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Theory of nonlinear sub-Doppler spectroscopy taking into account
atomic-motion-induced density-dependent effects in a gas
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We develop a field-nonlinear theory of sub-Doppler spectroscopy in a gas of two-level atoms, based on
a self-consistent solution of the Maxwell-Bloch equations in the mean-field and single-atom density-matrix
approximations. This makes it possible to correctly take into account the effects caused by the free motion
of atoms in a gas, which lead to a nonlinear dependence of the spectroscopic signal on the atomic density
even in the absence of a direct interatomic interaction (e.g., dipole-dipole interaction). Within the framework
of this approach, analytical expressions for the light field were obtained for an arbitrary number of resonant
waves and arbitrary optical thickness of a gas medium. Sub-Doppler spectroscopy in the transmission signal
for two counterpropagating and copropagating waves has been studied in detail. A previously unknown redshift
of a narrow sub-Doppler resonance is predicted in a counterpropagating waves scheme, when the frequency of
one wave is fixed and the frequency of the other wave is varied. The magnitude of this shift depends on the
atomic density and can be more than an order of magnitude greater than the known shift from the interatomic
dipole-dipole interaction (Lorentz-Lorenz shift). The found effects, caused by the free motion of atoms, require
a significant revision of the existing picture of spectroscopic effects depending on the density of atoms in a gas.
Apart from the fundamental aspect, obtained results are important for precision laser spectroscopy and optical
atomic clocks.

DOI: 10.1103/PhysRevA.109.043504

I. INTRODUCTION

Modern laser spectroscopy is a powerful research tool of
great importance both for fundamental science and for numer-
ous practical applications. The basic principles of this science
were formulated several decades ago and are widely presented
in the scientific and educational literature [1–7]. A special
role is played by laser spectroscopy of atomic gases for the
time and frequency standards (atomic clocks), for which the
reference is resonances excited at the frequency of atomic
transitions. The metrological characteristics of these devices
are largely determined by the parameters of the resonance line
shape.

According to established concepts, interatomic dipole-
dipole interaction is the main reason for the nonlinear
dependence of the spectroscopic signal on the atomic density
in a gas [8–45]. In particular, for a monatomic gas, collective
effects lead to distortion of the resonance line shape (shift,
asymmetry, broadening). As is known [10], in the case of an
ensemble of two-level atoms with an unperturbed frequency
ωeg for a closed optical transition |g〉 ↔ |e〉 [see Fig. 1(a)],
the scale of influence of the dipole-dipole interaction is
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determined by the Lorentz-Lorenz shift �LL = −πN k−3γ ,
where N is the density of atoms (the number of particles per
unit volume), k = ωeg/c (c is the speed of light in a vacuum),
and γ is the spontaneous decay rate of the upper level [see
Fig. 1(a)]. In particular, for an atomic ensemble confined in a
flat layer of thickness L, the total redshift caused by the dipole-
dipole interaction is described by the formula (see Ref. [8])

�DD = �LL − 3

4
�LL

(
1 − sin 2kL

2kL

)
< 0, (1)

where the second term is the collective Lamb shift. For a
sufficiently thick layer (kL � 1) from (1) we obtain the value

�DD ≈ 1
4�LL = −0.79N k−3γ , (2)

which can be a reference point for comparison with other
effects which also depend on atomic density and lead to a
frequency shift of the resonance.

Recently, Refs. [46,47] presented previously unknown ef-
fects caused by the free motion of atoms in a gas, which also
depend on the atomic density and lead to the deformation
(shift, asymmetry) of the Doppler absorption line. In partic-
ular, the shift of the main contribution (linear in the field
intensity) has a positive sign and is more than an order of mag-
nitude greater than the value (2) (see Ref. [46]), while the shift
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FIG. 1. (a) Scheme of a two-level atom. (b) Illustration of a
spatially attenuated plane wave in a gas, when the field amplitude
becomes time dependent from the viewpoint of a moving atom.

of the first nonlinear correction in field intensity exceeds the
estimate (2) by three orders of magnitude (see Ref. [47]). The
physical reason for these effects is to take into account the ab-
sorption of a light wave during propagation in a gas medium.
In this case, the free motion of atoms cannot be reduced only
to the Doppler frequency shift for moving atoms. Indeed, from
the viewpoint of atoms moving towards the light wave, in
addition to the blue frequency shift, there is an increasing
of the field amplitude over time [see Fig. 1(b)]. Conversely,
for atoms moving in the same direction as the light wave
vector, the red frequency shift is combined with a decreasing
of the field amplitude over time. It was correctly taken into
account in Refs. [46,47] when describing the propagation of
a traveling monochromatic wave within the framework of a
self-consistent solution of the Maxwell-Bloch equations in the
single-atom density-matrix approximation. Such an approach
is in no way connected with the traditional description of
collective effects by introducing the operator of interatomic
dipole-dipole interaction (e.g., see Refs. [8,10,11]):

ŴDD = 1

2

∑
α �=α′

{
(d̂αd̂α′ )

|rαα′ |3 − 3(d̂αrαα′ )(d̂α′rαα′ )

|rαα′ |5
}

,

where d̂α is the operator of the dipole moment of the αth atom,
and rαα′ = rα − rα′ is the radius vector between two atoms.
Since the frequency shifts described in Refs. [46,47] signif-
icantly exceed the influence of dipole-dipole interaction (2),
there is an urgent necessity to accurately rewrite the known
theoretical description of various areas of laser spectroscopy
in rarefied atomic gases (in the context of taking into account
the atomic-motion-induced density-dependent effects). In ad-
dition to fundamental interest, such researches are of great
applied importance for high-precision laser spectroscopy and
atomic clocks. In particular, the dependence of a reference

resonance shift on atomic density N determines the inaccu-
racy and long-term instability of atomic clocks due to the
temperature variations, since the value of N depends on the
vapor cell temperature T . An influence of atomic density on
the spectroscopic line shape is also important for Doppler
broadening thermometry [48–50], where the fitting of the
Doppler absorption line shape with a Voigt profile is used for
precision measurement of a gas temperature.

In this paper, we develop an algorithm to construct the
theory of the polychromatic field propagation in a gas of
two-level atoms as a self-consistent solution of the Maxwell-
Bloch equations. In particular, in the case of bichromatic field
formed by two counterpropagating or copropagating traveling
waves, an analytical expression for a transmission signal non-
linear in the light intensity is obtained for a gas medium with
an arbitrary optical thickness. At the same time, the narrow
sub-Doppler resonance and its shift, which depends on the
atomic density and is caused only by the free motion of atoms
(i.e., it is not related to the known Lorentz-Lorenz shift), are
studied in detail. In the case of counterpropagating waves,
this shift is red and its value can be an order of magnitude
greater than the value (2). In the case of copropagating waves,
this shift is much smaller. Experimental confirmation of the
obtained results will be important to form a more accurate
physical picture of spectroscopic effects, which depend on the
atomic density in a gas.

II. GENERAL FORMALISM

Let us consider the one-dimensional propagation along the
z axis of plane light waves described by the electric field
E (t, z) in a gas of free-moving resonant two-level atoms
with an unperturbed transition frequency ωeg [see Fig. 1(a)].
The atom-field interaction is described by the electric dipole
operator −d̂E . Our analysis will be carried out within the
framework of a self-consistent solution of the Maxwell-Bloch
equations in mean-field approximation. This equations system
includes the wave equation for the field (in the CGS system of
units) (

∂2

∂z2
− 1

c2

∂2

∂t2

)
E (t, z) = 4π

c2

∂2

∂t2
P(t, z), (3)

where the polarization of the medium in the one-atomic ap-
proximation is defined as P(t, z) = N 〈D〉, where 〈D〉 is the
average dipole moment of the atom.

