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Inelastic scattering of transversely structured free electrons
from nanophotonic targets: Theory and computation
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Recent advancements in abilities to create and manipulate the electron’s transverse wave function within
the transmission electron microscope (TEM) and scanning TEM have enabled vectorially resolved electron-
energy-loss (EEL) and -gain (EEG) measurements of nanoscale and quantum material responses using pre-
and postselected free-electron states. This newfound capability is prompting renewed theoretical interest in
quantum-mechanical treatments of inelastic-electron-scattering observables and the information they contain.
Here we present a quantum-mechanical treatment of the inelastic scattering of free electrons between pre- and
postselected transverse states with fully retarded electron-sample interactions for both spontaneous EEL and
continuous-wave laser-stimulated EEG measurements. General expressions for the state-resolved energy-loss
and -gain rates are recast in forms amenable to numerical calculation using the method of coupled dipoles.
We numerically implement our theory within the electron-driven discrete dipole approximation code and use
it to investigate specific examples that highlight its versatility regarding the number, size, geometry, and
material composition of the target specimen as well as its ability to describe matter-wave diffraction from finite
nanoscopic targets.
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I. INTRODUCTION

Leveraging recent instrumental advancements in energy
monochromation and aberration correction, inelastic scat-
tering of free electrons has become an effective technique
to spectroscopically characterize and image atomic and
molecular [1–3], biological [4–6], solid-state [7–11], and
nanophotonic [12,13] systems with unprecedented spatial
resolution. Simultaneously, optical spectroscopies and micro-
scopies based upon the absorption, scattering, extinction, and
emission of electromagnetic waves continue to be indispens-
able tools used to probe the same systems, albeit with spatial
resolution limitations imposed by the optical diffraction limit.
Light-based spectromicroscopies can often be enhanced by
taking advantage of optical selection rules stemming from
the intrinsic linear and spin angular momentum degrees of
freedom of the photon [14]. In addition to the polarization
degrees of freedom arising from the intrinsic spin angular
momentum, photons can also be prepared in specific orbital
angular momentum (OAM) states defined by the azimuthal
phase ei�φ [15]. Due to the helical nature of their spiraling
phase fronts, light beams characterized by such a quantized
topological charge � are commonly referred to as optical vor-
tex or twisted light beams [16,17]. Motivated in part by the
infinite-dimensional Hilbert space offered by the OAM ba-
sis [18], the ability to prepare [19], sort [20], and measure [21]
these optical OAM states has driven applications in quantum
information science using photons with quantized azimuthal
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and radial labels [17,22–26]. Moreover, transverse sculpting
of the radiation field in general has lead to the develop-
ment of new gauge transformations, such as the twisted light
gauge [27,28], construction of free-space optical skyrmionic
beams [29], excitations of forbidden transitions in atomic iso-
topes [30], and the use of vortex γ -ray photons to selectively
probe high-energy resonances in photonuclear reactions [31].

Unlike photons, electrons prepared and measured in cur-
rently available transmission electron microsopes (TEMs),
scanning TEMs (STEMs), or ultrafast TEMs are accurately
described by the spinless free-particle Schrödinger equa-
tion and consequently lack intrinsic polarization degrees of
freedom [17]. Despite this limitation, linear-momentum-based
selection rules based on quantum-mechanical treatments of
the inelastic-scattering process have been long understood
and exploited in core-loss electron-energy-loss (EEL) spec-
troscopy [32–35] and have enabled measurements of magnetic
circular dichroism [36–41], characterization of site-specific
defects in atomic crystals [42], and visualization of the elec-
tromagnetic fields of atomic-scale systems [43]. Inspired by
the creation and manipulation of optical vortex states, de-
velopment of techniques for shaping the transverse phase
profile [44] and OAM content of free electrons via holo-
graphic masks [45–47], spiral phase plates [48], and shaped
laser pulses [49,50] has been at the forefront of low-loss EEL
spectroscopy (less than approximately 50 eV) [51]. Further-
more, borrowing ideas from quantum optics, the preparation
of free-electron qubits carrying information in the form of
quantized energy or OAM states using laser pulses [52–54],
holographic masks, or spiral phase plates [55–57] has driven
the continued development of free electrons as holders and
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propagators of quantum information. In parallel, the ability
to generate phase-structured incident electron states and sort
them based upon their OAM content [58] has fueled numerous
investigations of inelastic electron scattering between states
with pre- and postselected transverse phase profiles in the
low-loss regime [59–68].

In this paper, we expound upon a recently introduced
theoretical framework describing the fully retarded inelastic
scattering of phase-shaped free-electron beams in the electron
microscope [67]. Specifically, with emphasis placed on the
low-loss regime, we investigate the theory of transversely
phase-shaped EEL spectroscopy in both narrow-beam and
wide-field limits and laser-stimulated electron-energy-gain
(EEG) spectroscopy in the narrow-beam limit. Section II
presents a derivation of the energy-resolved inelastic-electron-
scattering rate, including both EEL and EEG processes. Trans-
versely structured free-electron states that can be prepared
within currently available TEMs and STEMs are subsequently
reviewed in Sec. III. Section IV introduces the transition cur-
rent density associated with transitions between such states.
Expressions for EEL and EEG observables are derived in
Sec. V for both wide-field and focused electron beams, in-
cluding those with nonuniform transverse phase structure,
such as twisted electron beams. Numerical implementation of
the presented inelastic-electron-scattering theory based on the
method of coupled dipoles is described in Sec. VI, including
EEL and EEG probabilities and the EEL double-differential
scattering cross section (DDCS). Numerical calculations are
presented for prototypical nanophotonic systems, underscor-
ing particular advantages of our numerical approach, includ-
ing its (i) flexibility regarding target size, shape, composition,
and number, (ii) facile extension to accommodate arbitrary
initial and final free-electron transverse states, and (iii) ability
to capture signatures of matter-wave diffraction and inter-
ference arising from scattering from individual and multiple
nanoscale targets. Gaussian units are used throughout.

II. INELASTIC-FREE-ELECTRON SCATTERING: STATE-
AND ENERGY-RESOLVED EEL AND EEG RATES

Here we review the retarded theory of inelastic electron
scattering for the calculation of EEL and laser-stimulated
EEG processes [51,66,67,69–74]. The target material is
described through its bound electromagnetic responses char-
acterized by dielectric function ξ (ω), while the electron probe
is examined for both delocalized and localized electron wave
functions. The light-matter potential governing such interac-
tions takes the form

V̂ = e

2mc
(Â · p̂ + p̂ · Â) (1)

under minimal coupling in the generalized Coulomb
gauge [75] ∇ · ξ (x)Â(x, t ) = 0, where the ρ̂�̂ term makes
no contribution in the absence of free charges describing the
target. The probing electron’s charge and mass are −e and m,
respectively, and c is the speed of light in vacuum; Â and p̂
are quantum-mechanical operators for the vector potential of
the target and linear momentum of the free-electron probe,
respectively. Owing to the inherently weak nature of electron-
photon coupling, the inelastic-scattering probability can be
obtained using first-order time-dependent perturbation theory.

FIG. 1. Scheme showing the inelastic scattering of transversely
(a) delocalized and (b) localized free electrons with wave functions
of the separable form 	(x⊥)eik‖x3 . (a) Initial electron plane wave
(red) with wave vector k = (k⊥, k‖) interacting with the vector po-
tential (shaded green) of a target specimen. Following the interaction,
the electron is postselected for the plane-wave state k′ = (k′

⊥, k′
‖)

(blue). The momentum recoil wave vector associated with this tran-
sition is q = k − k′. (b) Transversely localized electron beam with
preselected transverse wave function 	i(x⊥) (red) interacting with
the same target and postselected in 	 f (x⊥) (blue).

The transition rate describing the scattering of an electron
from initial state |ψi〉 to final state |ψ f 〉 while simultaneously
exciting or deexciting the target from initial state |�ν〉 to final
state |�ν ′ 〉 is given by

w f i = 2π

h̄

∑
νν ′

|〈�ν ′ |〈ψ f |V̂ |ψi〉|�ν〉|2δ(E f − Ei ), (2)

where Ei = h̄εi + h̄ων and E f = h̄ε f + h̄ων ′ are the initial
and final energies of the composite system, respectively,
h̄εi ( f ) = γi ( f )mc2 represents the initial (final) energy of the
probing electron, and γi ( f ) = [1 − (vi ( f )/c)2]−1/2 is the initial
(final) Lorentz contraction factor. Section III details specific
TEM and STEM electron states, including those that are phase
shaped transversely to their propagation direction (see Fig. 1),
but for now we remain agnostic to their identity. After some
algebra, the transition matrix elements of the scattering poten-
tial in Eq. (1) can be expressed as

Vν ′ f νi(t ) = 〈�ν ′ |〈ψ f |V̂ (t )|ψi〉|�ν〉

= 〈�ν ′ | − 1

c

∫
dx A(x, t ) · J f i(x, t )|�ν〉, (3)

where J f i(x, t ) = J f i(x)e−i(εi−ε f )t is the transition current
density [67] with

J f i(x) = ih̄e

2m
[ψ∗

f (x)∇ψi(x) − ψi(x)∇ψ∗
f (x)] (4)

defined in terms of the probe scattering states ψi(x, t ) =
ψi(x)e−iεit and ψ f (x, t ) = ψ f (x)e−iε f t . By continuity, i.e., ∇ ·
J f i(x, t ) = −ρ̇ f i(x, t ), J f i(x, t ) is connected to the transition
charge density ρ f i(x, t ) = −eψ∗

f (x, t )ψi(x, t ).
Both the EEL and EEG scattering rates derive from

Eq. (3) but involve different vector potentials of dis-
tinct physical origin. In the case of EEL, solving the
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vector Helmholtz equation on the domain of the tar-
get produces a set of eigenmode functions fν (x) and
associated eigenmode frequencies ων ,1 which serve as
a basis to expand the target vector potential [75]. In
terms of this set {fν (x)}ν , A(x, t ) = ∑

