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The spin angular-momentum density vector and the so-called spin vector reflecting the polarization properties
of a light field are parallel for a monochromatic light field whose polarization ellipse at a point necessarily lies in
a fixed plane. In contrast, the electric field of polychromatic light may, in general, evolve in three directions such
that the average intensity in all of them is nonzero for any orientation of the reference frame. Consequently, the
two vectors are no longer necessarily parallel. In this work we consider tightly focused bichromatic Lissajous
beams and show that the spin angular-momentum density vector and the spin vector in such three-dimensional
light fields may point in markedly different directions, almost orthogonal in some cases, and thus generally
provide different information on the spin of light.
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I. INTRODUCTION

The spin angular momentum (SAM) is a fundamental
property in electrodynamics [1–8], while the so-called spin
vector, describing the helicity and direction around which the
electric field circulates, is an important polarimetric quantity
[9–11]. The local SAM is quantified by the SAM density vec-
tor, which in the case of monochromatic light field is parallel
to the spin vector. Hence, for a monochromatic field the two
vectors provide the same directional information on the spin
and are practically interchangeable [12]. The assumption of
monochromaticity is often adequate and it has been applied,
e.g., to studies concerning the transverse nature of spin in
evanescent waves [4,5,13] and focal fields [4,5,14–16].

For polychromatic fields, however, the connection between
the directions of the SAM density vector and spin vector is
more elusive. In the case of polychromatic two-dimensional
(2D) fields (beams and far fields), the electric vector is re-
stricted to a plane and the two vectors are either parallel or
antiparallel, depending on the spectral helicity properties [12].
Even more freedom with the directions is found for genuine
3D fields whose characteristic property is that the intensities
of the Cartesian field components are nonzero for any orienta-
tion of the frame. Such fields are common in nano optics and
other situations involving highly nonparaxial light [17,18].
The general formalism for the possible distinct directions of
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the SAM density and spin vectors in the case of polychromatic
3D light was given in [12], but no explicit physical situation
where the effect occurs has been explored. In this work we
consider tight focusing of bichromatic Lissajous beams and
demonstrate that in the focal plane the two vectors can be
almost orthogonal. Therefore, the complementary information
the two vectors carry about the spin of light can be highly
different.

This paper is structured as follows. In Sec. II we consider
superpositions of monochromatic optical fields and derive
expressions for the related (electric) SAM density vector and
spin vector. We further introduce the polarization descriptors
needed in this work. The Lissajous beams are introduced in
Sec. III and the spin properties of the focal fields they generate
are studied in Sec. IV. In Sec. V we summarize the main
conclusions.

II. SUPERPOSITION OF MONOCHROMATIC
ELECTRIC FIELDS

A. SAM density and spin vectors

Consider an electric field composed of N monochromatic
components of different frequencies. At an instant of time t it
can be written as E(t ) = Re[E (t )], where Re denotes the real
part and

E (t ) =
N∑

n=1

Ene−iωnt , (1)

with En the three-component (complex, column) Jones vector
that represents the local polarization state at (positive) angular
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frequency ωn. The dual-symmetric form of the electric SAM
density vector is [1,3,7,8]

S(t ) = ε0

2
E(t ) × A(t ), (2)

where ε0 is the vacuum permittivity and A(t ) is the real-
value vector potential that satisfies E(t ) = −dA(t )/dt . In
analogy to the electric field, the vector potential can be written
as A(t ) = Re[A(t )], where A(t ) = ∑N

n=1 Ane−iωnt , with the
amplitudes obeying En = iωnAn.

Inserting E(t ) and A(t ) into Eq. (2) leads to

S(t ) = −iε0

8

(
N∑

n=1

N∑
m=1

1

ωm
En × Eme−i(ωn+ωm )t

+
N∑

n=1

N∑
m=1

1

ωm
E∗

n × Emei(ωn−ωm )t − c.c.

)
, (3)

where the asterisk and c.c. denote the complex conjugate. The
time-averaged SAM density vector is given by

S = 〈S(t )〉 = lim
T →∞

1

T

∫ T/2

−T/2
S(t )dt . (4)

Next we apply the relation

lim
T →∞

1

T

∫ T/2

−T/2
e±i(ωn−ωm )t dt = δnm, (5)

where δnm is the Kronecker delta and we note that the sum
frequency terms in Eq. (3) vanish on averaging. It then follows
that

S =
N∑

n=1

Sn, (6)

where

Sn = ε0

4ωn
Im(E∗

n × En) (7)

is the SAM density vector of the monochromatic field com-
ponent at angular frequency ωn [4,5], with Im denoting the
imaginary part.