We will describe an atomic gas by a single-atomic density
matrix ρ̂(v) (v is the velocity of the atom), the compo-
nents of which ρqq′ (v) = 〈q|ρ̂(v)|q′〉 (where q, q′ = e, g) for a
closed two-level system are described by the following equa-
tions (Bloch equations):

[
∂

∂t
+ v

∂

∂z
+ γ

2
+ iωeg

]
ρeg(v) = iE (t, z)deg

h̄
[ρgg(v) − ρee(v)],[

∂

∂t
+ v

∂

∂z
+ γ

]
ρee(v) = iE (t, z)

h̄
[degρge(v) − dgeρeg(v)],

ρge(v) = ρ∗
eg(v), ρgg(v) + ρee(v) = f (v),

∫ ∞

−∞
f (v)dv = 1, (4)
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where deg=〈e|d̂|g〉=d
∗
ge is the matrix element of the dipole

moment operator. The diagonal elements of the density ma-
trix ρgg(v) and ρee(v) describe the populations in the ground
and excited states, respectively, and the nondiagonal elements
ρeg(v) and ρge(v) correspond to the optical coherence. The op-
erator v(∂/∂z) in the left side of Eq. (4) is a one-dimensional
version of the scalar operator (v∇ ). The polarization of the
medium in Eq. (3) is defined as

P(t, z) = N 〈dgeρeg(v)〉v + c.c., (5)

where 〈. . .〉v denotes integration over velocities,
∫ +∞
−∞ . . . dv.

The function f (v) describes the velocity distribution of atoms,
which in calculations we will assume to be Maxwellian:

f (v) = e−(v/v0 )2

v0

√
π

, v0 =
√

2kBT

M
, (6)

where kB is the Boltzmann constant, T is the temperature of a
gas, and M is the atomic mass. Thus, Eqs. (3)–(5) constitute
the system of Maxwell-Bloch equations in our case.

We will solve Eqs. (3)–(5) using perturbation theory, based
on the assumption that the following parameter is small (i.e.,
low saturation of the optical transition):

|degE (t, z)|
h̄γ /2


 1, (7)

which is used to decompose the density matrix

ρ̂(v) = ρ̂ (0)(v) + ρ̂ (1)(v) + ρ̂ (2)(v) + ρ̂ (3)(v) + . . . . (8)

As the initial term of the expansion, we will use the density
matrix for the unperturbed atom in the ground state:

ρ (0)
gg (v) = f (v), ρ (0)

ee (v) = 0, ρ (0)
eg (v) = ρ (0)

ge (v) = 0. (9)

In accordance with (8), for the polarization P(t, z) and electric
field E (t, z) the following expansions only over odd indices
take place:

P(t, z) = P(1)(t, z) + P(3)(t, z) + P(5)(t, z) + . . . ,
(10)

E (t, z) = E (1)(t, z) + E (3)(t, z) + E (5)(t, z) + . . . ,

where P(q)(t, z) ∝ 〈ρ̂ (q)(v)〉v . To solve Eqs. (3)–(5), we will
carry out a sequential iteration up to the third step E (3)(t, z)
inclusively, which allows us to study nonlinear sub-Doppler
resonances.

A. First iteration step

Using (8)–(10) in Eqs. (3)–(5), at the first step of the
iterative procedure we obtain the following equations:(

∂2

∂z2
− 1

c2

∂2

∂t2

)
E (1)(t, z)

= 4πN
c2

∂2

∂t2

〈
dgeρ

(1)
eg (v)

〉
v
+ c.c.,

[
∂

∂t
+ v

∂

∂z
+ γ

2
+ iωeg

]
ρ (1)

eg (v)

= iE (1)(t, z)deg

h̄

[
ρ (0)

gg (v) − ρ (0)
ee (v)

]
= i

h̄
degE (1)(t, z) f (v). (11)

Let us consider the general case of an arbitrary number of
traveling waves with different frequencies ω j , close to the
transition frequency ωeg, which enter the atomic medium from
external light sources. Then, using the rotating wave approx-
imation for the density matrix and following Ref. [46], the
solution of the system (11) has the form

E (1)(t, z) =
∑

j

E je
−iω j t+K j k j + c.c.,

ρ (1)
eg (v) =

∑
j

idegE je
−iω j t+K j k j z f (v)

h̄(γ /2 − iδ j + K jk jv)
, (12)

where E j , ω j , k j = ω j/c, and δ j = ω j − ωeg are the ampli-
tude, frequency, wave number in vacuum, and detuning of
the jth wave, respectively. Substituting the expressions for
E (1)(t, z) and ρ (1)

eg (v) into the left and right sides of the wave
equation in (11) respectively, we find that the complex di-
mensionless wave number K j is defined as the solution of the
equation

K2
j + 1 = − i4πN |deg|2

h̄

〈
f (v)

γ /2 − iδ j + K jk jv

〉
v

, (13)

which was first presented in Ref. [46]. The sign of Im{K j} is
determined by the direction of propagation of the jth wave.
Due to wave attenuation in the medium, the following con-
dition is always satisfied: Im{K j}Re{K j} < 0. Since in this
paper we will consider both the case of counterpropagating
and copropagating waves, we do not fix the sign of Im{K j}
in Eq. (13). Using the known expression for the spontaneous
decay rate of the upper level |e〉,

γ = 4k3|deg|2
3h̄

, (14)

we rewrite Eq. (13) in the form

K2
j + 1 = −i

〈
3πN k−3γ f (v)

γ /2 − iδ j + K jk jv

〉
v

, (15)

where the parameter of interatomic dipole-dipole interaction
N k−3γ explicitly appears, despite the fact that we use the
single-atom density-matrix approximation.

B. Second iteration step

The second step of the iteration is to determine the correc-
tion ρ̂ (2)(v) for the density matrix:

[
∂

∂t
+ v

∂

∂z
+ γ

]
ρ (2)

ee (v) = iE (1)(t, z)

h̄

[
degρ

(1)
ge (v) − dgeρ

(1)
eg (v)

]
,

ρ (2)
gg (v) = −ρ (2)

ee (v), ρ (2)
eg (v) = ρ (2)

ge (v) = 0. (16)
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Using here the expressions from (12) and neglecting the fast-oscillating contributions at frequencies ±(ωm + ωn), we obtain the
equation [

∂

∂t
+ v

∂

∂z
+ γ

]
ρ (2)

ee (v) =
∑
m,n

|deg|2EmE∗
n [γ + i(ωn − ωm) + (Kmkm + K∗

nkn)v]ei(ωn−ωm )t+(Kmkm+K∗
nkn )z f (v)

h̄2[γ /2 − iδm + Kmkmv][γ /2 + iδn + K∗
nknv]

, (17)

from which we find

ρ (2)
ee (v) = −ρ (2)

gg (v) = |deg|2
h̄2

∑
m,n

EmE∗
n e−i(ωm−ωn )t+(Kmkm+K∗

nkn )z f (v)

[γ /2 − iδm + Kmkmv][γ /2 + iδn + K∗
nknv]

, (18)

where the terms with m = n describe the saturation of the atomic transition of each of the waves (12) separately, and the terms
with m �= n are interference contributions.