ν[A(+)
ν (x)aνe−iων t +

A(−)
ν (x)a†

νeiων t ], with A(+)
ν (x) = c

√
2π h̄/ωνfν (x), A(−)

ν (x) =
c
√

2π h̄/ωνf∗
ν (x), and [A(+)

ν ]† = A(−)
ν , where a†

ν (aν) is the
creation (annihilation) operator responsible for inducing op-
tical excitations (de-excitations) in the νth target mode. In the
case of EEG, the target vector potential can still be expanded
onto the {fν (x)}ν basis; however, it is the response vector
potential induced by a stimulating laser field. In either case,
Eq. (3) becomes

Vν ′ f νi(t ) = −1

c

(√
nνδν ′,ν−1

∫
dx A(+)

ν (x) · J f i(x)e−iων t

+
√

nν + 1δν ′,ν+1

∫
dx A(−)

ν (x) · J f i(x)eiων t

)

× e−i(εi−ε f )t , (5)

where nν is the occupancy of the νth target mode. When
carrying out the derivations of inelastic-electron-scattering
processes, the first and second terms in Eq. (5) correspond
to EEG and EEL events, respectively. The energy-conserving
δ function in Eq. (2), when written in the equivalent forms

δ(E f − Ei ) = 1

h̄

∫
dω ×

{
δ(ω − εi f )δ(ω − ων ′ν ) (EEL)
δ(ω + εi f )δ(ω − ωνν ′ ) (EEG),

(6)
with εi f = εi − ε f and ωνν ′ = ων − ων ′ , will aid in this con-
nection to EEL and EEG.

In EEL events, the probing electron may transfer energy to
and retrieve energy from any of the target modes which must
be summed over to account for all such loss processes where
the electron acts as both pump and probe. After summing over
target states ν and ν ′, the EEL scattering rate becomes

wloss
f i = 2π

h̄c2

∑
ν

∫
dx dx′J∗

f i(x) · A(+)
ν (x)A(−)

ν (x′) · J f i(x′)

× δ(E f − Ei ), (7)

while in the case of EEG the stimulating laser field is taken
to populate the specific target state ν, leaving only a sum over
final target states ν ′ to be performed, resulting in

w
gain
f i = 2π

h̄c2

∫
dx dx′J∗

f i(x) · A(−)
ν (x)A(+)

ν (x′) · J f i(x′)

× δ(E f − Ei ). (8)

Again note that the target vector potentials A(±)
ν (x) in the

EEG rate in Eq. (8) are understood to originate in response to
external laser stimulation and are not induced by the probing
electron’s transition current J f i(x).

1As presented, the eigenmode expansion of the vector potential is
rigorously correct only for lossless dielectric cavities. Losses can
be incorporated from the outset by instead expanding the vector
potential onto the basis of quasinormal modes [76–78]. The resulting
EEL rate expressions exhibit equivalent dependence on the Green’s
dyadic irrespective of the presence or absence of losses.

From Eqs. (6) and (7), together with the relationship
w f i = ∫

dω w f i(ω), the frequency-resolved EEL rate
wloss

f i (ω) can be derived. By expressing the target
vector potential in terms of mode functions, i.e.,
A(+)

ν (x)A(−)
ν (x′) = (2π h̄c2/ων )fν (x)f∗

ν (x′), Eq. (7) can be
written in terms of the target’s electromagnetic Green’s
tensor

↔
G(x, x′, ω) = ∑

ν fν (x)f∗
ν (x′)/(ω2 − ω2

ν + i0+). More
specifically, the EEL rate is formulated in terms of the
imaginary part of the Green’s dyadic Im{↔

G(x, x′, ω)} =
−∑

ν (π/2ων )fν (x)f∗
ν (x′)δ(ω − ων ′ν ). As a result, the state-

and frequency-resolved EEL transition rate then becomes

wloss
f i (ω) = −8π

h̄

∫
dx dx′J∗

f i(x) · Im[
↔
G(x, x′, ω)] · J f i(x′)

× δ(ω − εi f )

= −8π

h̄

∫
dx dx′Im[J∗

f i(x) · ↔
G(x, x′, ω) · J f i(x′)]

× δ(ω − εi f ), (9)

where the bottom line holds for reciprocal media charac-
terized by

↔
G(x, x′, ω) = ↔

GT (x′, x, ω). Note that for general
phase-shaped EEL processes described by Eq. (9), the transi-
tion current density can point arbitrarily in three-dimensional
(3D) space and is not restricted to lie along the TEM axis.

Alternatively, for the case of laser-stimulated EEG, Eqs. (6)
and (8) determine the frequency-resolved EEG rate. The posi-
tive (negative)-frequency portion of the target’s laser-induced
response field can be expressed in terms of its induced vector
potential as E(±)

ν (x) = (±iων/c)A(±)
ν (x). When the stimu-

lating laser excites a coherent state of the target |αν〉, the
frequency-resolved EEG rate

w
gain
f i (ω) = 2π

( |αν |
h̄ων

)2∣∣∣∣
∫

dx E(+)
ν (x) · J f i(x)

∣∣∣∣
2

× δ(ω + εi f )δ(ω − ωνν ′ ) (10)

is proportional to the volume integral of the 3D vector tran-
sition current density J f i(x) projected onto the laser-induced
electric field E(+)

ν (x) of the target. For simplicity, the ap-
plied monochromatic continuous-wave laser field is chosen to
couple to the target’s νth excited state only. In the low-photon-
occupancy limit (|αν | ≈ 1), this coherent-state description
yields

w
gain
f i (ω) = 2π

(
1

h̄ων

)2∣∣∣∣
∫

dx E(+)
ν (x) · J f i(x)

∣∣∣∣
2

× δ(ω + εi f )δ(ω − ωνν ′ ), (11)

which has been stated previously [66]. As will be shown in
Sec. V A, if the appropriate choices for the initial and final
electron states are made, Eqs. (9) and (11) reduce to the
conventional EEL and EEG probabilities found in the liter-
ature [51,66,70,71] but, as expressed here, are generalized to
potentially describe polarized EEL and EEG measurements
where the wave function of the probing electron is phase
structured in the plane orthogonal to its motion. Therefore,
the approach producing Eqs. (9)–(11) casts phase-shaped EEL
and EEG interactions both within the same framework and on
equal footing.
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FIG. 2. Transverse free-electron states. Wave functions 	(x, y) are visualized in the z = 0 plane with position-dependent phase indicated
by the color of the respective intensity profiles. Black represents low wave-function density. (a) Plane-wave states with k⊥ along x̂ (top) and
ŷ (bottom). (b) Bessel beam states 	�k⊥ (ρ, φ) with � = 1 and radial wave number k⊥ (top) and 2k⊥ (bottom). (c) LG states 	�p(ρ, φ) with
� = 1 and p = 0 (top) and p = 1 (bottom). (d) HG states 	nm(x, y) with n = 1 and m = 0 (top) and n = 0 and m = 1 (bottom). (e) In the
� = ±1 OAM subspace, the first-order LG states |L/R〉 can be used as basis states spanning the Bloch sphere with antipodal points {|0〉, |1〉},
{|+〉, |−〉}, and {|L〉, |R〉}; states with constant spatial phase are defined as |G〉 and placed at the sphere center. Colored arrows represent
transitions between |G〉 and the states at the labeled antipodal points.

III. TRANSVERSELY PHASE-STRUCTURED
FREE-ELECTRON STATES

This section introduces various spinless free-electron states
relevant to the forthcoming discussion of phase-structured
EEL and EEG measurements in TEM and STEM instruments.
The states are (i) energy eigenstates and thereby separable
into spatial and temporal parts as ψ (x, t ) = ψ (x)e−iεt and
(ii) separable within an orthogonal coordinate system x =
(x1, x2, x3) into transverse and longitudinal functions ψ (x) =
	(x1, x2)eik‖x3 . The electron wave functions are translationally
invariant along the TEM axis, defined as x3 ≡ z. Trans-
versely delocalized states are investigated first, beginning with
plane-wave and vortex-Bessel-beam states originating as sep-
arable solutions in the Cartesian and cylindrical coordinate
systems, respectively. Subsequently, transversely localized
and nondiffracting wave functions, including Hermite-Gauss
(HG) and twisted electron Laguerre-Gauss (LG) states, are
presented.

Plane-wave solutions are separable in Cartesian coordi-
nates with well-defined linear momentum p = h̄k. The spatial
wave function describing a free electron in the 3D Cartesian
space x = (x, y, z) is

ψk(x, y, z) =
(

1√
L

)3

eik·x, (12)

where k = (k⊥, k‖) is the wave vector and L is the box quanti-
zation length. Phase plots of two transverse plane-wave states
	kx (x, y) and 	ky (x, y), with orthogonal wave vectors k⊥ =
kxx̂ and k⊥ = kyŷ and corresponding transverse wavelengths
λ⊥x = 2π/kx and λ⊥y = 2π/ky, are displayed in the top and
bottom panels of Fig. 2(a) for λ⊥x = λ⊥y = λ⊥, respectively.
Electrons can also be prepared in coherent superposition
states, with one example of such a state being ψ

χ

kxky
(x, y, z) =

L−3/2(eikxx + eikyyeiχ )eik‖z/
√

2, where the relative phase χ be-
tween the two orthogonal electron wave-vector components
kx and ky can take values 0 � χ � 2π [36–38].