The spin vector of the total electric field is [12,19]

n = Im〈E∗(t ) × E (t )〉. (8)

Performing the averaging as above results in

n =
N∑

n=1

nn, (9)

where

nn = Im(E∗
n × En) (10)

is the spin vector related to a single frequency component of
the field.

Physically, the SAM density vector S describes the spin
angular momentum per unit volume at a point, while n is
closely linked to the polarization state and can be viewed
as expressing the direction around which the electric vector
circulates [11]. For a monochromatic field these vectors are
parallel, as seen explicitly from Eqs. (7) and (10). The electric
field of monochromatic light draws in general an ellipse in

a plane orthogonal to n and the orientation of this plane
may be different at different points. Further, the magnitude
of n is directly given by the helicity of the field [12]. These
properties are restricted to monochromatic light, which is an
idealized concept even though in many situations it provides
a sufficiently accurate description of the field.

In practice, however, both synthetic and natural optical
fields are polychromatic, for which the electric vector is not
necessarily restricted to a plane and the average intensity in
all three orthogonal directions may be nonzero for any orien-
tation of the reference frame. It is evident from Eqs. (6), (7),
(9), and (10) that in such a case S and n are not necessarily
parallel due to the frequency factor 1/ωn. In other words,
for polychromatic 3D light the SAM density vector is not
generally aligned to the direction n around which the electric
field, on average, whirls. We also note that in this case the spin
vector n is proportional to the helicity-weighted average of the
corresponding (unit) direction vectors of the monochromatic
components. This is clear from Eq. (9) by writing nn = s3,nûn

[12], where s3,n is the helicity related to En and ûn is the unit
vector normal to the polarization plane of En.

B. Polarization properties

The subsequent discussion of the properties of optical spin
in tight focusing requires the introduction of some polari-
metric notions of the incident beam and of the focal field.
The beam is a two-component field which can be expressed
as E(t ) = [Ex(t ), Ey(t )]T, where T denotes the transpose,
while the focal field necessitates a three-component represen-
tation E(t ) = [Ex(t ), Ey(t ), Ez(t )]T. The structure of Eq. (1)
holds for both types of fields, but for the former the vector
amplitudes En are composed of two components only. The
time-averaged polarization matrix representing the polariza-
tion properties at a point is given by [10,20]

� = 〈E∗(t )ET(t )〉 =
N∑

n=1

E∗
nET

n . (11)

The matrix � is evidently a sum of the polarization matrices
related to the individual monochromatic field components.
In addition, for a two-component (three-component) field the
polarization matrix is a 2 × 2 (3 × 3) matrix. In both cases the
intensity of the field is I = tr�, where tr stands for the trace.

The degree of polarization associated with the incident
beam is given by

P =
(

1 − 4 det �

tr2�

)1/2

, (12)

where det denotes the determinant. The value of P is between
zero and one, reflecting a fully unpolarized and a fully po-
larized beam, respectively. The dimensionality of the focal
(three-component) field is characterized by the polarimetric
dimension [21]

D = 3 − 2d, (13)

where

d =
[

3

2

(
tr(Re2�)

tr2(Re�)
− 1

3

)]1/2

. (14)
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The quantity d describes the intensity anisotropy of the
polarization state [22] and is bounded as 0 � d � 1.
The polarimetric dimension therefore obeys 1 � D � 3, with
the lower and upper limits corresponding to one-dimensional
light of maximal intensity anisotropy and intensity-isotropic
3D light, respectively. The value D > 2 is a clear signature of
a genuine 3D field character. However, for D � 2 the intensity
in all three orthogonal directions may still be nonzero for all
orientations of the frame, i.e., the field is a true 3D field.

III. LISSAJOUS BEAMS

In this work we consider bichromatic Lissajous beams
composed of two monochromatic fields with different fre-
quencies and polarization states [23–26]. The complex
electric field of such a superposition is of the form of Eq. (1)
with N = 2, and

En = aneiφn ên, n ∈ (1, 2), (15)

where an, φn, and ên are the real amplitude, phase, and (com-
plex) polarization unit vector for the nth wave, respectively. In
Cartesian coordinates, the polarization vectors are expressed
as

ên = αnêx + βnêy, n ∈ (1, 2), (16)

where αn and βn are complex coefficients, with |αn|2 +
|βn|2 = 1, and êx and êy are the unit (column) vectors in the
x and y directions. The polarization curve, i.e., the trajectory
of the tip of electric field vector E(t ), is governed by the
parameters an, φn, ên, and ωn, n ∈ (1, 2).