C. Third iteration step

At the third step of the algorithm, we determine ρ̂ (3)(v), E (3)(t, z), and P(3)(t, z) from the following equations:(
∂2

∂z2
− 1

c2

∂2

∂t2

)
E (3)(t, z) = 4πN

c2

∂2

∂t2

〈
dgeρ

(3)
eg (v)

〉
v
+ c.c.,[

∂

∂t
+ v

∂

∂z
+ γ

2
+ iωeg

]
ρ (3)

eg (v) = idegE (3)(t, z)

h̄

[
ρ (0)

gg (v) − ρ (0)
ee (v)

] + idegE (1)(t, z)

h̄

[
ρ (2)

gg (v) − ρ (2)
ee (v)

]
. (19)

Using (9), (12), and (18) in the right-hand side of the second equation in the system (19), we obtain the equation for ρ (3)
eg (v):[

∂

∂t
+ v

∂

∂z
+ γ

2
+ iωeg

]
ρ (3)

eg (v) = idegE (3)(t, z) f (v)

h̄
− 2ideg|deg|2

h̄3

∑
j,m,n

E jEmE∗
n e−iω jm,nt+K̃ jm,nz f (v)

[γ /2 − iδm + Kmkmv][γ /2 + iδn + K∗
nknv]

,

ω jm,n = (ω j + ωm − ωn), K̃ jm,n = (K jk j + Kmkm + K∗
nkn), (20)

where in the right side we left only resonant contributions with negative frequencies close to the transition frequency ωeg. In
accordance with the space-time dependencies in the right side (20), the field E (3)(t, z) in the general case can be presented as

E (3)(t, z) =
∑
j,m,n

e−iω jm,nt [A jm,neK̃jm,nz + B jm,neK jm,nk jm,nz] + c.c.,

k jm,n = ω jm,n/c = k j + km − kn, (21)

where the amplitudes A jm,n and normalized wave vectors K jm,n will be found below from the wave equation, and the amplitudes
B jm,n will be determined based on the boundary conditions. Substituting (21) into (20), we find a solution for ρ (3)

eg (v):

ρ (3)
eg (v) = ideg f (v)

h̄

∑
j,m,n

[
A jm,ne−iω jm,nt+K̃ jm,nz

γ /2 − iδ jm,n + K̃ jm,nv
+ B jm,ne−iω jm,nt+K jm,nk jm,nz

γ /2 − iδ jm,n + K jm,nk jm,nv

]

− 2ideg|deg|2
h̄3

∑
j,m,n

E jEmE∗
n e−iω jm,nt+K̃ jm,nz f (v)

[γ /2 − iδ jm,n + K̃ jm,nv][γ /2 − iδm + Kmkmv][γ /2 + iδn + K∗
nknv]

,

δ jm,n = ω jm,n − ωeg = (δ j + δm − δn). (22)

Then, we substitute the expressions (21) and (22) into the left and right sides of the wave equation in (19), respectively. Next,
grouping terms with the same space-time dependence e−iω jm,nt+K̃ jm,nz, we obtain the expression for the amplitudes A jm,n:

A jm,n = i8πN |deg|4
h̄3

〈 E jEmE∗
n k2

jm,n

[
K̃2

jm,n + k2
jm,n + k2

jm,nFjm,n

]−1
f (v)

[γ /2 − iδ jm,n + K̃ jm,nv][γ /2 − iδm + Kmkmv][γ /2 + iδn + K∗
nknv]

〉
v

,

Fjm,n = i

〈
3πN k−3γ f (v)

γ /2 − iδ jm,n + K̃ jm,nv

〉
v

. (23)

At the same time, grouping terms with B jm,ne−iω jm,nt+K jm,nk jm,nz, we obtain the equation for complex dimensionless wave numbers
K jm,n:

K2
jm,n + 1 = −i

〈
3πN k−3γ f (v)

γ /2 − iδ jm,n + K jm,nk jm,nv

〉
v

, (24)
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where the sign of Im{K jm,n} should coincide with the sign of Im{K̃ jm,n} [see Eq. (21)], while the amplitudes B jm,n of the
corresponding waves still remain uncertain.

Note that the space-time dependences e−iω jm,nt+K jm,nk jm,nz with amplitudes B jm,n in Eq. (21) for m = n and/or j = n exactly
coincide with corresponding space-time dependencies in Eq. (12) with frequencies from external light sources (i.e., main
frequencies). Indeed, we have

ω jm,m = ω j, k jm,m = k j, K jm,m = K j,

ω jm, j = ωm, k jm, j = km, K jm, j = Km, (25)

and therefore such terms in the nonlinear correction (21) can be attributed to the main contribution E (1)(t, z) [see Eq. (12)]. Thus,
instead of Eq. (21), we will use the following expression:

E (3)(t, z) =
∑
j,m,n

e−iω jm,nt [A jm,neK̃jm,nz + (1 − δ jn)(1 − δmn)B jm,neK jm,nk jm,nz] + c.c., (26)

where δab is the Kronecker symbol, and contributions with amplitudes B jm,n exist only for combination frequencies, the
appearance of which is entirely due to the nonlinear properties of the atomic medium.

D. Approximation for centimeter-size atomic cells

Note that for the light wave with detuning δ j of no more than 1–2 GHz from optical frequency ωeg, the inequality |k j − k|/k <

10−3–10−4 takes place. Therefore, for centimeter-size atomic cells, we can safely use the approximation k j = k and k jm,n = k in
all the above formulas. In this case, the following expressions hold for the field in the gas medium [instead of Eqs. (12) and (26)]:

E (1)(t, z) =
∑

j

E je
−iω j t+K j kz + c.c.,

E (3)(t, z) =
∑
j,m,n

e−iω jm,nt [A jm,ne(K j+Km+K∗
n )kz + (1 − δ jn)(1 − δmn)B jm,neK jm,nkz] + c.c., (27)

in which the dimensionless wave numbers K j and K jm,n are determined from the equations

K2
j + 1 = −i

〈
3πN k−3γ f (v)

γ /2 − iδ j + K jkv

〉
v

,

K2
jm,n + 1 = −i

〈
3πN k−3γ f (v)

γ /2 − iδ jm,n + K jm,nkv

〉
v

, (28)

where the sign of Im{K jm,n} should coincide with the sign of Im{K j + Km + K∗
n}. In this case, using Eq. (14), the amplitudes

A jm,n can be represented as

A jm,n = 6πN k−3|deg|2E jEmE∗
n

h̄2γ 2
Cjm,n, (29)

where the frequency dependence is contained in the dimensionless coefficients Cjm,n:

Cjm,n =
〈

i[(K j + Km + K∗
n )2 + 1 + F jm,n]−1γ 3 f (v)

[γ /2 − iδ jm,n + (K j + Km + K∗
n )kv][γ /2 − iδm + Kmkv][γ /2 + iδn + K∗

nkv]

〉
v

,

F jm,n =
〈

i3πN k−3γ f (v)

γ /2 − iδ jm,n + (K j + Km + K∗
n )kv

〉
v

. (30)

Note that the amplitudes B jm,n in Eq. (27) remain still unknown. As will be shown below, the amplitudes B jm,n are determined
based on the boundary conditions for each specific problem statement.

Below, using formulas (27)–(30), we will study the case of two monochromatic waves in detail.

III. TWO MONOCHROMATIC WAVES

Let us consider an atomic medium onto which two monochromatic waves with frequencies ω1 and ω2 come from the outside.
In this case, the field (27) in a gas has the form

E (1)(t, z) = E1e−iω1t+K1kz + E1e−iω2t+K2kz + c.c.,

E (3)(t, z) = e−iω1t [A11,1e(2K1+K∗
1 )kz + A12,2e(K1+K2+K∗

2 )kz + A21,2e(K2+K1+K∗
2 )kz]

+ e−iω2t [A22,2e(2K2+K∗
2 )kz + A21,1e(K2+K1+K∗

1 )kz + A12,1e(K1+K2+K∗
1 )kz]

+ e−i(2ω1−ω2 )t [A11,2e(2K1+K∗
2 )kz + B11,2eK11,2kz] + e−i(2ω2−ω1 )t [A22,1e(2K2+K∗

1 )kz + B22,1eK22,1kz] + c.c., (31)
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FIG. 2. Scheme illustrating the case of two counterpropagating waves. Here, the wave with frequency ω1, propagating from left to right, at
the entrance to the medium (z = 0) has an oscillating amplitude E10e−iω1t , while the wave with frequency ω2, propagating from right to left, at
the entrance to the medium (z = L) has an oscillating amplitude E20e−iω2t .

where it was taken into account that

ω11,1 = ω12,2 = ω21,2 = ω1, ω22,2 = ω21,1 = ω12,1 = ω2,

ω11,2 = 2ω1 − ω2, ω22,1 = 2ω2 − ω1.