When expressed in the cylindrical coordinate system
defined by x = (ρ, φ, z), the separable solutions are non-
diffracting Bessel waves of the form [79–82]

ψ�k⊥ (ρ, φ, z) ∝ J|�|(k⊥ρ)ei�φeik‖z. (13)

Here J|�|(k⊥ρ) are Bessel functions of the first kind, � is the az-
imuthal quantum number of the cylindrically symmetric state,
k⊥ is the radial wave-vector component, and k‖ is the longitu-
dinal wave-vector component [83]. Such states are eigenstates
of the z component of the OAM operator L̂z = −ih̄∂/∂φ with
eigenvalue �h̄. Specific examples of Bessel states are shown
in Fig. 2(b) for two different values of k⊥.

Transversely localized free-electron states can be con-
structed within the paraxial approximation to the Schrödinger
equation, where the electron momentum along the TEM axis
is much greater than its transverse momentum, i.e., k⊥  |k|.
Since they are eigenstates of the L̂z operator, LG states carry
a quantized azimuthal component �. In the nondiffracting,
i.e., collimated, limit defined by the infinite Rayleigh range,
the LG wave functions have the form of quantized Landau
states [79,83] given by

ψ�p(ρ, φ, z) = (
√

2ρ/w0)|�|

w0

√
L

√
2p!

π (|�| + p)!
L|�|

p

(
2ρ2

w2
0

)

× e−ρ2/w2
0 ei�φeik‖z, (14)

where L|�|
p are the Laguerre polynomials, with � and p the

azimuthal and radial quantum numbers, respectively, and w0

is the z-independent beam waist. Figure 2(c) displays two
different LG modes with finite beam waists w0.

Similarly, the HG family of transversely localized wave
functions are solutions to the paraxial wave equation in the
Cartesian coordinate system. Since the nondiffracting LG and
HG states each comprise a complete orthonormal basis, any
LG (HG) state can be synthesized from the appropriate co-
herent superposition of HG (LG) states [84]. Unlike the LG
transverse states, the HG states lack a well-defined azimuthal
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phase and, owing to the fact that they are not eigenstates L̂z, do
not carry a single OAM unit of �. In the nondiffracting limit,
the HG states take the form

ψnm(x, y, z) = 2−(n+m)/2

w0

√
L

√
2

πn!m!
Hn

(
x
√

2

w0

)
Hm

(
y
√

2

w0

)

× e−(x2+y2 )/w2
0 eik‖z (15)

and are labeled by the indices n and m, corresponding to the
order of the x- and y-dependent Hermite polynomials Hn and
Hm, respectively. Figure 2(d) displays the first-order x- and
y-oriented HG modes with beam waists w0, in contrast to
the corresponding delocalized 	kx (x, y) and 	ky (x, y) plane
waves displayed in Fig. 2(a).

Mirroring applications of optical OAM states, free elec-
trons with quantized transverse degrees of freedom have re-
cently been recognized as potential carriers of quantum infor-
mation, specifically as free-electron OAM qubits. Realization
of such OAM qubits has been made possible via holographic
masks and spiral phase plates [45–48] or through tailored
light sources [49,50]. Stemming from the separability of the
electron wave function following condition (ii), the orthogo-
nal transverse degrees of freedom can be used as orthonormal
basis states |0〉 and |1〉 on the Bloch sphere [Fig. 2(e)]. Known
as the horizontal and vertical basis states, respectively, linear
combinations of |0〉 and |1〉 assemble the remaining antipodal
points |L/R〉 = (1/

√
2)(|0〉 ± i|1〉) and |±〉 = (1/

√
2)(|0〉 ±

|1〉). One example is the first-order LG states 	±10(ρ, φ) =
〈x1x2|L/R〉 which span the truncated � = ±1 two-dimensional
Hilbert space [56,57,84] and lie on the north and south poles
of the Bloch sphere. Owing to the fact that 	±10(ρ, φ) can
be expressed as linear combinations of the first-order HG
states [15], 	10(x, y) = 〈x1x2|0〉 and 	01(x, y) = 〈x1x2|1〉
are the wave functions associated with the vertical and
horizontal basis states, respectively. At the center of the Bloch
sphere lies the Gaussian mode 	00(x, y) = 	00(ρ, φ) =
〈x1x2|G〉 =

√
2/πw2

0 e−(x2+y2 )/w2
0 =

√
2/πw2

0 e−ρ2/w2
0 . More

generally, higher-order electron-vortex states with topological
charge of ±� can be used to construct Bloch spheres for
� values other than unity [18]. Following the work of
Ref. [67], under the appropriate limits, certain superpositions
of electron plane-wave states can likewise be mapped onto
points on the Bloch sphere [Fig. 2(e)]. In this scenario,
the horizontal and vertical plane-wave wave functions
	kx (x, y) = 〈x1x2|0〉 and 	ky (x, y) = 〈x1x2|1〉 can be used to
construct the north and south antipodal point wave functions
	

±π/2
kxky

(x, y). Specifically, 	
±π/2
kxky

(x, y)=〈x1x2|L/R〉=(1/
√

2)

[	kx (x, y) + 	ky (x, y)eiχ ] with χ = ±π/2. Located at the
center of the Bloch sphere is the electron plane wave
	k‖ (x, y) = 〈x1x2|G〉 = 1/L with spatially uniform transverse
phase and purely longitudinal wave vector k = k‖ẑ. As will
be shown in the following section, transitions between OAM
or linear momentum electron states residing on the Bloch
sphere produce transition current densities with unique vector
and phase profiles.

IV. TRANSITION CURRENT DENSITY

Here the transition current density J f i(x) defined in Eq. (4)
is examined for selected transitions between electron states
introduced in the preceding section. This section begins with
a summary of general properties of J f i(x) that arise from
the restrictions imposed on the forms of the wave functions
and then highlights several general and specific forms of the
transition current density for transitions involving delocalized
and localized electron states. Note the following, regard-
ing the arguments of the transition current density: Recall
that the origin of time dependence in J f i(x, t ) = J f i(x)eiε f it

as seen in Eq. (3) is a consequence of condition (i) im-
posed upon the electron wave functions introduced in the
first paragraph of Sec. III. Therefore, as a matter of con-
venience and unless stated otherwise, we work with the
time-independent version of the transition current density.
In addition, when discussing the transition current density
for Bessel, LG, and HG free-electron states, the subscripts
of J f i(x) refer explicitly to the final and initial transverse
electron states. Figures 3(a) and 3(b) present LG and Bessel
beam transitions, respectively, Fig. 3(c) involves transitions
between plane-wave states, and Figs. 3(d) and 3(e) showcase
the transition current density using focused first-order HG
states.

Stemming from conditions (i) and (ii) required of the elec-
tron wave functions as stipulated in Sec. III, the transition
current density given by Eq. (4) can be reexpressed as the sum
of longitudinal (‖) and transverse (⊥) contributions, defined
relative to the TEM axis, according to

J f i(x) = J f i(x⊥)eiq‖z = [J⊥
f i(x⊥) + J‖

f i(x⊥)ẑ]eiq‖z. (16)

Explicitly, these components are

J⊥
f i(x⊥) = ih̄e

2mL
[	∗

f (x⊥)∇⊥	i(x⊥) − 	i(x⊥)∇⊥	∗
f (x⊥)],

J‖
f i(x⊥) = − h̄e

2mL
Q‖	∗

f (x⊥)	i(x⊥), (17)

where Q‖ = k‖ + k′
‖. It can be seen from the perpendicular

component of Eq. (17) that interchange of the initial and final
transverse states is equivalent to conjugation of the reciprocal
scattering process, i.e., Ji f (x) = J∗

f i(x).

A. Plane-wave states

First we consider transitions between individual incoming
ψki (x, y, z) and outgoing ψk f (x, y, z) plane-wave states of the
probe, defined in Eq. (12), such that h̄q = h̄(ki − k f ) is the
momentum recoil associated with the transition. The transi-
tion current density associated with this case is

Jk f ki (x, y, z) = − eh̄

2mL3
(2ki − q)eiq·x. (18)

Inspection of Eq. (18) reveals that the transverse component
of the transition current density is directly proportional to
the transverse recoil momentum, i.e., J⊥

k f ki
(x, y, z) ∝ q⊥. The

phase and vector structure of the transition current density
for an initial plane-wave state with transverse wave vec-
tor k⊥ = kxx̂ transitioning to the outgoing plane-wave state
ψk′

‖ (x, y, z) = L−3/2eik′
‖z is shown in the top panel of Fig. 3(c).
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FIG. 3. Transition current density vector fields J f i(x) in the z = 0 plane. The arrows within each panel show the direction and strength
of the transverse component J⊥

f i(x), while the underlying colormap indicates the phase J⊥
f i(x) · η̂ and intensity |J⊥

f i(x)|. The η̂ is displayed in
the bottom right-hand corner of each panel. The initial transverse wave functions for the transition current density vector fields are labeled
in the center at the top of each panel, while the final state is shown at the bottom of each column. (a) Transition current densities involving
LG 	�p(ρ, φ) initial and final states. The top panel shows the case of 	10(ρ, φ) → 	10(ρ, φ) with no transverse transition; the 	11(ρ, φ) →
	10(ρ, φ) transition in the bottom panel involves a transition in radial, but not OAM, quantum numbers. (b) Transitions between Bessel states
	�k⊥ (ρ, φ). The top panel shows the transition current density for 	1k⊥ (ρ, φ) → 	1k⊥ (ρ, φ) with no transverse state transition, while the
bottom panel considers the transition current density for 	1k⊥ (ρ, φ) → 	2k⊥ (ρ, φ) with an OAM change of �� = 1. (c) Incoming electron
plane-wave states transitioning to the pinhole state 	k′

‖ (x, y). The initial state is characterized by q⊥ = kx x̂ in the top panel, while the middle

and bottom panels involve the incident superposition plane-wave state 	
π/2
kxky

(x, y). The bottom panel is a magnified view of the middle panel
in the vicinity of the origin. (d) Transition current densities for first-order HG and LG wave functions transitioning to the Gaussian state.

