequencies.

In a realistic experimental setting, the initial state will
not be the ideal coherent state, but more likely a displaced,
thermal state p,, = D(B)pnD’(B), where

o0

P = Z(; #mw (10)

is a thermal state with average phonon occupation number #,,.
Given this initial state, we denote the Mandel Q parameter
of the mechanical mode in the conditional state (9) by Qs .,
whose general expression can be found in Appendix A. Here,
we are interested in the high-displacement limit

1 + 2n,, — |r]? cos(2¢)
(14 2n, + |7]?)?

This shows that Oy . is minimized by choosing parameters
such that cos(2¢) = 1 and |r| = +/3(1 + 2n,,), in which case
we find that O, . < 0 requires the initial thermal occupation
n, < 0.10. Figure 2 shows the high-displacement value of
Op.c in Eq. (11) as a function of |r| and n,,, given the ideal
phase relation cos(2¢) = 1. We see that Q) . can be negative

lim Qp. =2

|Bl—o00

+nm>. (11)

also for nonideal values of ||, but then with stricter limits on
the maximal thermal occupation #n,,. While the proposed pro-
tocol has a very low tolerance for thermal noise, we note that
this type of experiment on high-frequency silicon nanobeams
in a cryogenic environment has reported n,, < 0.025 [19],
albeit in the absence of coherent oscillations.

Experimental inaccuracies in the amplitude ratio or the
relative phase of the two drives, i.e., in A and 6, will lead to
deviations from the optimal choices of |r| and ¢ that minimize
QOp.c. To second order in AA =i — A and A9 =6 — 6, we
find that the Mandel Q parameter deviates from its minimal
value according to

1B 32 2
AQp. = 20+ 20, <4Ak + A6 > (12)
again, in the limit |8| — oo. The observation of sub-
Poissonian statistics thus requires that the amplitudes and
phases of the two beams can be controlled such that
AX, AG < 1/|B]|, becoming increasingly demanding for in-
creasing | 8|. However, implementation of the protocol with an
initial average phonon number of |8]> = 100 (as an example)
would only require control of relative amplitude and phase (in
radians) at the percent level. This seems well within present
capabilities if the two beams originate from the same laser by
acousto- or electro-optic modulation.

V. CHARACTERIZATION OF THE CONDITIONAL STATE

The phonon statistics of the conditional state (9) can be
accessed by applying another pulse, this time red detuned
only, starting at time #, and with duration 7,, and detecting
anti-Stokes photons upconverted to the cavity resonance fre-
quency [19,20,32]. According to the above discussion, the
corresponding temporal input and output modes will then be
related by

Aot = € 9T Ay — i/ 1 — 7297 b(1,), (13)

with G, = 2|Gg|?/k. This shows that the number statistics
of resonant sideband photons generated by the pulse relate
to the phonon statistics, since the input vacuum noise A;, to
the cavity does not contribute to normal ordered correlation
functions of Aqy. If the photodetector dead times exceed the
pulse duration, as in Refs. [19,20], the pulse will give rise to
eithern = 0, 1, or 2 detection events with respective probabili-
ties p, (nontrivially) related to the phonon number probability
distribution. In the limit (1 — ¢ 29%) « 1, where 7 is the
fraction of cavity sideband photons that are detected when
accounting for other cavity decay channels, transmission loss,
and nonunit detector efficiency, we then have the simplified
relation n(1 — e 29°%)Q), ~ 4p,/p; — pi when assuming a
50:50 beam splitter in the Hanbury Brown and Twiss interfer-
ometer. This relation holds more generally for t, — i, when
pn is the probability of n events within a chosen bin time tyy,,
as long as the probability of a photodetection event within Ty,
is small.

VI. CONCLUDING REMARKS

We have presented a protocol for preparing a mechani-
cal oscillator with macroscopically large coherent amplitude,
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compared to motion at the single-phonon level, in a mani-
festly nonclassical state. The protocol based on laser pulses
is, for instance, relevant to optomechanical systems involving
vibrational modes in silicon nanobeams with high frequen-
cies (wy/2m ~ 5 GHz) and low thermal occupation (n,, <
1), where detection of single Raman sideband photons has
already been used as a tool for observing nonclassicality
[19,20], provided that the vibrational mode can be initialized
close to a coherent state.