Thus, we obtain the following expression for the total field:

E (t, z) ≈ E (1)(t, z) + E (3)(t, z) = e−iω1t+K1kz[E1 + A11,1e2Re{K1}kz + A12,2e2Re{K2}kz + A21,2e2Re{K2}kz]

+ e−iω2t+K2kz[E2 + A22,2e2Re{K2}kz + A21,1e2Re{K1}kz + A12,1e2Re{K1}kz]

+ e−i(2ω1−ω2 )t [A11,2e(2K1+K∗
2 )kz + B11,2eK11,2kz] + e−i(2ω2−ω1 )t [A22,1e(2K2+K∗

1 )kz + B22,1eK22,1kz] + c.c. (32)

Next, we will examine separately the cases of two counterpropagating and copropagating waves.

A. Two counterpropagating waves

Let us consider a flat layer of atomic gas with thickness L (0 � z � L), onto which two counterpropagating monochromatic
waves with frequencies ω1 and ω2 come from the outside. We will assume that the condition kL � 1 is satisfied in order to
exclude the significant influence of the Dicke effect [51] and other boundary effects [52].

We assume that the wave with frequency ω1 is propagating from the left to right, and the wave with frequency ω2 is
propagating from the right to left (see Fig. 2). In this case, the signs of the imaginary and real parts for the normalized wave
numbers K1, K2, K11,2, and K22,1 in solving Eqs. (15) and (28) are chosen as follows:

Im{K1} ≈ 1 > 0, Re{K1} < 0,

Im{K11,2} ≈ 1 > 0, Re{K11,2} < 0,

Im{K2} ≈ −1 < 0, Re{K2} > 0, (33)

Im{K22,1} ≈ −1 < 0, Re{K22,1} > 0.

In accordance with these inequalities, the field (32) can be divided into two counterpropagating waves: the wave E (+)(t, z)
propagating along the positive direction of the z axis,

E (+)(t, z) = e−iω1t+K1kz[E1 +A11,1e2Re{K1}kz + (A12,2 +A21,2)e2Re{K2}kz] + e−i(2ω1−ω2 )t [A11,2e(2K1+K∗
2 )kz + B11,2eK11,2kz] + c.c.,

(34)

and the wave E (−)(t, z) propagating along the negative direction of the z axis:

E (−)(t, z) = e−iω2t+K2kz[E2 + A22,2e2Re{K2}kz + (A21,1 + A12,1)e2Re{K1}kz] + e−i(2ω2−ω1 )t [A22,1e(2K2+K∗
1 )kz + B22,1eK22,1kz] + c.c.

(35)

Note that the expressions (34) and (35) correspond to the field inside of the atomic medium, i.e., in the interval 0 � z � L.
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Let us now consider the boundary conditions. The oscillating amplitude of the field from the external laser source with
frequency ω1 is equal to E10e−iω1t at the entrance to the atomic medium on the left (in the point z = 0, see Fig. 2). Therefore,
the field in the medium E (+)(t, z = 0) must have the same oscillating amplitude. Thus, using the expression (34), the boundary
condition in the point z = 0 has the form

E10e−ω1t = e−iω1t [E1 + A11,1 + A12,2 + A21,2] + e−i(2ω1−ω2 )t [A11,2 + B11,2], (36)

from which we get the relationships

E1 = E10 − A11,1 − A12,2 − A21,2, (37)

B11,2 = −A11,2.

As a result, we rewrite the expression (34) for E (+)(t, z) as

E (+)(t, z) = e−iω1t+K1kz[E10 + A11,1(e2Re{K1}kz − 1) + (A12,2 + A21,2)(e2Re{K2}kz − 1)]

+ e−i(2ω1−ω2 )tA11,2(e(2K1+K∗
2 )kz − eK11,2kz ) + c.c. (38)

This makes clear the need to introduce contributions with amplitudes B jm,n in the nonlinear correction E (3)(t, z) [see Eqs. (21),
(26), and (27)] for combination frequencies ω jm,n (where j �= n and m �= n), which are absent in external light sources. Indeed,
it is precisely the presence of the contribution with B11,2 �= 0 [see the second equality in Eq. (37)] that provides the condition
when the amplitude of oscillation with combination frequency ω11,2 = 2ω1 − ω2 is equal to zero at the entrance to the medium
(z = 0), because this frequency component originates only inside of the atomic medium (at z > 0) due to effects nonlinear in the
field.

Let us analogically consider another boundary condition. The field from an external source with frequency ω2 has an
oscillating amplitude E20e−iω2t at the entrance to the medium on the right (in the point z = L, see Fig. 2). Therefore, the field
in the medium E (−)(t, z = L) must have the same oscillating amplitude. As a result, using the expression (35), the boundary
condition in the point z = L has the form

E20e−ω2t = e−iω2t eK2kL[E2 + A22,2e2Re{K2}kL + (A21,1 + A12,1)e2Re{K1}kL] + e−i(2ω2−ω1 )t [A22,1e(2K2+K∗
1 )kL + B22,1eK22,1kL],

(39)

from which we get the relationships

E2 = E20e−K2kL − A22,2e2Re{K2}kL − (A21,1 + A12,1)e2Re{K1}kL,

B22,1eK22,1kL = −A22,1e(2K2+K∗
1 )kL, (40)

where the second equality corresponds to the fact that the component with combination frequency ω22,1 = 2ω2 − ω1 appears
only inside of the atomic medium (at z < L) due to effects nonlinear in the field.

As a spectroscopic signal, we consider the transmission signal of the first wave, which is determined by the intensity at the
exit from the medium (in the point z = L): I1(L) ∝ |E (+)(t, z = L)|2. Using Eq. (38), we have

I1(L) = c

2π
|e−iω1t+K1kL[E10 + A11,1(e2Re{K1}kL − 1) + (A12,2 + A21,2)(e2Re{K2}kL − 1)]

+ e−i(2ω1−ω2 )tA11,2(e(2K1+K∗
2 )kL − eK11,2kL )|2

≈ c

2π
e2Re{K1}kL[|E10|2 + 2(e2Re{K1}kL − 1)Re{A11,1E∗

10} + 2(e2Re{K2}kL − 1)Re{(A12,2 + A21,2)E∗
10}]

+ c

π
Re{e−i(ω1−ω2 )t eK

∗
1kL(e(2K1+K∗

2 )kL − eK11,2kL )A11,2E∗
10}, (41)

where we have neglected the terms, quadratic in small amplitudes A jm,n, proportional to E6. This is due to the fact that terms
of the same order (∝ E6) will appear from the contribution E (5) [see Eq. (10)], which we do not take into account in this paper.
Further, keeping the same accuracy and using Eqs. (37) and (40), we can put E1 = E10 and E2 = E20e−K2kL in formula (29) for
amplitudes A jm,n. In this case, from Eq. (41) we obtain the final expression for the transmission signal:

I1(L) = I1(0)e2Re{K1}kL[1 + 3πN k−3S1(e2Re{K1}kL − 1)Re{C11,1} + 3πN k−3S2(1 − e−2Re{K2}kL )Re{C12,2 + C21,2}], (42)

where I1(0) = c|E10|2/2π is the intensity of the first wave at the entrance to the medium (z = 0), and

S1 =
∣∣∣∣4degE10

h̄γ

∣∣∣∣2


 1, S2 =
∣∣∣∣4degE20

h̄γ

∣∣∣∣2


 1, (43)

are small saturation parameters for the first and second waves, respectively. Note that in the expression (42), we do not take into
account the contribution oscillating at the frequency (ω1 − ω2) [see the last contribution to (41)], since its value is very small
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(see the Appendix). The main (linear) contribution ∝ e2Re{K1}kL in the expression (42) was studied in Ref. [46], while the first
nonlinear correction (∝ S1) to the wide Doppler line shape was considered in Ref. [47]. Another nonlinear term (∝ S2), due to
the influence of the counterpropagating wave, contains two contributions: the first contribution (∝ Re{C12.2}) describes a narrow
sub-Doppler resonance (see below), while the second contribution (∝ Re{C21.2}), due to the interference of counterpropagating
waves, has a wide spectral line with very small amplitude (under the condition kv0 � γ ). Note that we have obtained the
analytical expression (42) within the framework of the self-consistent solution of the Maxwell-Bloch equations for a gas medium
with arbitrary optical thickness.