(e) Transition current densities for transitions from selected HG and LG states to the pinhole state. (f) Point Ĵ ⊥
f i for transitions between

free-electron OAM or linear momentum states which create transition current vector fields resembling the polarization vectors of light on the

Poincaré sphere. The antipodal points {Ĵ ⊥
0 , Ĵ ⊥

1 }, {Ĵ ⊥
+, Ĵ ⊥

−}, and {Ĵ ⊥
L , Ĵ ⊥

R } are color coded to match the box colors outlining the panels in
columns (c)–(e), as well as the electron state transition arrows in Fig. 2(e).

This final state is referred to as the pinhole state as it is
selected by placement of a pinhole on the TEM axis in the
Fourier plane. In Fig. 3(c) it is evident that the periodicity of
the plane-wave states apparent in Fig. 2(a) is inherited by the
transition current density.

When prepared in a superposition plane-wave state
ψ

χ

kxky
(x, y, z) and postselected in the diffraction plane for the

pinhole state, the resulting transition current density of the
probe is

Jχ

k′
‖,kxky

(x, y, z) = − eh̄

2
√

2mL3
[kxeikxxx̂ + kyeiχeikyyŷ

+ Q‖(eikxx + eiχ eikyy)ẑ]eiq‖z. (19)

The phase and vector information of this transition current
density are displayed in the middle and bottom panels of
Fig. 3(c) for χ = π/2 at two different magnification levels.
Owing to the spatial dependence of the wave functions, the
x̂ and ŷ components of Eq. (19) are functionally dependent
upon x and y. It was shown in Ref. [67] when working in the
dipole scattering regime, whereby q⊥ is such that |q⊥|d  1,
with d the transverse length scale of the target, that J⊥

f i(x⊥) be-
comes approximately independent of position in the vicinity

of the target. Under these circumstances when the perpen-
dicular components of the transition current density become
independent of position, J⊥

f i(x⊥) → J ⊥
f i. After normaliza-

tion, Ĵ ⊥
f i = J ⊥

f i/|J ⊥
f i| can thus be mapped onto the Poincaré

sphere [Fig. 3(f)] [67]. In this limit, for χ = π/2, the trans-
verse component of Eq. (19) becomes circularly polarized
such that it mimics the polarization of a left-handed circularly
polarized photon, evident in the bottom panel of Fig. 3(c)
boxed in red. All together, when |q⊥|d  1, the transition
current densities given by Eqs. (18) and (19) can be tailored
through appropriate pre- and postselection to resemble any
polarization state of light on the Poincaré sphere as shown in
Fig. 3(f).

B. Bessel and Laguerre-Gauss states

By virtue of the ability to prepare free electrons in
defocused-vortex (Bessel) or focused-vortex (LG) states, the
corresponding transition current density can exhibit both
radial and azimuthal transverse vector components. The
transition current density associated with transitions be-
tween Bessel beam states ψ�k⊥ (ρ, φ, z) and ψ�′k′

⊥ (ρ, φ, z)
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is [67]

J�′k′
⊥,�k⊥ (ρ, φ, z) = ih̄e

2m
	�k⊥ (ρ, φ)	∗

�′k′
⊥

(ρ, φ)

[(
k⊥
2

J|�|(k⊥ρ)−1[J|�|−1(k⊥ρ) − J|�|+1(k⊥ρ)]

− k′
⊥
2

J∗
|�′|(k

′
⊥ρ)−1[J∗

|�′|−1(k′
⊥ρ) − J∗

|�′|+1(k′
⊥ρ)]

)
ρ̂ + i

ρ
(� + �′)φ̂ + iQ‖ẑ

]
eiq‖z (20)

for arbitrary �, k⊥, �′, and k′
⊥. The transition current density for �′ = � = 1 and k′

⊥ = k⊥, with �� = 0, is displayed in the top
panel of Fig. 3(b), showcasing the expected azimuthal character inherent to twisted electron beams. Bessel beam states can also
lead to unique phase and vector profiles as seen in the bottom panel of Fig. 3(b), wherein �� = 1, resulting in a transition current
density with a phase structure similar to that of circularly polarized light, as well as to the wave functions shown in Fig. 2(b).

Additionally, the focused LG states in Eq. (14) can also produce transition current densities with well-defined units of OAM
transferred. The transition current density for an initial LG electron state ψ�p(ρ, φ, z) transitioning to a final state ψ�′ p′ (ρ, φ, z)
is given by

J�′ p′,�p(ρ, φ, z) = ih̄e

2m
	�p(ρ, φ)	∗

�′ p′ (ρ, φ)

(
1

ρ

{
(|�| − |�′|) − 4ρ2

w2
0

[
L|�|

p

(
2ρ2

w2
0

)
L|�′|∗

p′

(
2ρ2

w2
0

)]−1[
L|�′|∗

p′

(
2ρ2

w2
0

)
L|�|+1

p

(
2ρ2

w2
0

)

− L|�|
p

(
2ρ2

w2
0

)
L|�′|+1,∗

p′

(
2ρ2

w2
0

)]}
ρ̂ + i

ρ
(� + �′)φ̂ + iQ‖ẑ

)
eiq‖z, (21)

valid for arbitrary �, p, �′, and p′. Stemming from the commonalities in the underlying wave functions, it is unsurprising that
Eqs. (20) and (21) look similar. This resemblance is most obvious when considering events wherein no transverse transition
occurs, as seen when comparing the top panels of Figs. 3(a) and 3(b), for transitions between LG and Bessel states, respectively.
Here, shown in the top panel of Fig. 3(a), is Eq. (21) for p′ = p = 0 and �′ = � = 1, which highlights the azimuthal vector
component of the LG transition current density and is similar to the corresponding Bessel beam case displayed in the top panel
of Fig. 3(b) for 1k⊥ transitioning to 1k⊥. The bottom panel of Fig. 3(a) shows the transition current density for �p = 1. For
inelastic-scattering events where the electron does not transfer OAM to the target, �′ = � and p′ = p, and Eq. (21) reduces to

J�′=�,p′=p(ρ, φ, z) = − h̄e

2mL
|	�p(ρ, φ)|2

(
2�

ρ
φ̂ + Q‖ẑ

)
eiq‖z, (22)

which is the focused-vortex-beam form of the transition current density of a free electron moving along v̂ = ẑ [83,85]. The
azimuthal component of Eq. (22) is responsible for the spiraling behavior of the electron current typical for vortex beams and
upon spatial integration over (ρ, φ) yields an electron current with an axial inertial OAM equal to �h̄ [83].

C. Hermite-Gauss states

Transitions between transverse HG states that are naturally expressed in the Cartesian basis provide transition current densities
with any desired x̂ or ŷ vectorial structure. Following the approach of Ref. [67], a general form for Jn′m′,nm(x, y, z) involving
arbitrary HG states can be derived from Eq. (4). The transition current density for ψnm(x, y, z) transitioning to ψn′m′ (x, y, z) is

Jn′m′,nm(x, y, z) = ih̄e

2mw0L
{[√n	n−1,m(x, y)	∗

n′m′ (x, y) − √
n + 1	n+1,m(x, y)	∗

n′m′ (x, y)

−
√

n′	nm(x, y)	∗
n′−1,m′ (x, y) + √

n′ + 1	nm(x, y)	∗
n′+1,m′ (x, y)]x̂

+ [
√

m	n,m−1(x, y)	∗
n′m′ (x, y) − √

m + 1	n,m+1(x, y)	∗
n′m′ (x, y)

−
√

m′	nm(x, y)	∗
n′,m′−1(x, y) + √

m′ + 1	nm(x, y)	∗
n′,m′+1(x, y)]ŷ

+ iw0Q‖	nm(x, y)	∗
n′m′ (x, y)ẑ}eiq‖z (23)

for arbitrary n, m, n′, and m′. As seen in the form of the
perpendicular component of Eq. (23), careful choice regard-
ing the pre- and postselection of the initial and final HG
transverse electron states can be intuited to yield a transi-
tion current density with nontrivial x̂ or ŷ vectorial behavior
in the plane orthogonal to the direction of propagation.
Working in the � = ±1 OAM Hilbert space, Jn′m′,nm(x, y, z)
is displayed in the column of Fig. 3(d) for first-order

electron wave functions ψ10(x, y, z) and ψ01(x, y, z), and their
linear combination ψ

χ=π/2
10,01 (x, y, z) = (1/

√
2L)[ψ10(x, y, z) +

ψ01(x, y, z)eiπ/2], respectively, all transitioning to the final
Gaussian wave function ψ00(x, y, z) = (1/

√
L)	00(x, y)eik′

‖z.
In the zero-width limit whereby w0 → 0, for the first-order
transitions discussed above, the transverse components of the
transition current density become spatially independent and
J⊥

f i(x) → J ⊥
f i. Under these constraints, the transition current
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density unit vector J ⊥
f i can thus imitate the polarization vector

ε̂ of free-space light, as illustrated on the electron analog of the
Poincaré sphere presented in Fig. 3(f). When no transverse
transition of the probe occurs, i.e., n′ = n and m′ = m in
Eq. (23), the transition current density reduces to

Jn′=n,m′=m(x, y, z) = − eh̄

2mL
Q‖|	nm(x, y)|2eiq‖zẑ, (24)

which is oriented parallel to the TEM axis regardless of the
values for n and m. In the zero-width limit, Eq. (24) reduces to
the classical current of a point electron source [51] when n =
m = 0. Overall, the purely longitudinal behavior of Eq. (24)
differs from the vortex-electron-beam case in Eq. (22) wherein
the current density has a φ̂ component perpendicular to the
electron’s direction of motion.