The proposed experiment can, however, also be performed
with steady-state laser driving in systems where optical ab-
sorption is not a concern. As an example, we consider
fiber cavity optomechanics with acoustic waves in superfluid
helium [18,28]. A displaced, thermal state with amplitude
|B] =~ 100 and thermal occupation n, ~ 1 was recently re-
ported in this system [18] and sideband cooling to smaller
n, is expected in future implementations [18]. With a me-
chanical resonance frequency w, /2w ~ 300 MHz, a cavity
linewidth « ~ 50 MHz, and a filter bandwidth W ~ 1 MHz,
it should be feasible to separately detect the sideband pho-
tons used for state preparation and those used for readout.
As shown in Appendix C, by applying five continuous drive
tones simultaneously, the system can, on average, reside in
a steady, displaced, thermal state, while the phonon statistics
conditioned on the desired projective measurement is simul-
taneously collected.

Finally, we note that the central idea of the protocol
can also be exploited in order to prepare micro-macro and
macro-macro entanglement of mechanical oscillators, follow-
ing ideas from quantum optics [9].
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APPENDIX A: GENERAL EXPRESSION
FOR THE MANDEL Q0 PARAMETER

Here we provide a full expression for the Mandel Q pa-
rameter for the projected state (9) in the main article, with r,
nm, and B dependence. Using b = B + b,, we can express it
in terms of noise correlators as

1
T 1B+ (bibu)e + 2Rep* (by)e
X (21812 (bby)e + 2Ref* (byb,),
+ 4Ref* (B buby)c + (DLl bubn)c
— (bl bu)e + 2Ref* (by)e)?). (A1)

Qb,c

The conditioned expectation values

((kgh' + kyh)Olkeb + kb))
((kib" + kyb)(kgb + kb))

(0)e = (A2)

can be expressed in terms of thermal noise correlators
(bj;bn) = n,,. Using that kg = kg(r — B*)/B we can write
them as

3Dn, + |BIP11 + 20 (1 = [r[*)]

(bl bl buby)e = 2n

D

(A3a)

(b buby)e = 2n B — B) + r*1BP(1 + 1)

n¥nPnlc m 5 ’
(A3b)

2 2
bibyye = 2mt 1Al [1; (= 1]
(buby). = 2Lt an)ﬂ(r* £, (A3d)
* * 2

by, = P ﬁ)zr BEA+m)

where

D = |B1*(1 + |r1?) + [21B1> + |r* = 2Ir]|B] cos(@)In.
(Ad)

In Fig. 3, Oy, is plotted as a function of r and n, for
|B] € {5, 10, 20}.

APPENDIX B: OPTOMECHANICAL COHERENT-
STATE PREPARATION

As shown in the main article, negativity of the Mandel
QO parameter in the high-displacement limit requires that the
mechanical oscillator is initially in a displaced thermal state
with a low thermal occupation number n,, < 0.10. Preparing
a mechanical oscillator in a near-coherent state is possible
by leveraging built-in optomechanical effects in the regime
y < k. This motivates a steady-state solution of a linearized,
adiabatically coupled optomechanical system driven by sev-
eral drives of arbitrary frequencies.

1. Steady-state solution of the linearized
quantum Langevin equations

We consider a standard optomechanical setup consisting of
an optical cavity mode with resonant frequency wop coupled
to a mechanical oscillator mode with resonant frequency w,,
via the radiation pressure coupling go. The system is driven by
some arbitrary number of coherent lasers {€2;}. In the frame
corotating with the cavity resonance frequency this system is
described by the Hamiltonian

H = hw,b'b+ hgoa'a(b + b")
+ihy a'Qje”" + He., (B1)

J

where {w;} are the frequencies of the drive lasers relative
to the cavity resonance and a,a’ and b, b’ are the ladder
operators of the optical and mechanical modes, respectively.
Including coupling to optical and mechanical thermal baths,
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it obeys open system dynamics governed by the quantum
Langevin equations

a= —ga —igoa(b+b") + Z Qje " + Jiain, (B2a)

J

b= —(% + iwm)b —igoa"a + /7 bu. (B2b)
k and y are the optical and mechanical damping rates and
ain(t) and by, (¢) are the usual bosonic input noise operators
for the cavity and mechanical oscillator, satisfying