In the case of an optically thin medium, when the condition |2Re{K j}kL| 
 1 is satisfied, when expanding the exponentials
in Eq. (42) we can use the approximation only with the first correction for kL:

I1(L) ≈ I1(0)[1 + 2Re{K1}kL + 6πN k−3kLS1Re{K1}Re{C11,1} + 6πN k−3kLS2Re{K2}Re{C12,2 + C21,2}]. (44)

For comparison, we present the well-known expression for an optically thin medium:

I1(L) ≈ I1(0)[1 + D(δ1)kL + 6πN k−3kLS1B(δ1) + 6πN k−3kLS2{W (δ1, δ2) + V (δ1, δ2)}], (45)

which does not take into account the influence of atoms on
the wave number in the medium. In the formula (45), the
function D(δ1), usually called the Voigt profile in the scientific
literature, is defined as

D(δ1) = −3

2
πN k−3

〈
f (v)γ 2

|γ /2 − iδ1 + ikv|2
〉
v

, (46)

the function B(δ1) is

B(δ1) = 1

8

〈
f (v)γ 4

|γ /2 − iδ1 + ikv|4
〉
v

, (47)

the two-frequency function W (δ1, δ2), which describes the
sub-Doppler resonance, has the form

W (δ1, δ2) = 1

8

〈
f (v)γ 4

|(γ /2 − iδ1 + ikv)(γ /2 − iδ2 − ikv)|2
〉
v

,

(48)

and another two-frequency function V (δ1, δ2), describing a
wide resonant line shape with a very small amplitude under
the condition kv0 � γ , is

V (δ1, δ2) = 1

4
Re

〈
γ 3 f (v)

(γ /2 − iδ1 + ikv)2(γ /2 + iδ2 + ikv)

〉
v

.

(49)

Note that the derivation of formulas (45)–(49) is based on
the approximation when the equations for the atomic density
matrix [see Bloch equations (4)] use the expression

E (z, t ) = E10e−iω1t+ikz + E20e−iω2t−ikz + c.c., (50)

for two counterpropagating waves in a vacuum.
Note also that the functions D(δ1) and B(δ1) are even

functions in detuning: D(−δ1) = D(δ1) and B(−δ1) = B(δ1).
However, as shown in Refs. [46,47], the Doppler line shape
Re{K1} and the first nonlinear correction ∝ Re{K1}Re{C11,1}
[see Eq. (44)] experience significant deformation (asymmetry,
shift), which is a consequence of the free motion of atoms
in a self-consistent solution of the Maxwell-Bloch equations.
In particular, the shift of the top of the absorption line linear
in the field intensity is approximately equal to 19nk−3γ (see
Ref. [46]), which differs in sign and is more than an order of
magnitude greater than the shift due to the interatomic dipole-
dipole interaction (2), while the blueshift for the first nonlinear

correction is approximately 25nk−2v0 (see Ref. [47]), which is
more than three orders of magnitude greater (at room temper-
ature) than the effect of interatomic dipole-dipole interaction
(2). Therefore, in this paper, the nonlinear correction pro-
portional to S2 in Eqs. (42) and (44), which describes the
sub-Doppler resonance, will be of greatest interest to us.

Three main spectroscopic options can be distinguished for
observing narrow sub-Doppler resonances (with a spectral
width of the order of γ ).

(1) The frequency ω = ω1 = ω2 of the monochromatic
field of two counterpropagating waves is scanned (i.e., δ =
δ1 = δ2 is varied).

(2) The frequency ω1 is scanned (i.e., δ1 is varied) at a fixed
frequency ω2 (i.e., δ2 = const).

(3) The frequency ω2 is scanned (i.e., δ2 is varied) at a fixed
frequency ω1 (i.e., δ1 = const).

1. Scanning the frequency of the monochromatic field
of two counterpropagating waves

Figure 3(a) shows the line shape of the transmission signal
(42) in the case of δ = δ1 = δ2. Sub-Doppler resonance occurs
when scanning δ near zero. We deliberately took a sufficiently
high atomic density (N k−3 = 0.01) so that some asymmetry
in the line shape, which is due to the asymmetry of the wide
Doppler profile (see Ref. [46]) and due to the asymmetry
nonlinear correction ∝ S1Re{C11,1} (see Ref. [47]), is clearly
visible. For an optically thin medium in Fig. 3(b), a com-
parison is made for the sub-Doppler resonance line shape
Re{K2}Re{C12,2} in our case [see Eq. (44)] with the known
expression W (δ1, δ2) [see Eq. (48)], where we see no differ-
ence.

Note that the given case of a monochromatic field is rel-
evant to the vapor-cell atomic clocks based on sub-Doppler
resonances in a standing wave. As we see in Fig. 3(b), the
nonlinear sub-Doppler contribution considered separately is
not shifted and does not practically differ from the well-
known classical expression Eq. (48). This can be explained
by the fact that the sub-Doppler resonance is formed by a
group of atoms with low velocities (k|v| � γ ), for which the
existence of a nonzero real part of the wave number K (due
to absorption) in the integral expression for the coefficient
C12,2 is not significant. Nevertheless, some residual shift of
the narrow resonance appears here, because the full line shape

043504-8



THEORY OF NONLINEAR SUB-DOPPLER SPECTROSCOPY … PHYSICAL REVIEW A 109, 043504 (2024)

FIG. 3. The line shape in the case of counterpropagating waves for a monochromatic field: (a) total transmission signal (42); (b) nonlinear
correction (∝ Re{K2}Re{C12.2}), describing sub-Doppler resonance for an optically thin medium [see Eq. (44)], and classical expression
W (δ, δ) [see Eq. (48)]. Calculation parameters: N k−3 = 0.01, kv0 = 50γ , kL = 2π × 5, S1 = S2 = 0.2.

experiences some distortion [see panel in Fig. 3(a)] due to
the asymmetry of wide Doppler background. Moreover, the
magnitude of this residual shift will depend on how the po-
sition of the sub-Doppler resonance is measured: the position
of the resonance top or the position of the error signal zero
(as is usually used in atomic clocks). The study of this prob-
lem in relation to atomic clocks requires a separate careful
consideration.