Alternatively, when the nm HG state transitions to the
forward-directed pinhole state rather than a transversely fo-
cused Gaussian state, the transition current density becomes

Jk′
‖,nm(x, y, z)

= ih̄e

2mw0L2
{[√n	n−1,m(x, y) − √

n + 1	n+1,m(x, y)]x̂

+ [
√

m	n,m−1(x, y) − √
m + 1	n,m+1(x, y)]ŷ

+ iw0Q‖	n,m(x, y)ẑ}eiq‖z. (25)

Equation (25) is displayed in Fig. 3(e) for the same initial
HG states as those used in Fig. 3(d), transitioning instead to
the pinhole state ψk′

‖ (x, y, z). For the focused superposition

state ψ
χ

10,01(x, y, z) = (1/
√

2L)[ψ10(x, y, z) + ψ01(x, y, z)eiχ ]
transitioning to the pinhole state ψk′

‖ (x, y, z), the transition
current density explicitly has the form

Jχ

k′
‖,10,01(x, y, z)

= ih̄e

2
√

2mw0L2
([	00(x, y) −

√
2	20(x, y)

− 	11(x, y)eiχ ]x̂

+ {[	00(x, y) −
√

2	02(x, y)]eiχ − 	11(x, y)}ŷ
+ iw0Q‖[	10(x, y) + 	01(x, y)eiχ ]ẑ)eiq‖z. (26)

The difference between Eqs. (19) and (26) originates from the
choice of the initial electron wave function being either a su-
perposition of linear momentum or OAM states, respectively.
Imposing the same conditions placed upon the wave func-
tions in Eq. (23) to obtain a transition current density whose
transverse vectorial components are spatially independent,
Eqs. (25) and (26) can be used to construct transition current

densities on the surface of the Poincaré sphere as presented in
Fig. 3(f). Therefore, transitions between specific states on the
Bloch sphere [Fig. 2(e)] produce transition current densities
which mimic the polarization structure of free-space light and
can thus be mapped onto the Poincaré sphere [Fig. 3(f)].

V. STATE- AND ENERGY-RESOLVED OBSERVABLES

Building from Secs. II–IV, in this section the EEL,
EEG, and DDCS observables between phase-shaped states
of the electron probe are derived. Measurements of EEL
and EEG processes are discussed first, including the narrow-
beam-width limit common in the low-loss electron-scattering
regime, before moving on to presentation of the DDCS. A
comparison of the EEL and EEG scattering processes, and
their relation to the properties of the transition current density
under interchange of initial and final electron states are briefly
presented. We illustrate that the transversely phase-shaped
EEL, EEG, and DDCS observables reduce to the familiar
forms found in the literature under the appropriate limits.

A. Electron-energy-loss and -gain probabilities
in the narrow-beamwidth limit

In considering low-loss EEL and EEG scattering events
in the narrow-beamwidth limit appropriate to the STEM it is
customary to work within the nonrecoil approximation, where
the change in the energy of the electron is dictated entirely by
its momentum change along the axis of propagation [51]. In
this limit, the forward recoil momentum h̄q‖ẑ is small com-
pared to the electron’s initial momentum h̄ki, so its change in
energy can be approximated by h̄εi f =

√
(mc2)2 + (h̄cki )2 −√

(mc2)2 + [h̄c(ki − q)]2 ≈ h̄vi · q, where h̄ki/m = γivi and
h̄ki = pi for relativistic matter waves. Upon insertion of εi f =
vi · q into the trailing δ function in Eq. (9), the state- and
frequency-resolved EEL rate becomes

wloss
f i (ω) = − 8π

h̄vi

∫
dx dx′Im[J∗

f i(x) · ↔
G(x, x′, ω) · J f i(x′)]

× δ(q‖ − ω/vi ), (27)

where
↔
G(x, x′, ω) is the target’s electromagnetic Green’s ten-

sor introduced in Sec. II. The state- and energy-resolved EEL
probability Ploss

f i (ω) = (L/vi )wloss
f i (ω) is obtained by integrat-

ing Eq. (27) over the time it takes the probe electron to traverse
the path length L as it interacts with the target specimen. From
Ploss

f i (ω), the state- and energy-resolved EEL probability is
determined by summing over all possible final electron states
with

∑
k f
‖

→ +(L/2π )
∫ ∞
−∞ dq‖ and dividing by h̄, resulting

in the EEL probability per unit energy

�loss
f i (ω) = − 4

h̄2

∫
dx dx′Im

[(
L

vi

)
J∗

f i

(
x; q‖ = ω

vi

)
· ↔

G(x, x′, ω) ·
(

L

vi

)
J f i

(
x′; q‖ = ω

vi

)]
. (28)

Here J f i(x; q‖=ω/vi )=J f i(x)|q‖=ω/vi=J f i(x⊥)eiq‖z|q‖=ω/vi =
J f i(x⊥)ei(ω/vi )z makes explicit the locking of the longitudinal
recoil wave number q‖ to ω/vi imposed by the nonrecoil
approximation in Eqs. (27) and (28). Due to the frequent

appearance of the L/vi factor here and in the following equa-
tions, we define a new transition current as J f i(x, ω = q‖vi ) ≡
(L/vi )J f i(x; q‖ = ω/vi ) with dimensions of charge flux per
unit frequency. For clarity, we also abandon the general
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notation x = (x⊥, z) in favor of x = (R, z), as is common in
the low-loss STEM EEL and EEG literature.

Using the current J f i(x, ω = q‖vi ), the EEL probabil-
ity can also be cast in terms of the target’s transition
electric field E f i(x, ω = q‖vi ) = −4π iω

∫
dx′↔G(x, x′, ω) ·

J f i(x′, ω = q‖vi ) resolved in frequency. Here E f i repre-
sents the electric field produced by the target in re-
sponse to stimulation by the probing electron. Expressed
in terms of this field, the EEL probability per unit energy
becomes

�loss
f i (ω) = − 1

π h̄2ω
Re

( ∫
dx J∗

f i(x, ω = q‖vi ) · E f i(x, ω = q‖vi )

)
, (29)

which recovers the classical relationship [51,86] between �loss
f i (ω) and the work performed by the electron against its own

induced field. When the electron beam waist w0 is negligible compared to the length scale over which the response field changes,
E f i can be taken as constant over the spatial domain where the current density is appreciable and approximated by its value
E f i(R, z, ω = q‖vi ) ≈ E f i(R0, z, ω = q‖vi ) at the impact parameter R0. In this narrow-beamwidth limit, Eq. (29) becomes

�loss
f i (R0, ω) = − 1

π h̄2ω
Re

[ ∫
dz

( ∫
dR J∗

f i(R, z, ω = q‖vi )e
iωz/vi

)
e−iωz/vi · E f i(R0, z, ω = q‖vi )

]

= − 1

π h̄2ω
Re

(
J ∗

f i ·
∫

dz E f i(R0, z, ω = q‖vi )e
−iωz/vi

)
, (30)

where the transition current J f i = ∫
dR J f i(R, z, ω = q‖vi )e−iωz/vi = (−e/mvi )[〈	 f |p̂⊥|	i〉 + (h̄Q‖/2)〈	 f |	i〉ẑ] is z

and ω independent. It has the transverse and longitudinal components J ⊥
f i = −(e/mvi )〈	 f |p̂⊥|	i〉 and J ‖

f i =
−(h̄eQ‖/2mvi )〈	 f |	i〉ẑ, respectively, which allow the EEL probability in Eq. (30) to be separated into the perpendicular and
parallel contributions

�loss
f i⊥(R0, ω) = − 1

π h̄2ω
Re

(
J ⊥∗

f i ·
∫

dz E f i(R0, z, ω = q‖vi )e
−iωz/vi

)
,

�loss
f i‖ (R0, ω) = − 1

π h̄2ω
Re

(
J ‖∗

f i ·
∫

dz E f i(R0, z, ω = q‖vi )e
−iωz/vi

)
. (31)

Based on the forms of J ⊥
f i and J ‖

f i above, it is evident that J ⊥
f i = 0 and J ‖

f i = −(h̄eQ‖/2mvi )ẑ in the event of no transverse

transition, i.e., 	i = 	 f and �loss
f i⊥ = 0, while J ⊥

f i �= 0 and J ‖
f i = 0 when a transition occurs in the probe’s transverse wave

function, i.e., 	i �= 	 f and �loss
f i‖ = 0. In the former case, �loss

f i‖ (R0, ω) in Eq. (31) reduces to the the well-known classi-
cal form for the EEL probability [51,69,87,88] in the zero-width limit w0 → 0. Specifically, �loss

f i‖ (R0, ω) → �cl(R0, ω) =
−(2e/h̄)2

∫
dz dz′Im[ẑ · ↔

G(R0, z; R0, z′, ω) · ẑe−iω(z−z′ )/vi ], which is the EEL probability per unit energy for a uniformly moving
classical electron with current density Jcl(x, ω) = −eδ(R − R0)eiωz/vi ẑ at impact parameter R0.