The total (time-averaged) spin vector is obtained from
Eqs. (9) and (10) as n = n1 + n2, with

nn = ia2
n(αnβ

∗
n − α∗

nβn)êz, n ∈ (1, 2). (17)

In addition, according to Eqs. (6) and (7), the total SAM vector
is given by

S = ε0

4

(
1

ω1
n1 + 1

ω2
n2

)
. (18)

Employing Eq. (11), the polarization matrix of the beam is
found to be

� =
(

a2
1|α1|2 + a2

2|α2|2 a2
1α

∗
1β1 + a2

2α
∗
2β2

a2
1α1β

∗
1 + a2

2α2β
∗
2 a2

1|β1|2 + a2
2|β2|2

)
, (19)

and the degree of polarization P can be calculated from
Eq. (12).

Next we introduce two Lissajous beams whose SAM den-
sity vector and spin vector in the focal region are studied in
the next section. In the first case, the polarization states are
right-hand and left-hand circular polarization states with ê1 =
(êx + iêy)/

√
2 and ê2 = (êx − iêy)/

√
2, respectively. The de-

gree of polarization equals P = |a2
1 − a2

2|/(a2
1 + a2

2), while
the spin vectors of the constituent beams are n1 = a2

1êz and
n2 = −a2

2êz, where êz is the unit vector in the z direction.
We note that when a1 = a2, the field is unpolarized (P = 0)
and carries no spin vector, i.e., n = 0, but the SAM density
vector is nonzero, S = (ε0I/8)(1/ω1 − 1/ω2)êz. The situation
is opposite when ω2a2

1 = ω1a2
2 holds, i.e., the SAM den-

sity vector is zero S = 0, while the spin vector is nonzero

FIG. 1. Polarization curves for the bichromatic Lissajous beams
having ê1 = (êx + iêy )/

√
2, ê2 = (êx − iêy )/

√
2, ω1 = 2ω2, and

φ1 = φ2 = 0, for various ratios a1/a2. The values for the degree of
polarization P are also shown.

n = (a2
1 − a2

2)êz. The degree of polarization now takes the
form P = |ω1 − ω2|/(ω1 + ω2).

In Fig. 1 we show the polarization curves of the above
Lissajous beam for various amplitude ratios a1/a2. In the
illustrations we set ω1 = 2ω2 and φ1 = φ2 = 0 and display
also the values for the degree of polarization. We find that
the (real-value) electric field E(t ) traces out symmetric closed
curves with three, one, or zero self-intersections. For a1/a2 	
1, the polarization curve approaches that corresponding to the
polarization state ê1 (circle), while for a1/a2 
 1 it reduces
to that of ê2 (also circle). In both limiting cases, the degree
of polarization approaches unity. For a1/a2 = 1, the field is
unpolarized and its polarization curve shows a Lissajous-like
curve with only one self-intersection.

In the second case, we set the polarization states as ê1 = êx

and ê2 = êy, corresponding to orthogonal linear polarizations.
The degree of polarization has the same expression as in
the first case. However, the spin vectors vanish n1 = n2 = 0.
Therefore, the field carries neither a spin vector nor a SAM
density vector. The polarization curves of such a field with
different ratios a1/a2 are presented in Fig. 2 and we find that
the electric field E(t ) traces out a curved line. In the limit-
ing case when a1/a2 	 1, the polarization curve tends to a
straight line in the x direction (x-polarized beam), while when

FIG. 2. Polarization curves for the bichromatic optical Lissajous
fields with ê1 = êx , ê2 = êy, ω1 = 2ω2, and φ1 = φ2 = 0. The varied
ratio a1/a2 and the related degree of polarization are shown in each
panel.
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a1/a2 
 1 it approaches a line in the y direction (y-polarized
beam).