2. δ1 is varied, δ2 is fixed

Figure 4 shows the full line shape of the transmission
signal (42) for δ2 = const at two different thicknesses of the
medium. The sub-Doppler resonance occurs when scanning
δ1 near the value −δ2. In the case of an optically thin medium,
in Fig. 5, a comparison for the line shape of the sub-Doppler
resonance in our case [see Re{K2}Re{C12,2} in Eq. (44)] with
known expression (48) [see W (δ1, δ2) in Eq. (45)] was made.
In addition to differences in the amplitudes of the sub-Doppler
resonance for |δ2| � γ , there is a negative shift of the res-
onance peak �

(12)
sh < 0 (relative to the point δ1 = −δ2). Our

numerical calculations show that for N k−3 
 1 the shift �(12)
sh

is well described by the expression

�
(12)
sh ≈ R(δ2, γ , kv0) − 
12(δ2/kv0, γ /kv0)N k−3γ , (51)

where the first term R(δ2, γ , kv0) does not depend on the
atomic density N and follows from the well-known for-
mula (48). This function is antisymmetric on the detuning,
R(−δ, γ , kv0) = −R(δ, γ , kv0), and it is presented in Fig. 6
for different values of γ /kv0. We can use the approximation

R(δ, γ , kv0) ≈ δ

2

(
γ

kv0

)2

, (52)

which is well valid under condition kv0 � γ .
The positive dimensionless function 
12(δ2/kv0, γ /kv0)

> 0 in Eq. (51) has a nonlinear dependence on the detuning
δ2 [see Fig. 7(a) for different values of γ /kv0]. As we see,
the function 
12(δ2/kv0, γ /kv0) looks like an even func-
tion of δ2 and grows with increasing |δ2| in the interval
0 � |δ2| � 1.5kv0, which for |δ2| ∼ kv0 leads to a significant
excess of the shift �

(12)
sh over the shift (2) caused by the

interatomic dipole-dipole interaction. In particular, for δ2 =
±kv0 (see Fig. 5) the value of the second term in Eq. (51)
is an order of magnitude greater than the value (2), because

12(δ2/kv0, γ /kv0) ≈ 10. However, for small values of fixed
δ2 [for |δ2| < 0.2kv0, as can be seen from Fig. 7(a)], the
shift �

(12)
sh becomes less than (2). Such a shift behavior has

the following explanation. First, the very appearance of the
second term (∝ N k−3) in (51) is due to nonzero real part of

FIG. 4. The line shape of the transmission signal (42) in the case of counterpropagating waves, when the frequency ω1 is scanned (i.e., δ1

is varied) at the fixed frequency ω2 for different thicknesses of the medium: (a) kL = 2π × 100; (b) kL = 2π × 400. Calculation parameters:
N k−3 = 0.001, kv0 = 50γ , S1 = S2 = 0.2, δ2 = −10γ .
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FIG. 5. Comparison of the sub-Doppler resonance line shape for an optically thin medium in our theory [see Re{K2}Re{C12.2} in Eq. (44)]
(red solid line) with the known expression [see W (δ1, δ2) in Eq. (48)] (blue dashed line) in the case of counterpropagating waves, when
the frequency ω1 is scanned (i.e., δ1 is varied) at a fixed frequency ω2 for different values of δ2: (a) δ2 = −50γ ; (b) δ2 = 50γ . Calculation
parameters: N k−3 = 0.02, kv0 = 50γ .

the wave numbers [i.e., Re{Kl} �= 0 in the integrand for C12,2,
see Eq. (30)]. Second, as is well known, the main contribution
to the formation of sub-Doppler resonance is made by atoms
near the velocity group kv = −δ2, which interact resonantly
with both waves at δ1 ≈ −δ2. Therefore, the influence of
Re{Kl} �= 0 for the expression C12,2 becomes most significant
in the case of high velocity of resonant atoms (|kv| � γ ), i.e.,
for large values of |δ2| � γ . Note that another correction ∝
Re{C21,2} in the expression (42) [and accordingly in (44)],
caused by the interference of counterpropagating waves, has
the form of a wide resonant structure with a very small
amplitude (see Fig. 8), and therefore its contribution can be
neglected in the case of kv0 � γ .

3. δ1 is fixed, δ2 is varied

Figure 9(a) shows the full line shape of the transmission
signal (42) for δ1 = const. Unlike the previous case, in which
the sub-Doppler resonance appears on a wide Doppler profile
(see Fig. 4), here a narrow sub-Doppler resonance occurs on
a constant substrate. In the case of an optically thin medium
in Figs. 9(b) and 9(c), a comparison for the line shape of

FIG. 6. The frequency dependence R(δ, γ , kv0 ) [see Eqs. (51)
and (53)] for different values of γ /kv0.

the sub-Doppler resonance in our case [see Re{K2}Re{C12,2}
in Eq. (44)] with a known expression (48) [see W (δ1, δ2) in
Eq. (45)] is presented. In addition to differences in the ampli-
tudes of the sub-Doppler resonance, there is always a negative
shift �

(21)
sh < 0 for any sign of the fixed δ1 (for |δ1| � γ ).

Similar to the formula (51), the shift �
(21)
sh for N k−3 
 1 can

be approximately represented as

�
(21)
sh ≈ R(δ1, γ , kv0) − 
21(δ1/kv0, γ /kv0)N k−3γ , (53)

where the dimensionless function 
21(δ1/kv0, γ /kv0) is pre-
sented in Fig. 7(b) for different values of γ /kv0. Note that, in
contrast to the positively defined function 
12(δ2/kv0, γ /kv0)
[see Fig. 7(a)], the function 
21(δ1/kv0, γ /kv0) near zero
has a negative sign. However, comparing all the curves in
Figs. 7(a) and 7(b), it is clearly seen that all dependences

12(δ2/kv0, γ /kv0) and 
21(δ1/kv0, γ /kv0) differ little from
each other under condition kv0 � γ . Moreover, there is
the unified functional dependence 
̃(δ1,2/kv0) in the limit
(γ /kv0) → 0, which is shown in Fig. 7(c).

In addition, from the viewpoint of experimental observa-
tion of a previously unknown shift �

(21)
sh (or �

(12)
sh ) caused by

the motion of atoms, the variant of spectroscopy, when δ2 is
varied (δ1 is fixed), looks more preferable, since in this case
there is no wide Doppler profile, which somewhat distorts the
line shape of the narrow sub-Doppler resonance.

B. Two copropagating waves

Let both waves with frequencies ω1 and ω2 propagate
through the atomic medium from the left to right. In this case,
the signs of the imaginary and real parts for the normalized
wave numbers K1, K2, K11,2, and K22,1 in solving Eqs. (15)
and (28) are chosen as follows:

Im{K1} ≈ 1 > 0, Re{K1} < 0,

Im{K11,2} ≈ 1 > 0, Re{K11,2} < 0,

Im{K2} ≈ 1 > 0, Re{K2} < 0, (54)

Im{K22,1} ≈ 1 > 0, Re{K22,1} < 0.
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FIG. 7. (a) The dependence 
12(δ2/kv0, γ /kv0 ) for different values of γ /kv0. (b) The dependence 
21(δ1/kv0, γ /kv0 ) for different values
of γ /kv0. (c) The general functional dependence 
̃(δ1,2/kv0 ) in the limit of (γ /kv0 ) → 0.

Considering the boundary condition, we assume that at the
entrance to the atomic medium on the left (at the point z =
0) the oscillating amplitudes of the field of an external laser
source with frequencies ω1 and ω2 are equal to E10e−iω1t and

E20e−iω2t , respectively. Then, the field in the medium E (t, z =
0) [see Eq. (32)] should have the same oscillating amplitudes.
As a result, the boundary condition at the point z = 0 has the
form

E10e−ω1t + E20e−ω2t = e−iω1t [E1 + A11,1 + A12,2 + A21,2] + e−iω2t [E2 + A22,2 + A21,1 + A12,1] + e−i(2ω1−ω2 )t [A11,2 + B11,2]

+ e−i(2ω2−ω1 )t [A22,1 + B22,1], (55)

which leads to the following:

E1 = E10 − A11,1 − A12,2 − A21,2,

E2 = E20 − A22,2 − A21,1 − A12,1, (56)

B11,2 = −A11,2, B22,1 = −A22,1.

Thus, the expression for the field in the medium (32) can be rewritten as

E (t, z) ≈ E (1)(t, z) + E (3)(t, z) = e−iω1t+K1kz[E10 + A11,1(e2Re{K1}kz − 1) + (A12,2 + A21,2)(e2Re{K2}kz − 1)]

+ e−iω2t+K2kz[E20 + A22,2(e2Re{K2}kz − 1) + (A21,1 + A12,1)(e2Re{K1}kz − 1)]

+ e−i(2ω1−ω2 )tA11,2[e(2K1+K∗
2 )kz − eK11,2kz] + e−i(2ω2−ω1 )tA22,1[e(2K2+K∗

1 )kz − eK22,1kz] + c.c., (57)

where in the formula (29) for the amplitudes A jm,n we can put E1 = E10 and E2 = E20. Note that, in contrast to the case of
counterpropagating waves, for copropagating waves the amplitudes A11.2 and A22.1 of the contributions at the combination
frequencies ω11,2 = (2ω1 − ω2) and ω22,1 = (2ω2 − ω1) are not negligible (see the Appendix).