To construct the laser-stimulated phase-shaped EEG observable in the narrow-beamwidth limit, we again introduce εi f =
vi · q into the trailing δ function in the frequency-resolved EEG rate presented in Eq. (11). As a result, the state- and frequency-
resolved EEG rate and scattering probability are

w
gain
f i (ω) = 2π

vi

(
1

h̄ων

)2∣∣∣∣
∫

dx E(+)
ν (x) · J f i(x)

∣∣∣∣
2

δ(q‖ + ω/vi )δ(ω − ωνν ′ ) (32)

and Pgain
f i (ω) = (L/vi )w

gain
f i (ω), respectively. In parallel to loss, the EEG probability per unit energy is determined from Pgain

f i (ω)

after integrating over final states
∑

k f
‖

→ +(L/2π )
∫ ∞
−∞ dq‖ and dividing by h̄, resulting in

�
gain
f i (ω) = 1

h̄

(
1

h̄ων

)2∣∣∣∣
∫

dx E(+)
ν (x) · J f i(x, ω = −q‖vi )

∣∣∣∣
2

δ(ω − ωνν ′ ). (33)

As in the case of loss, if the target’s induced electric field varies little over the spatial domain of the probe’s transition current
density, then E(+)

ν (R, z) ≈ E(+)
ν (R0, z) to lowest order and the state- and energy-resolved EEG probability takes the form

�
gain
f i (R0, ω) = 1

h̄

(
1

h̄ων

)2∣∣∣∣
∫

dz E(+)
ν (R0, z)e−iωz/vi ·

(∫
dR J f i(R, z, ω = −q‖vi )e

iωz/vi

)∣∣∣∣
2

δ(ω − ωνν ′ )

= 1

h̄

(
1

h̄ων

)2∣∣∣∣
∫

dz e−iωz/vi E(+)
ν (R0, z) · J f i

∣∣∣∣
2

δ(ω − ωνν ′ ), (34)
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with z- and ω-independent transition current J f i defined below Eq. (30). As in the case of EEL, the EEG probability can also
be broken into perpendicular and parallel components

�
gain
f i⊥ (R0, ω) = 1

h̄

(
1

h̄ων

)2

|J ⊥
f i |2

∣∣∣∣
∫

dz e−iωz/vi E(+)
ν (R0, z) · Ĵ ⊥

f i

∣∣∣∣
2

δ(ω − ωνν ′ ),

�
gain
f i‖ (R0, ω) = 1

h̄

(
1

h̄ων

)2

|J ‖
f i|2

∣∣∣∣
∫

dz e−iωz/vi E(+)
ν (R0, z) · Ĵ ‖

f i

∣∣∣∣
2

δ(ω − ωνν ′ ), (35)

where J f i = Ĵ f i|J f i| = Ĵ f iJ f i. Similarly, when the transverse wave functions 	i = 	 f , �
gain
f i (R0, ω) = �

gain
f i‖ (R0, ω) and

one recovers the conventional EEG probability [51,66,70–72] in the narrow-beam limit w0 → 0. Through combination of
optical polarization and pre- and postselection of the probe’s transverse phase profile to define its polarization, cross-polarized
measurements in the STEM can be leveraged to directly interrogate optically excited target mode symmetries in three dimensions
with nanoscale spatial resolution [66].

The above expressions for EEL and EEG probabilities involve interrogation of the target’s induced response field by the
transition current densities J f i(x, ω = +q‖vi ) and J f i(x, ω = −q‖vi ) of the probe. It is natural to consider the relationship
between these currents upon interchanging initial and final probe states in both the transverse and axial directions. The reciprocal
behavior of pre- and postselection of the probe’s transverse states, i.e., J⊥

f i(R) = J⊥∗
i f (R), were discussed previously in Sec. IV.

Additionally, along the TEM axis, the longitudinal component J‖
f i(R) = J‖∗

i f (R) expresses the relationship between anti-Stokes
(EEG) and Stokes (EEL) scattering processes at the level of the transition current density. Taken together,

J f i(x, ω = +q‖vi ) =
(

L

vi

)
[J⊥∗

i f (R) + J‖∗
i f (R)ẑ]ei(ω/vi )z =

(
L

vi

)
{[J⊥

i f (R) + J‖
i f (R)ẑ]e−i(ω/vi )z}∗ = J∗

i f (x, ω = −q‖vi ). (36)

These symmetries of the transition current density under interchange of initial and final states, and their effect on the observables,
are detailed further in the Appendix.

B. Double-differential inelastic-scattering cross section in the wide-field limit

When dealing with plane-wave electron states, the scattering cross section is a common observable of interest. It is attained
from the EEL transition rate wloss

f i (ω) in Eq. (9) by first summing over the electron final states
∑

k f
→ (L/2π )3

∫
dk f and

subsequently dividing by the incoming plane-wave particle flux h̄ki/mL3. The total frequency-resolved scattering cross section is
given by

σ (ω) = mL3

h̄ki

(
L

2π

)3 ∫
d� f k2

f dk f w f i(ω), (37)

and by integration over frequency, the angle-resolved scattering cross section is

∂σ

∂� f
= mL3

h̄ki

(
L

2π

)3 ∫
dω k2

f dk f w f i(ω) = −mL3

h̄ki

(
L

2π

)3 ∫
dω dEi f

(
γ f m

h̄2k f

)
k2

f w f i(ω), (38)

where dEi f = −(h̄2/m)k f dk f and d� f = sin θ f dθ f dφ f . Finally, noting that ∂σ/∂� f = ∫
dEi f ∂

2σ/(∂Ei f ∂� f ), the DDCS is
defined as

∂2σ

∂Ei f ∂� f
= −m2L3

h̄3

(
L

2π

)3(k f

ki

) ∫
dω w f i(ω)

=
(

mL3

π h̄2

)2(k f

ki

) ∫
dω dx dx′Im[J∗

f i(x) · ↔
G(x, x′, ω) · J f i(x′)]δ(ω − εi f ), (39)

which reduces to the DDCS common for an isolated dipolar target (41) in core-loss EEL scattering [37,67,89] when the
electrostatic limit where c → ∞ is taken. Further analytic progress is possible in the case of a single target dipole lo-
cated at position xd and characterized by frequency-dependent polarizability tensor α

↔(ω). In this case, the induced Green’s
function reduces to

↔
G(x, x′, ω) = −(4πω2)

↔
G0(x, xd , ω) · α

↔(ω) · ↔
G0(xd , x′, ω), where

↔
G0(x, x′, ω) = −(1/4πω2)[(ω/c)2 I

↔ +
∇∇]ei(ω/c)|x−x′ |/|x − x′| is the vacuum dipole Green’s function, and the DDCS can be expressed analytically. Specifically, with
a single incoming plane wave scattering to a single outgoing plane wave as described by the transition current density given by
Eq. (18), the fully retarded DDCS becomes

∂2σ

∂Ei f ∂� f
= e2

h̄2π

(
k f

ki

)
1

ε2
i f

Im

{
Q ·

[(
εi f

c

)2

I
↔ − qq

]
· α

↔(εi f )

|(εi f /c)2 − q2|2 ·
[(

εi f

c

)2

I
↔ − qq

]
· Q

}
, (40)
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where Q = 2ki − q. In the quasistatic limit (c → ∞),
Eq. (40) reduces to the more familiar form [90]

∂2σ

∂Ei f ∂�
= e2

h̄2π

(
k f

ki

)
1

ε2
i f

Im

(
Q · qq · α

↔(εi f )

q4
· qq · Q

)
.

(41)

VI. NUMERICAL IMPLEMENTATION

This section details the numerical implementation of the
inelastic-scattering observables presented above in Secs. V A
and V B for transversely phase-structured free electrons in
both the focused-beam and wide-field limits. Our implemen-
tation generalizes the electron-driven discrete dipole approx-
imation (e-DDA) [91,92], built on top of the DDSCAT [93]
framework, which previously utilized the vacuum electric
field E0

f i of a point electron as the source instead of an optical
plane-wave field. Other fully retarded and quasistatic numer-
ical methods for simulating extended nanophotonic targets
have been formulated to model low-loss electron-beam in-
teractions, such as the finite-difference time-domain [94,95],
metal nanoparticle boundary-element (MNPBEM) [96], and
finite-element [97,98] methods. In addition, transversely
structured electron beams have been implemented in the
MNPBEM [60,63,65,68], albeit in the quasistatic limit only.
Our treatment of the inelastic scattering of transversely struc-
tured electron beams in the e-DDA is distinguished by its
incorporation of fully retarded electron-sample interactions in
both focused-beam and wide-field limits.

The e-DDA and DDA originate from the method of cou-
pled dipoles [99], whereby the target is discretized into a finite
collection of point electric dipoles

pk (ω) =
N∑

l=1

[α↔(ω)−1 − (−4πω2)
↔
G0(ω)]−1

kl · E0
f i(xl , ω)

(42)
of polarizability α

↔(ω), each driven by the vacuum transition
field E0

f i(xi, ω) at frequency ω and mutually interacting via

their fully retarded electric dipole fields −4πω2 ∑
l

↔
G0

kl (ω) ·
pl (ω) until reaching self-consistency at that same frequency.
Here

↔
G0

kl (ω) are the kl-matrix elements of the vacuum dipole

Green’s function
↔
G0(x, x′, ω).

Upon inversion of Eq. (42), all EEL observables described
above may be calculated from the resulting pk (ω) together
with the applied field E0

f i(xk, ω) [Eq. (A1)] evaluated at each
dipole. Specifically, the focused-beam EEL probability and
the wide-field DDCS expressions in Eqs. (28) and (39), re-
spectively, can be adapted to a form that is compatible with
the e-DDA code via the EEL rate per unit frequency

wloss
f i (ω) = −8π

h̄

∫
dx dx′Im[J∗

f i(x) · ↔
G(x, x′, ω) · J f i(x′)]

× δ(ω − εi f )

= 2

h̄

(
vi

L

)2

Im

( ∑
k

E0∗
f i (xk, ω) · pk (ω)

)
δ(ω − εi f ).