(an()al (1)) = 8(t — 1), (B3)
(bin(t)b]. (1)) = (nn + 1)8(t — 1), (B4)
(@in()ain(t)) = (bin(t)bin(t)) =0, (BS)

and [ain(1), a} (t')] = [bin(1), bl (t')]1 = 8(t —t'). The bare
thermal occupation number ny, = 1/[exp(fiw,,/kgT) — 1] is
the average number of phonons of the mechanical oscil-
lator when in thermal equilibrium with its environment
at temperature 7, not to be confused with the effective
thermal occupation number n,. The optical cavity’s ther-
mal occupation number is taken to be zero, as we assume
ha)op[ > kBT

The usual linearization procedure is applied by splitting the
ladder operators into coherent amplitudes and quantum noise
terms a(t) — a(t) + a,(t), b(t) — b. + b(t) + b, (t), allow-
ing us to solve to each order in the operators independently.
b. represents a constant shift in the equilibrium displacement
of the mechanical oscillator under continuous driving. The
optical coherent terms can be solved perturbatively around the
noninteracting solution

Q. —iw;t
at) =Y a1 =Y L — (B6)
; ;o2
to arrive at
a(t) = ao(t) + kg (t)b(t) + kp(1)b (1), (B7)

where we have used the adiabatic approximation

t
XTI TG0 ()dT

/ e2%ay(t)b(t)dt ~ b(t)e" /

[oe) —00

(B8)

to separate out the mechanical motion (note that the me-
chanical oscillator is assumed to oscillate at the renormalized
mechanical frequency @,,, which will be defined later). This
approximation is valid when the optical cavity “forgets” the
mechanical oscillator’s previous states at a much faster rate
than it changes, which is the case when y, gy < k. The coef-
ficients in (B7) are given by
. a;(t)

lt) = =00 ) )

. a;(t)
kB(l) = —180 Z K/2 — i(]a)j — c7);71)’
J

(B9a)

(B9b)

representing the magnitudes of anti-Stokes and Stokes pro-
cesses, respectively. The cavity frequency shift go(b. + b%)

Nm
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FIG. 3. Conditioned Mandel Q parameter (Al) evaluated
for |B| =1{5,10,20} (from the top) along the optimizing axis
cos(2¢) = 1, where negative values of r represent the cos(¢) = —1
part of the solution. The dotted lines delineate the negative (non-
classical) region boundaries. Note that for lower || the nonclassical
region stretches to higher n,, when r <0 and goes as low as
Op.c ~ —0.3 when || =5 and n,, = 0.

due to the shift in mechanical equilibrium is absorbed into
the bare optical frequency wqp and consequently the rotating
frame, but note that changing the drive configurations may
also change this shift.
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Expanding the coherent mechanical equation of motion
with (B7) and neglecting second-order terms in b, + b(¢) as
well as counter-rotating terms b’ + b*(¢) gives the solution

- a;(t)a;(t
Bt = —igy 3 - OO ,
7 )2+ iy — (05 — )

(B10)

with the remaining terms giving the static displacement

la; ()
= —ig B1l1
80 Z V)2 + i@y (B11)
which can be neglected for the remainder of the discussion.
Similarly to the optical resonance shift, the mechanical renor-
malizations  — y = —2ImX, &, — w,, = ReX are given by
the self-energy
1 T
¥ =go lim —/ [ag(®kg(t) + ao(Hky()1dt, (B12)
T—o0 2T -T

where averaging cancels out the oscillating terms and leaves
only a constant contribution.

The remaining terms which are linear in the noise oper-
ators form the linearized quantum optomechanical Langevin
equations

igodo(t)(by + b)) + K ai, (B13a)

(Y )
(2+lwm

These can be solved similarly to the interacting coherent
terms. The cavity noise solution is solved adiabatically as

an A —=ay —
2
by ~ by — igolay(t)ay, + ao(t)all + /v bin.

(B13b)

an(t) = kp(t)by(t) + kp(b}(t) + £ (1), (B14)
where we define the cavity noise operator
t
(@) = JE/ e 2 Dg (T)d. (B15)
—0oQ

The mechanical noise equation of motion in the rotating wave
approximation becomes

bn = _<§ + id)m>bn - igO[aO(t)é‘T(t)'Faé(t)g(t)]+\/7bin’

(B16)

with the solution

t -
ba(t) = / " GHOED, fy by ()dT — igo
—00

x/ e—(%+i(bm)(t—r>[ao(r);T(r)+&0(T)C(T)]df

(B17)

Equations (B7), (B14) and (B15), (B10) and (B17) form the
complete linearized, adiabatic multitone solutions used in the
remainder of this material.