Since in this case all frequency components propagate in the same direction (from the left to right), the transmission signal is
determined by the intensity at the output from the medium I (L) ∝ |E (t, z = L)|2. Based on the expression (57), this spectroscopic
signal has a complex structure, which, in addition to stationary contributions, also contains low-frequency oscillations at
frequencies (ω1 − ω2) and 2(ω1 − ω2). However, as an example, we will consider the transmission signal only for the field

FIG. 8. The line shape of the nonlinear correction ∝ Re{K2}Re{C21.2} in Eq. (44) for an optically thin medium in the case of counterpropa-
gating waves when the frequency ω1 is scanned (i.e., δ1 is varied) at a fixed frequency ω2 for different values of δ2: (a) δ2 = 0; (b) δ2 = −50γ ;
(c) δ2 = 50γ . Calculation parameters: N k−3 = 0.001, kv0 = 50γ .
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FIG. 9. The case of counterpropagating waves, when the frequency ω2 is scanned (i.e., δ2 is varied) at a fixed frequency ω1 for different
values of δ1. (a) The line shape of the transmission signal (42) for δ1 = −10γ , N k−3 = 0.001, S1 = S2 = 0.2, kL = 2π × 100. (b), (c)
Comparison of the sub-Doppler resonance line shape for an optically thin medium in our theory [see Re{K2}Re{C12,2} in Eq. (44)] (red solid
line) with the well-known expression [see W (δ1, δ2) in Eq. (48)] (blue dashed line): (b) δ1=−50γ , N k−3 = 0.02; (c) δ1 = 50γ , N k−3 = 0.02.
Calculation parameters: kv0 = 50γ .

at the frequency ω1, which has the following form:

I1(L) = I1(0)e2Re{K1}kL[1 + 3πN k−3S1(e2Re{K1}kL − 1)Re{C11,1} + 3πN k−3S2(e2Re{K2}kL − 1)Re{C12,2 + C21,2}]. (58)

For an optically thin medium, this formula formally coincides
with Eq. (44), but taking into account the conditions (54). In
the case of copropagating waves, in the well-known classical
expression (45) for functions of two frequencies W (δ1, δ2) and
V (δ1, δ2) we need to use the expressions

W (δ1, δ2) = 1

8

〈
f (v)γ 4

|(γ /2 − iδ1 + ikv)(γ /2 − iδ2 + ikv)|2
〉
v

,

V (δ1, δ2) = 1

4
Re

〈
γ 3 f (v)

(γ /2 − iδ1 + ikv)2(γ /2 + iδ2 − ikv)

〉
v

,

(59)

instead of the formulas (48) and (49).
An experimental implementation of observing the trans-

mission signal only for the wave with frequency ω1 can be
achieved using a small angle between the directions of prop-
agation of light beams with frequencies of ω1 and ω2. In
this case, at a sufficiently large distance from the atomic cell,
these light beams will diverge, which will make it possible to
detect each of the waves separately. Here we can consider two
spectroscopic options for observing narrow (with a width of
the order of γ ) sub-Doppler resonances.

(1) The frequency ω1 is scanned (i.e., δ1 is varied) at a fixed
frequency ω2 (i.e., δ2 = const).

(2) The frequency ω2 is scanned (i.e., δ2 is varied) at a fixed
frequency ω1 (i.e., δ1 = const).

1. δ1 is varied, δ2 is fixed

Figure 10(a) shows the line shape of the transmission
signal (58) for δ2 = const. Sub-Doppler resonance occurs
when scanning δ1 near the value δ2. In the case of an opti-
cally thin medium in Figs. 10(b) and 10(c), a comparison is
made for the sub-Doppler resonance line shape in our case
Re{K2}Re{C12,2 + C21,2} [see Eq. (44)] with the expression
[W (δ1, δ2) + V (δ1, δ2)] [see (59) in Eq. (45)]. Comparing

Figs. 10(b) and 10(c) with the curves in Figs. 5(a) and 5(b),
it is clearly seen that the frequency shift, caused by the atomic
motion in a gas, in the case of copropagating waves is much
less than in the case of counterpropagating waves. Note also
that, in contrast to the case of counterpropagating waves (see
Fig. 8), for copropagating waves both terms Re{K2}Re{C12,2}
and Re{K2}Re{C21,2} contain comparable contributions to the
sub-Doppler resonance (see Fig. 11).

2. δ1 is fixed, δ2 is varied

Unlike the previous case, in which the sub-Doppler reso-
nance appears on the wide Doppler profile [see Fig. 10(a)],
here is only a narrow sub-Doppler resonance on the flat sub-
strate around the value δ1 [see Figs. 12(a)]. In the case of an
optically thin medium in Figs. 12(b) and 12(c), a compari-
son is made for the sub-Doppler resonance line shape in our
case Re{K2}Re{C12,2 + C21,2} [see Eq. (44)] with the known
expression [W (δ1, δ2) + V (δ1, δ2)] [see (59) in Eq. (45)].
Comparing Figs. 12(b) and 12(c) with the curves in Figs. 9(b)
and 9(c), it is clearly seen that the frequency shift, caused by
the atomic motion in a gas, in the case of copropagating waves
is much less than in the case of counterpropagating waves.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have developed a consistent field-
nonlinear theory of sub-Doppler spectroscopy in a gas of
two-level atoms, based on a self-consistent solution of the
Maxwell-Bloch equations in the mean-field and single-atom
density-matrix approximations. This made it possible to cor-
rectly take into account the effects caused by the free motion
of atoms in a gas, which lead to a nonlinear dependence of the
spectroscopic signal on the atomic density, although it is not
associated with direct interatomic dipole-dipole interaction.
Therefore, this can be interpreted as atomic-motion-induced
quasicollective effects. Within the framework of our approach,
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FIG. 10. The case of copropagating waves, when the frequency ω1 is scanned (i.e., δ1 is varied) at a fixed frequency ω2 for different values
δ2. (a) The line shape of the transmission signal (58) for δ2 = 10γ , N k−3 = 0.001, S1 = S2 = 0.2, kL = 2π × 400. (b), (c) Comparison of the
sub-Doppler resonance line shape for an optically thin medium in our theory [see Re{K2}Re{C12,2 + C21,2} in Eq. (44)] (red solid line) with
the known expression [W (δ1, δ2) + V (δ1, δ2)] [see Eq. (59)] (blue dashed line): (b) δ2 = 50γ , N k−3 = 0.02; (c) δ2 = −50γ , N k−3 = 0.02.
Calculation parameters: kv0 = 50γ .

the analytical expression for the field was obtained for an
arbitrary number of resonant traveling waves and an ar-
bitrary optical thickness of the gas medium. Sub-Doppler
spectroscopy in the transmission signal for two counter- or
copropagating waves has been studied in detail. A previously
unknown redshift of a narrow sub-Doppler resonance has been
predicted in a counterpropagating wave scheme, when the
frequency of one of the waves is fixed and the frequency of the
other wave is varied. The magnitude of this shift depends on
the atomic density and can be more than an order of magnitude
greater than the known shift from the interatomic dipole-
dipole interaction (2). In the case of copropagating waves,
this shift is much smaller. In addition to the fundamental
aspect, the obtained results are of importance for precision
laser spectroscopy and optical atomic clocks.