(43)

Here the target’s induced Green’s function
↔
G(x, x′, ω) is

expanded in terms of the polarizabilities of the N dipoles
representing the target. Specifically,

↔
G(x, x′, ω) = −4πω2

∑
j j′

↔
G0(x, x j, ω) · [α↔−1(ω)

− (−4πω2)
↔
G0(ω)]−1

j j′ · ↔
G0(x j′ , x′, ω), (44)

which can be derived from the response field of a polariz-
able body described in terms of its induced Green’s function↔
G(x, x′, ω) driven by the external current density J0(x) or
by the free propagation [via

↔
G0(x, x′, ω)] of the target’s

induced current density J(x) = ∑
j (−iω)p j (ω)δ(x − x j )

as E(x, ω)=− 4π iω
∫

dx′↔G(x, x′, ω) · J0(x′)=− 4π iω
∫

dx′
↔
G0(x, x′, ω) · J(x′).

A. Numerical evaluation of state- and energy-resolved EEL
and EEG probabilities

From Eq. (43), the state- and energy-resolved EEL prob-
ability can be obtained following the same procedure as in
Sec. V A. Specifically, the transversely phase-shaped EEL
probability becomes

�loss
f i (ω) = 1

π h̄2 Im

( ∑
k

E0∗
f i (xk, ω = q‖vi ) · pk (ω = q‖vi )

)
,

(45)
when working within the nonrecoil approximation introduced
in Sec. V, as appropriate to focused beams prepared in the
STEM configuration. The vacuum transition electric field E0

f i
appearing within Eqs. (42) and (45) can, in principle, be any
of the fields sourced by the transversely focused transition
current densities described in Sec. IV. However, due to their
complexity, only those transitions involving OAM transfers
�� = 1 depicted as colored arrows in Fig. 2(e) and more
specifically the resulting electric fields sourced by the tran-
sition current densities seen in Figs. 3(c) and 3(d) have been
implemented within the e-DDA code. Explicit forms for these
fields are provided in the Appendix. Phase-shaped EEG prob-
ability spectra of nanophotonic targets under continuous-wave
laser stimulation can also be evaluated numerically using the
e-DDA as detailed previously [66]. Briefly, the EEG prob-
ability in Eq. (34) is numerically integrated by quadrature
using the optically induced response field of the target E(+)

ν

calculated using DDSCAT and the Ĵ f i defined by selection of a
specific pair of incoming and outgoing free-electron states.

Figure 4 presents a comparison of normalized focused-
beam EEL and EEG spectra for a 25-nm-radius silver
sphere calculated using e-DDA with dielectric data taken
from Ref. [100]. Probing electrons have a speed of 0.7c.
Figure 4(a) shows phase-structured EEL (solid traces) and
EEG (dashed traces) spectra at impact parameter R0 =
(1/

√
2)(40 nm, 40 nm). The optical excitation polarization

ε̂ in the EEG calculations is along x̂. Gray and magenta
colors correspond to pre- and postselection of HG transi-

tions 	00(x, y) → 	00(x, y) with Ĵ ‖
f i = ẑ and 	10(x, y) →

	00(x, y) with Ĵ ⊥
f i = x̂, respectively. While the e-DDA cal-

culations can capture coupling to the higher-order multipoles,
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FIG. 4. Phase-shaped EEL and EEG point spectra and spectrum
images of a silver plasmonic sphere of 25 nm radius evaluated using
the e-DDA. (a) Phase-shaped EEL (solid line) and EEG (dashed line)
point spectra, evaluated in the narrow-beam limit, at impact param-
eter R0 = (1/

√
2)(40 nm, 40 nm). The optical polarization is ε̂ = x̂

in the laser-stimulated EEG calculations. Gray and magenta colors
correspond to Ĵ f i along ẑ and x̂, respectively. (b) Phase-shaped
EEL spectrum images at the dipole LSP resonance energy of 3.4 eV.
Each column corresponds to the labeled Ĵ f i. (c) Phase-shaped EEG
spectrum images at 3.4 eV. The optical excitation polarization state ε̂

varies between rows, while each column corresponds to the labeled
Ĵ f i. For ε̂ = {x̂, L̂}, the optical axis is chosen to be along ẑ, while
for ε̂ = ẑ it is chosen to be along x̂. Panels with Ĵ f i = {x̂, ŷ, L̂} and
with ε̂ = {x̂, L̂} share a common scale, while panels with Ĵ f i = ẑ
are separately scaled. The incident velocity of the probing electron is
vi = 0.7cẑ in all cases.

as seen in Fig. 4(a), the dipolar localized surface plasmon
(LSP) is clearly evident near 3.4 eV. Here it is apparent that
both transitions with Ĵ f i oriented parallel and perpendicular
to the electron trajectory couple to the quadrupolar LSP mode
near 3.6 eV, albeit with different strengths. The EEG spectra,

meanwhile, are dominated by the optically bright dipolar re-
sponse of the sphere, whereas the higher-order dark modes are
inaccessible by the stimulating optical pump field.

The EEL spectrum images obtained by plotting
�loss

f i (R0, ω) as a function of the impact parameter R0 at
the dipole LSP energy 3.4 eV are shown in Fig. 4(b). In

the conventional EEL case, where Ĵ ⊥
f i = 0 resulting in

Ĵ f i = Ĵ ‖
f i = ẑ (gray, left), the spectrum image exhibits

the expected circular symmetry. Meanwhile, when Ĵ ⊥
f i �= 0,

producing a Ĵ ⊥
f i oriented along x̂ (ŷ) and outlined in magenta

(green), the spectrum image shows slight elongation in the
direction of the transition current density. As required

by symmetry, the circularly polarized Ĵ ⊥
f i = L̂ (red)

couples with radial symmetry to the spherical target. In

Fig. 4(b) the Ĵ ‖
f i = ẑ plot is normalized to a maximum of

10−2 eV−1, while the Ĵ ⊥
f i ∈ {x̂, ŷ, L̂} cases share a common

normalization factor of 10−8 eV−1 for a beam waist of 1 nm.
The small perpendicular to parallel ratio of signals represents
a hurdle to phase-shaped EEL spectroscopy measurements
regarding limits of detection, although measurements of this
type have been achieved previously [61]. Phase-shaped EEG
spectrum images at the same dipole LSP energy 3.4 eV are
presented in Fig. 4(c). The optical excitation polarization
state ε̂ varies between rows, while each column corresponds
to the labeled component of Ĵ f i. For ε̂ = {x̂, L̂}, the optical

axis is chosen to be along ẑ. There Ĵ ⊥
f i = x̂, ŷ, and L̂ share

a common scale factor, while Ĵ f i = ẑ is separately scaled.
The ratio of the transverse to longitudinal EEG probabilities
is �

gain
f i⊥/�

gain
f i‖ ≈ 10−5 for a 200-keV electron beam with a

waist of 1 nm. These findings are consistent with earlier
theoretical [66] and experimental [101] studies. For the ε̂ = ẑ
case, the optical axis is chosen to be along x̂ and the ratio
of transverse to longitudinal EEG signals remains similarly
small (approximately 10−5), but all signals are smaller by
approximately 10−3 in this excitation geometry. Comparison
of Figs. 4(b) and 4(c) highlights the differing identities of
the excitation sources and roles played by J f i in EEL and
laser-stimulated EEG processes. When considering EEL
events, the STEM electron acts as both a spatially dependent
pump and probe sourced by the transition current density
J f i(R0) at impact parameter R0. In stark contrast, as alluded
to in Sec. II, the pump and the probe are decoupled for
laser-stimulated EEG processes. Specifically, as seen in
Eq. (11), the pump is the optical source exciting the target’s
induced field E(+)

ν , which is then probed by the electron’s
transition current density J f i(R0) at R0.

B. Numerical evaluation of the inelastic double-differential
cross section

From Eqs. (39) and (43), the wide-field inelastic DDCS can
be expressed as

∂2σ

∂Ei f ∂� f
= − m2L6

(2π )3h̄3

(
k f

ki

) ∫
dω wloss

f i (ω) = − 1

4π3

k f

ki

(
vimL2

h̄2

)2

Im

(∑
j

E0∗
f i (x j, ω = εi f ) · p j (ω = εi f )

)
. (46)
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FIG. 5. DDCSs for plasmonic nanorod monomer and dimer systems evaluated using the e-DDA. (a) Numerically calculated DDCS
(logarithmic scale) for a silver nanorod with Cartesian dimensions of 30 × 60 × 15 nm3. The incident electron is directed along ẑ with
200 keV kinetic energy and the collected scattering direction is varied from θ f = 0 µrad (along ẑ) to θ f = 200 µrad, with φ f = π/2 fixed
such that q⊥ = q⊥ŷ. The quantity d/λ⊥ (upper horizontal axis) is the rod length (60 nm) along the momentum recoil direction divided by the
transverse recoil wavelength λ⊥ = 2π/q⊥. (b) Lineout of the DDCS in (a) at 2.5 eV (green line). The gray trace is the DDCS of an anisotropic
point dipole evaluated using the analytic expression in Eq. (40). Vertical gray dashed lines indicate single-particle diffraction minima. Insets
show schematic depictions of the scattering and target geometries. (c) Same as (a) but for a homodimer target composed of two copies of the
nanostructure considered in (a) and (b) arranged tip-to-tip along the y axis with an s = 10 nm gap. (d) Lineouts from (c) at 2.30 eV (red line)
and 2.65 eV (blue line). Vertical gray dashed lines indicate single-slit-diffraction minima, while gray solid lines denote double-slit-interference
minima at 2.30 eV. All panels use the base 10 logarithm to scale the DDCS.