2. Optomechanical cooling and displacement

We can investigate combined sideband cooling and beat
note displacement using the multitone steady-state solution
obtained above. In principle the drives can be applied to a
separate optical mode (of the same or a different cavity) or to

the same mode as the measurement drives if the detector filter
linewidth W is much smaller than &,,, such that the measured
sidebands can be isolated in the output signal. Sideband cool-
ing is as usual achieved via a red-detuned drive 2.4 favoring
anti-Stokes scattering which reduces the number of mechani-
cal quanta. Displacement is achieved by applying drives €24+
to the half-sideband frequencies wy;+ = £&,,/2. According to
(B10), this induces a coherent mechanical oscillation

880 Quy Qd_
J/(K - lwm)2

If the temperature of the mechanical oscillator were approx-
imately zero it would therefore occupy a coherent steady
state D(B)|0). Note that any combination of drives such that
Wyt — wg— = @y will produce this effect, but placing them
symmetrically about the optical resonance cancels their con-
tributions to the renormalization (B12) when |Q2;_| = |4+ |-
This method can be applied continuously to produce a steady-
state displaced thermal state, or switched off after the steady
state has been reached, with the displacement persisting for a
time of the order 1/7.

In the following we establish the effective thermal proper-
ties of the mechanical oscillator under multitone driving and
derive the maximal possible displacement || reachable while
staying below a given effective thermal occupation number

M = (bl by). (B19)

b(t) ~ — e ol = B =IOt

(B18)

The magnitude of the mechanical renormalizations is
determined by the self-energy (B12). By discarding the me-
chanically off-resonant terms we can express this as a sum of
single-tone contributions:

Q;
N OZII

1 1

) (5 it @) & i@ — w,-)>' 20
The summand is antisymmetric in w;, meaning that symmet-
ric drives of equal magnitude will cancel each other. Since
|Q2g| — |2p] in the high displacement limit and we can freely
pick displacement drives that satisfy |Q2;_| = |24+, only
the cooling drive contributes to the renormalization, by the
amount

4C~Umg(2) | Qcool |2

Ycool X . (B21)
CO0 (K2 + w2 ) (_ _ Zla)m)
This gives an effective mechanical damping rate
162 831 2co0 |
)7 ~y + mg%)l cool| (B22)

k(5 + @) (5 +42;)
which may be much larger than y, and an effective mechanical
frequency

2&)mg%) | Qcool |2
2
(5 + @) (5 +437)

This shift can be neglected in our regime since |@,, — w,,| ~
| — v| < wp, but the right-hand side can otherwise be
solved perturbatively in &,, — w,, to higher orders.

(B23)

O ~ Wy —
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The effective mechanical damping is not the only way by
which coherent driving alters the thermal properties of the
optomechanical system. From (B17) we find, up to mechan-
ical resonance and using y < «, that the effective thermal
occupation number (B19) can be written in terms of the bare
occupation number ng, as

o = Ly + 1, (B24a)
V4

where we can write the purely optical contribution to the
thermal occupation number as

n, ~ Z _ g%)’<|f_lj(f)|2

j y[% + (&)m+wj)2].

(B24b)

Inserting (B22) into this expression and taking the limit
7> vy, &, > k, we recover for a single red-detuned drive
the known resolved sideband cooling lower bound n, —
(k /4é,,)*. For two displacement drives of equal magnitude
|24] at {—dp/2, ®n,/2}, we obtain the effective thermal
contribution

~ 16g%);c|szd|2( 1 1

Tl an) \K+ a2 K2+ 93

), (B25)

assuming this is the dominant contribution to n,. According to
(B10), the threshold n, < € therefore limits the amplitude to

(k? + @p) (k* + 987)

1Bl < 4gok (k2 + 5@2)

€, (B26)

which in the resolved sideband limit becomes
950,%1 /(20K gp)e.