IV. TIGHTLY FOCUSED LISSAJOUS BEAMS

In this section we study the spin properties of tightly fo-
cused bichromatic Lissajous beams. The focusing system is
an aplanatic objective lens with high numerical aperture and
its operation is treated within the Richards-Wolf formalism
[27]. A description of the formalism can be found in many
works [17,28,29] and is not presented here. The electric field
in the focal region is expressible as

E ( f )(r, t ) = E( f )
1 (r)e−iω1t + E( f )

2 (r)e−iω2t , (20)

where we have introduced a position vector r = (x, y, z) and
the superscript f indicates a focal field. Further, E( f )

1 (r) and
E( f )

2 (r) are the three-component electric vectors produced by
the incident two-component vectors E1 and E2, respectively,
given in Eq. (15). The vectors E( f )

1 (r) and E( f )
2 (r) result from

the Richards-Wolf vectorial diffraction integral and the spin
characteristics of E ( f )(r, t ) are obtained with the formalism
developed in Sec. II. In the two situations considered be-
low, we take the numerical aperture to be equal to 0.95,
while the focal length of the lens is f = 3 mm. In addi-
tion, the focusing system is placed in a vacuum environment
and the wavelengths for the incident constituent fields that
form the Lissajous beams are λ1 = 300 nm and λ2 = 600 nm,
i.e., the angular frequencies obey ω1 = 2ω2.

A. Superposition of circularly polarized beams

Next we assess the spin properties of the field obtained
by focusing a bichromatic Lissajous beam with ê1 = (êx +
iêy)/

√
2, ê2 = (êx − iêy)/

√
2, and a1 = a2 = 1. Such an inci-

dent beam is unpolarized P = 0 and the spin vector vanishes
n = 0, while the SAM density vector S is nonzero. Fig-
ures 3(a) and 3(b) show the focal-plane spatial distributions
for the components of the spin vector and SAM density vector,
respectively. In addition, Fig. 3(c) depicts the entire vectors
n and S, whereas Fig. 3(d) illustrates the angular difference
of their directions. Unlike the incident beam, the focal field
carries a nonzero spin vector in addition to the SAM density
vector. The transverse spin n⊥ = (nx, ny) originates from the
generation of the out-of-phase longitudinal field component.
Instead, the longitudinal spin nz is due to the different focusing
properties of the waves with different wavelengths. More pre-
cisely, the input wave with smaller wavelength λ1 will create a
tighter focal spot with larger intensity (when a1 = a2) than the
other wave. Consequently, the spatial distribution of nz1(r) is
tighter than that of nz2(r) and the total longitudinal spin obeys
nz(r) = nz1(r) + nz2(r) �= 0. From the spatial distributions of
the spin vector and the SAM density vector in Fig. 3(c), we
observe a notable angular difference between the two vectors
within the region of significant spin values. It is seen from
Fig. 3(d) that the angular separation can be more than 30◦.
The directional difference is explained as follows. Figure 3(c)
indicates that the transverse vectors n⊥ and S⊥ = (Sx, Sy)
show the vortex distributions of the same shape. However, the
ratios of the transverse and longitudinal components in n and
S are different, which causes the angular difference.

FIG. 3. Focal-plane spatial distributions of (a) the components
of the spin vector n = (nx, ny, nz ); (b) the components of the SAM
density vector S = (Sx, Sy, Sz ); (c) the spin vector (red) and the SAM
density vector (black), with the vertical axis showing the strengths
of the z components in arbitrary units; (d) the angular separation
of n and S in the region where |n| and |S| are larger than 10% of
their maximum values; (e) the polarimetric dimension D; and (f)
the electric-field trajectory at a point where D reaches its maximum
value [white dot in (e)]. The parameters of the incident Lissajous
beam are λ1 = 300 nm, λ2 = 600 nm, a1 = a2 = 1, φ1 = φ2 = 0,
ê1 = (êx + iêy )/

√
2, and ê2 = (êx − iêy )/

√
2.

The angular separation of n and S needs to be contrasted
with the dimensionality of the polarization state. Figure 3(e)
shows the spatial distribution of the polarimetric dimension
D of Eq. (13) in the focal plane. We find that D can assume
values larger than 2, which is an exclusive indication of the
genuine 3D polarization character of the field. In particular,
compared to Fig. 3(d), we observe that large angular sepa-
rations of n and S occur in regions where D > 2. This is
as expected since the spin vector and SAM density vector
point in the same or opposite directions for beamlike fields
for which necessarily D � 2 [12]. In Fig. 3(f) we plot the po-
larization trajectory of the electric field E(t ) in the focal plane
at a spatial point [marked by a white dot in Fig. 3(e)] where D
reaches its maximum value. We see that within one cycle all
three electric-field components are strong, consistently with
the 3D character.
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FIG. 4. Focal-plane spatial distributions of the angle between
n and S in the region where |n| and |S| are larger than 10% of
their maximum values (left column), the polarimetric dimension D
(middle column), and the electric-field trajectory at a spatial point
(white dot in D plots) where D reaches its maximum value (right
column). The rows correspond to different a1/a2 values marked next
to them. The parameters of the incident Lissajous beam are λ1 = 300
nm, λ2 = 600 nm, a1 = a2 = 1, φ1 = φ2 = 0, ê1 = (êx + iêy )/

√
2,

and ê2 = (êx − iêy )/
√

2.