Note that in some modern theoretical calculations (e.g.,
see Refs. [24,31,32]), inhomogeneous Doppler broadening
is described within the mathematical model of motionless
atoms, where the resonance frequency of each atom in an

FIG. 11. The case of copropagating waves, when the frequency
ω1 is scanned (i.e., δ1 is varied) at a fixed frequency ω2. The
frequency dependences Re{K2}Re{C12,2} (green solid line) and
Re{K2}Re{C21,2} (blue dashed line) are shown. Calculation param-
eters: δ2 = 50γ , N k−3 = 0.02, kv0 = 50γ .

ensemble is shifted by a Gaussian-distributed random variable
with zero mean and the rms value k0v0. However, it should
be emphasized that in this stochastic approach, the effects of
the free motion of atoms, which we found, cannot be taken
into account. Indeed, these effects are rigorously based on
the presence of the differential operator (v · ∇ ) in the Bloch
equations for the density matrix of moving atoms in combina-
tion with the complex-valued wave vector (due to the light
absorption in a gas), which cannot be reduced only to the
Doppler frequency shift for moving atoms.

Note also that the presented results were obtained for a
closed two-level model, which strictly corresponds only to the
real atomic transition Jg=0 → Je=1 (where Jg and Je are the
angular momenta of the ground and excited states, respec-
tively). Therefore, an additional problem is how to choose
a suitable atom with such a transition. The even isotopes
(with zero nuclear spin) of alkaline-earth atoms (e.g., Mg,
Ca, Sr, Yb, Hg) with closed optical transitions 1S0 → 1P1

and 1S0 → 3P1 seem to be the most appropriate. However,
the melting temperature for almost all of these elements is
very high (≈1000 K), which makes it extremely difficult to
experiment with vapor cells. The only exception is the even
isotopes 196-204Hg of the mercury atom (melting point 234 K)
with the intercombination transition 1S0 → 3P1 convenient for
our purposes (λ = 253.7 nm, γ0/2π = 1.3 MHz) [49,50,53].
However, when using atomic beams, it is possible to use any
atoms of this specified group.

As a further development of our approach, the light propa-
gation in a gas of atoms with Zeeman and hyperfine structure
of energy levels can be considered. In this case, when con-
structing a field-nonlinear theory, it is necessary to take into
account the redistribution of populations over the Zeeman
sublevels in the ground state (due to spontaneous relaxation of
the excited state), which is absent in the ideal two-level model
considered by us. In addition, since our general formulas are
obtained for an arbitrary number of traveling waves, it is
possible to construct a spectroscopic signal for laser sources
with a spectral width greater than the natural width of the
optical transition (γ ).

We emphasize that the experimental verification of the pre-
dicted frequency shifts (including the results in Refs. [46,47])
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FIG. 12. The case of copropagating waves, when the frequency ω2 is scanned (i.e., δ2 is varied) at a fixed frequency ω1 for different values
δ1. (a) The line shape of the transmission signal (58) for δ1 = −10γ , N k−3 = 0.001, S1 = S2 = 0.2, kL = 100. (b, c) Comparison of the
sub-Doppler resonance line shape for an optically thin medium in our theory [see Re{K2}Re{C12,2 + C21,2} in Eq. (44)] (red solid line) with
the known expression [W (δ1, δ2) + V (δ1, δ2)] [see Eq. (59)] (blue dashed line): (b) δ1 = −50γ , N k−3 = 0.02; (c) δ1 = 50γ , N k−3 = 0.02.
Calculation parameters: kv0 = 50γ .

is very important from a fundamental viewpoint, because it
will allow us to understand how much the commonly used
theory, based on the Maxwell-Bloch equations in the mean-
field approximation with the use of a single-atom density-
matrix formalism [see Eqs. (3)–(5)], is adequate and accurate
to describe the light waves propagation in a gas [54]. The
main technical problem here is that to reliably observe and
measure these shifts, sufficiently high atomic densities are re-
quired, which for ordinary centimeter-sized atomic cells will
lead to almost complete absorption of the light. According
to our estimates, the optimal length of atomic vapor cells (to
study the predicted shifts in the transmission signal) is about
L ≈ 10–100 µm.
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APPENDIX

In the case of two external monochromatic waves with
frequencies ω1 and ω2, let us consider the wave at the com-
bination frequency ω11.2 = 2ω1 − ω2, which arises in the
medium as a nonlinear contribution, the amplitude of which
is determined by the value A11.2 [see Eqs. (38) and (57)].
In accordance with the expression (32), the source of this
contribution is the traveling wave

A11,2 e−i(2ω1−ω2 )t+(2K1+K∗
2 )kz, (A1)

where the amplitude A11,2 is proportional to the dimensionless
quantity

A11,2 ∝ N k−3C11,2, (A2)

as follows from Eq. (29).
In the case of two counterpropagating waves, for the com-

bination wave (A1), we can write

e−i(2ω1−ω2 )t+(2K1+K∗
2 )kz ≈ e−i(2ω1−ω2 )t+i3kz, (A3)

taking into account Eq. (33) for N k−3 
 1. At the same time,
for resonant frequencies the following approximation holds

FIG. 13. The line shape of the amplitude |A11,2| ∝ N k−3|C11,2| of the nonlinear correction oscillating at the combination frequency ω11,2 =
2ω1 − ω2, in the case when the frequency ω2 is scanned (i.e., δ2 is varied) at the fixed frequency ω1: (a) for counterpropagating waves; (b) for
copropagating waves. Calculation parameters: N k−3 = 0.01, kv0 = 50γ , δ1 = 0.
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well:

(2ω1 − ω2) ≈ ωeg = kc. (A4)

As a result of this, for the wave (A1), there is a radical viola-
tion of phase matching [see factor exp{i3kz} in the right side
of Eq. (A3)]. Therefore, from a physical viewpoint, it should
be expected that the amplitude A11,2 of such a wave in the
medium will have a negligibly small value.

In contrast, in the case of two copropagating waves, for
which Eq. (54) holds, we can write

e−i(2ω1−ω2 )t+(2K1+K∗
2 )kz ≈ e−i(2ω1−ω2 )t+ikz. (A5)

Here, taking into account Eq. (A4), there is good phase match-
ing for the combination wave (A1) and we can expect that its
amplitude A11.2 is not negligible.

As confirmation of the above qualitative analysis, Fig. 13
presents the frequency dependences of the value N k−3|C11.2|
[see Eq. (A2)], when the frequency ω1 is fixed and the fre-
quency ω2 is varied. Comparing Figs. 13(a) and 13(b), it is
clearly seen that in the case of counterpropagating waves,
the amplitude A11.2 for the generated wave (A1) is many
orders of magnitude less than for the case of copropagating
waves. In the case of counterpropagating waves, the frequency

dependence has the form of a wide profile with a Doppler
width ∝ kv0, while for copropagating waves the frequency
dependence has the form of a narrow sub-Doppler resonance
with a width ∝ γ .

Obviously, all of the above also applies to the wave at the
combination frequency ω22,1 = 2ω2 − ω1, which is also born
in the medium as a nonlinear contribution. The source of this
contribution is the traveling wave

A22,1 e−i(2ω2−ω1 )t+(2K2+K∗
1 )kz, (A6)

in accordance with the expression (32).
In addition, if waves at combination frequencies ω11,2 =

2ω1 − ω2 and ω22,1 = 2ω2 − ω1 are falling on the photode-
tector together with the main waves with frequencies ω1 and
ω2 (in the case of copropagating waves), then the oscillations
appear at frequencies (ω2 − ω1) and 2(ω2 − ω1) in the trans-
mission signal ∝ |E (t, z = L)|2 [see the expression (57) for
E (t, z)]. When scanning one of the frequencies (ω1 or ω2),
these oscillations will be perceived as noise at the sub-Doppler
resonance (i.e., when ω1 ≈ ω2). Moreover, these contribu-
tions will fluctuate under phase fluctuations of the incident
external waves (even in the exact resonance, ω1 = ω2), which
enhances their noise effect.
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