1Bl <

APPENDIX C: STEADY-STATE IMPLEMENTATION

Our protocol relies on two separate modes of measurement.
The first is to make a projective single photon measurement on
overlapping Stokes and anti-Stokes sidebands, producing the
mechanical state given by Eq. (9) in the main article, and the
other is to measure only the anti-Stokes sideband to recover
the phonon statistics of the mechanical oscillator. In the main
article a conceptually simple realization of these modes of
measurement is proposed where they are confined discretely
to different times in a write- and read-pulse formulation. How-
ever, sufficiently narrow optical filters can eliminate the need
for sequential operation by resolving the processes in the fre-
quency domain rather than in time. The filtered measurements
ideally only depend on the coefficients kg and kp and the
sidebands can therefore in principle be shifted an amount less
than ~« /2 off the cavity resonance without any loss of gener-
ality. Shifting the measurement drives Q2g, 25 by a frequency
Aproj €ach, a separate drive Qc01 can be added to the system
at —w,,, which may be used for combined phonon measure-
ment and cooling. Two optical filters centered at A and
optical resonance, respectively, with transmission linewidths
W <« | Aproj| can then be used to alter the transmission spectra
of each branch of a beam splitter, producing two output modes
proportional to

Aproj (1) & kr(t)b(t) + kp(t)D' (1) + Cproj (1),
Acool (t) ~ kcool(t )b(t) + ool (t)a

(Cla)
(Clb)

a
( ) Qcool
SZ,/, SZ(/J,»
S
Qr PN ' Qp
: ’ K \ :
1 / \ 1
1 ’ N 1
s N
R s v TT---Tw
T T — t — W
_(:Jm 1 1 0 1 Wm 1
1 1 1 1
! 1 1 /N \ 1 1
: ! ! V[/l,FA\ / %\ ) !
v N h'2 = I PR | S g h 4

FIG. 4. Schematic of steady-state operation with multitone driv-
ing. Rather than varying the drive strengths sequentially (i.e., pulsed
operation), sufficiently narrow filters allow different Stokes and
anti-Stokes sideband compositions to be measured simultaneously
in the steady state. Panel (a) shows a five-drive configuration with
optomechanical cooling and displacement. Isolating the overlapping
projective measurement sidebands from the cooling and readout
sideband applies in the limit W < |Al. Panel (b) shows an al-
ternative four-drive configuration where a strong cooling sideband
may be used as an anti-Stokes photon source for both read and write
measurements simultaneously by passing through both filters.

with different sideband compositions. The filtered optical
noise terms

=5 [ tloldo ()
TI7 2 )" WR—iw—A))

do not contribute to the correlation functions of interest. The
two output modes can be measured simultaneously by in-
dependent detectors, as indicated in Fig. 4. A single photon
detection from the signal a;(t) projects the mechanical os-
cillator onto the target state, altering the phonon statistics
measured from acyo(t) o< b(t).

Having established the possibility for cooling, displace-
ment, and both modes of measurement in steady state, the
system can be driven continuously with up to five simulta-
neous drives.

(1) Two displacement drives 244 tuned to wy+ = fw,, /2.
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(i1) A combined readout and cooling drive .00 for phonon
statistics measurement tuned to weoo] = — @y,

(iii) Two measurement drives Qg, Q25 for projective mea-
surement tuned t0 wp/r = LWy + Apro;-

Although this should work in principle, with several drives
and their sidebands occupying the same cavity mode there
may arise issues in isolating each measurement channel. In
particular, a frequency separation between drives and side-
bands much larger than W is not necessarily sufficient to
isolate frequency bands when one or more drive magnitudes
are very large, e.g., with sideband cooling where |Qo01| >
|€2/8|. The contribution of the on-resonance cooling sideband
to the projective output signal filtered around Ap; > W can
be included as a modification to the anti-Stokes coefficient,

kR - kR + nkcooleiApmi[v (C3)
where
1
= —"—"r_ (&)
1-— l—v§"”

such that |n| is the ratio of cooling sideband photons which
are let through the filter. If this contribution is non-negligible
such that the Stokes and anti-Stokes coefficients vary with
time, one could instead formulate the postselection criterion
in terms of an ideal projective measurement time ¢, such that

kr + nkcoolempmjlc r— :3*

kg B

leads to the desired mechanical state.

Taking this principle to its extreme conclusion opens
up an alternative approach: rather than applying separate
red-detuned drives Qg, Qo0 for projective and readout mea-
surements, respectively, the cooling drive could serve as the
anti-Stokes photon source for both measurements simultane-
ously. This would mean setting kg = 0 in Eq. (C5). By tuning
the drive magnitude |2z|, one can then always find an ideal
projective measurement time ¢, leading to the desired com-
plex phase relationship, which is satisfied periodically with
period 277 / A pro;.-

(C5)
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