Figure 4 shows, for various a1/a2 values, the focal-plane
spatial distributions of the angle between n and S, the polari-
metric dimension D, and the polarization curve at a spatial
point where D reaches its maximum value. It is found that for
a1/a2 = 1/

√
2 the angular separation of n and S can reach

a value close to 90◦, i.e., the two spin vectors displaying
different physical information can be almost orthogonal. De-
creasing the ratio, the angle decreases and with small a1/a2

values the spin vector and SAM density vector are practically
parallel and the field is essentially a 2D field. In the limiting
case of a1/a2 
 1, the focal-plane polarization properties co-
incide with those of a focused plane wave having wavelength
λ2 and polarization state ê2.

B. Superposition of linearly polarized beams

We now consider tight focusing of a bichromatic Lissajous
beam with ê1 = êx, ê2 = êy, and a1 = a2 = 1. Figures 5(a)–
5(d) show the focal-plane spatial distributions of the spin
vector and SAM density vector (components and full vectors)
as well as the angle difference between the two vectors. We
find that both n and S are purely transverse (nz = 0). The ori-
gin of this feature is that the focal transverse field components
are in phase when the incident beam is linearly polarized.

FIG. 5. Same as Fig. 3 except the Jones vectors related to the
incident Lissajous beam are ê1 = êx and ê2 = êy, corresponding to
orthogonal linear polarizations.

We also note that nx and Sx are contributed mainly by the
incident y-polarized component, while the x-polarized wave
contributes effectively to ny and Sy. Since the wavelength for
the x-polarized beam is smaller than that for the y-polarized
wave, the spatial distributions of ny and Sy are tighter than
those of nx and Sx. As a result, the spin vector and SAM
density vector in Fig. 5(c) show asymmetric azimuthal vortex
distributions. The maximal angle difference of n and S is
found to be about 19.5◦.

Figure 5(e) shows the spatial distribution of the polarimet-
ric dimension D in the focal plane. Similarly to the case in
Sec. IV A, D can assume values larger than 2, indicating a
true 3D polarization character of the focal field. The evolution
curve of E(t ) in Fig. 5(f) corresponds to a spatial point where
D reaches its maximum value [white dot in Fig. 5(e)] and
likewise reflects the 3D character of the field since all three
orthogonal components are strong.

Figure 6 shows the focal-plane spatial distributions of the
angular difference of n and S, the polarimetric dimension D,
and the polarization curve in a spatial point where D reaches
its maximum value for various a1/a2 ratios. We find that when
a1/a2 decreases, the angle difference in general decreases
within the region of effective spin and the field approaches
a 2D field. Compared to the case in Sec. IV A where the
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FIG. 6. Same as Fig. 4 except the Jones vectors related to the
incident Lissajous beam are ê1 = êx and ê2 = êy, corresponding to
orthogonal linear polarizations.

Lissajous beam consists of circularly polarized monochro-
matic waves, the angular deviations of n and S are much
smaller.

V. CONCLUSION

We have analyzed the directional difference of the SAM
density vector and the spin vector in 3D optical fields gener-
ated in tight focusing of bichromatic Lissajous beams. The
former quantity has its origin in electrodynamics, whereas
the latter is linked to the polarization properties of the field
and can be viewed as specifying an average direction around
which the electric vector circulates. For monochromatic light
the SAM density vector and spin vector are parallel and
for polychromatic 2D fields they can be also antiparallel
[12]. Other situations are encountered only in the case of
genuine 3D fields, which are necessarily polychromatic and
have nonzero intensity in all directions. In such fields the
spin vectors of different frequencies, expressing the spectral
polarization characteristic, can point in different directions.
The total spin vector is the helicity-weighted sum of the
constituent (unit) direction vectors, while the SAM density
vector includes an additional frequency-dependent weighting,
resulting in the different directions for the two vectors. In this
work we demonstrated a case where the angular separation
of the vectors is almost 90◦, i.e., the SAM density and spin
vectors are nearly orthogonal. Consequently, information on
the spin properties of light that the two vectors provide may be
different. This notion is particularly important in the context
of 3D light fields.
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