We have implemented within the e-DDA the plane-wave tran-
sition fields defined in Eqs. (A4) and (A6) in the Appendix,
sourced by the transition currents (18) and (19), respectively,
for the cases of scattering from either a single or a coherent
superposition of two incident plane waves to a single outgoing
plane-wave state.

The DDCSs for inelastic scattering of wide-field plane-
wave electron states from plasmonic nanorod monomers and
dimers are presented in Fig. 5. Probing electrons have an ini-
tial kinetic energy of 200 keV and wave vector directed along
the TEM axis, i.e., k̂i = ẑ, while the outgoing wave vectors
k f possess a nonzero y component such that the transverse
momentum recoil h̄q⊥ is along ŷ. Working in the low-loss-
energy regime in order to observe the plasmonic modes of
interest, Fig. 5(a) shows the calculated DDCS (logarithmic
scale) for an anisotropic silver rod with Cartesian dimensions

30 × 60 × 15 nm3 (width, length, and height) as a function of
scattering angle θ f and loss energy. The nanorod is orientated
with its longest dimension dy along in direction of collected
transverse recoils (φ f = π/2), leading to the lowest-energy
long-axis dipole mode near 2.50 eV dominating the DDCS.
Since the transversely polarized components of the transition
field E0

f i in Eq. (A4) are proportional to q⊥, transversely
oriented LSP modes of the nanorod do not contribute to the
DDCS at θ f = 0 µrad. The apparent features at θ f = 0 µrad
and energies above 3.50 eV in Fig. 5(a) arise from longitudinal
multipoles oriented along ẑ.

Figure 5(b) shows a lineout from Fig. 5(a) at the
long-axis dipole LSP energy marked by the green dashed
line. The gray trace in Fig. 5(b) is calculated using the
analytic form of the DDCS given in Eq. (40) for a single-
point dipole representing the target. The anisotropy of the
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nanorod response is captured by detuning the shorter-axis
dipole LSP energies above 2.50 eV in the dipole’s ef-
fective polarizability. As a consequence, ∂2σ/∂Ei f ∂� f ∝
|E0

f i · ŷ|2, which ensures ∂2σ/∂Ei f ∂� f |θ f =0 = 0. At mod-
erate opening angles (greater than approximately 5 µrad)
the DDCS decreases as the opening angle increases, which
starting from Eq. (A4) and Q‖ � |Q⊥| = |q⊥| can be
shown by E0

f i · ŷ ∝ Q‖q‖q⊥ · ŷ/(q2
⊥ + q2

‖ − ω2/c2) = Q‖q‖
|k f | sin θ f /[|k f |2 sin2 θ f + ω2(1/v2

i − 1/c2)]. For a 200-keV
electron with loss energy h̄εi f = 2.5 eV, |k f | sin θ f �
ω/γivi at opening angles greater than 5 µrad, leading to
∂2σ/∂Ei f d� f ∝ 1/sin2 θ f . This effect exists independent of
the target geometry and represents the decreasing probability
of low-loss events with moderate transverse recoil. Separately
the lineouts in θ f on the order of the 5-µrad range are primarily
dictated by the growing in of the transverse LSP mode, as
at smaller angles E0

f i · ŷ ∝ q · ŷ = |k f | sin θ f and the lineout
is taken at the ŷ-oriented dipole mode energy. Unlike in the
narrow-beam limit, the DDCS observable has equal magni-
tude contributions from transverse and longitudinal recoils,
which is a well-known experimental and theoretical result
of EEL DDCS on an anisotropic target [89,102]. In addi-
tion to tracking the angular scattering behavior predicted by
the point dipole model at small scattering angles (less than
approximately 25 µrad), the lineout shown in green exhibits
a progression of diffraction maxima and minima with in-
creasing θ f arising from the finite extent of the target. The
single-particle diffraction minima, indicated by vertical gray
dashed lines, are located nearby angles θm corresponding
to single-slit diffraction minima predicted using dy sin θm =
mλe, where integers m index the diffraction minima and λe is
the de Broglie wavelength of the electron.

Figures 5(c) and 5(d) consider a nanorod dimer consisting
of a pair of the silver rods from Figs. 5(a) and 5(b) displaced
along ŷ such that there is an s = 10 nm gap between the
rod tips. The dimer’s DDCS is presented in Fig. 5(c), where
the bonding (red) and antibonding (blue) hybridized long-
axis dipole LSP modes are visible at energies slightly below
and above 2.5 eV, respectively. Lineouts from Fig. 5(c) at
loss energies corresponding to the bonding and antibonding
dimer modes are shown in Fig. 5(d), again displaying multiple
diffraction minima and maxima. In analogy to the double-
slit experiment, each nanorod is a source of single-particle
diffraction in addition to matter-wave interference arising
from the d⊥ + s = 70 nm center-to-center displacement of the
the nanorods. For example, each DDCS minimum observed
at the bonding mode energy (2.30 eV) occurs at an angle
corresponding to either one of the single-particle diffraction
minima from Fig. 5(b) marked by vertical gray dashed lines
or at angles θn satisfying the double-slit interference condition
nλ⊥ = dy + s, which are indicated by vertical gray solid lines.
The condition for constructive interference at the antibonding
resonance energy is (n + 1/2)λ⊥ = dy + s.

An investigation of inelastic scattering involving super-
position plane-wave electron states interacting with a chiral
nanophotonic target is presented in Fig. 6. Specifically, the
target is the well-understood Born-Kuhn (BK) structure [103],
composed of two gold nanorods arranged in an L shape
with a relative displacement ζ between the rods centered

FIG. 6. Numerical evaluation of the circular dichroic response
of a chiral nanorod structure probed using wide-field EEL spec-
troscopy within the e-DDA. (a) Scheme showing the gold nanorod
BK structure and probing geometries. Superposition plane-wave
electron states are incident from the left, while an aperture (black)
postselects the outgoing electron state along the TEM (ẑ) axis.
(b) Optical extinction spectra for incident plane-wave wave vectors
along ẑ with circular polarization states ε̂ = R̂ (blue) and L̂ (red).
The optical circular dichroism CDopt is shown in black and shares its
secondary y axis with (c). (c) DDCS spectra of the same BK structure
for superposition plane-wave electron states with χ = +π/2 (red)
and χ = −π/2 (blue). The CDEEL spectrum is shown in black.
(d) Angle-θi-resolved CDEEL spectra. The gray dashed line indicates
the fixed angle of the lineouts in (c). The incident electron kinetic
energy in (c) and (d) is 200 keV.

along ẑ, as demonstrated in Fig. 6(a). Here the long and
short axes of each nanorod are 100 nm and 30 nm, re-
spectively, ζ = 40 nm, and tabulated gold dielectric data are
taken from the literature [100]. Figure 6(b) shows the op-
tical extinction spectra of the BK target for incident wave
vectors along ẑ and polarizations ε̂ = L̂ (red) and R̂ (blue).
As is well understood (see the Appendix) [104,105], both
incident field helicities couple, albeit with unequal strengths,
to the bonding and antibonding LSP modes near 2.0 eV in-
volving the long-axis dipoles. The optical circular dichroism
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CDopt = 2(σ R̂
ext − σ L̂

ext )/(σ R̂
ext + σ L̂

ext ) spectrum is shown in
black, which exhibits the BK system’s chiral response and
serves as a point of comparison against the electron-based
observables.

As depicted in Fig. 6(a), free-electron plane-wave super-
position states ψ

χ

kxky
(x, y, z) are incident from the left, while

an aperture situated in the diffraction plane postselects the
outgoing free electrons along the TEM axis with k f

⊥ = 0, i.e.,
ψk′

‖ (x, y, z). It has been shown previously that the response
of targets as measured by wide-field EEL spectroscopy with
pre- and postselection of such states with kx = ky and χ =
±π/2 in many ways mimics the optical response under circu-
larly polarized optical excitation [37,38,67]. Indeed, Fig. 6(c)
presents DDCS spectra of the BK target for ψ

χ

kxky
(x, y, z) →

ψk′
‖ (x, y, z), producing the transition current density given

by Eq. (19), for the scenarios of χ = ±π/2. The circular
dichroism CDEEL (black) is again defined as twice the dif-
ference in the χ = ±π/2 DDCS spectra normalized by the
sum and strongly resembles the CDopt spectrum in Fig. 6(b).
Figure 6(c) presents the CDEEL spectra as a function of con-
vergence angle θi. Like the nanorod dimer presented in Fig. 5,
the BK system exhibits both single-slit diffraction and double-
slit interference effects [Fig. 6(d)], though the superposition
state excitation and BK target geometry conspire to produce
more complicated beating patterns than those observed in
Fig. 5(c). The vertical gray dashed line in Fig. 6(d) indi-
cates the convergence angle θi of the spectra presented in
Fig. 6(c).

VII. CONCLUSION

Development of capabilities to prepare, parse, and measure
transversely phase-structured electron states in the electron
microscope has created the opportunity for state- and energy-
resolved inelastic-scattering observables, adding to the rapidly
evolving toolkit used to interrogate nanoscale systems in the
low-loss regime. Here we presented general expressions for
transversely phase-shaped EEL and continuous-wave laser-
stimulated EEG spectroscopies for transversely localized
vortex and nonvortex electron states, and the DDCS for
wide-field electron plane waves under minimal assumptions
regarding the magnitudes of electron velocity and energy ex-
change. By exploiting a quantum-mechanical treatment that
accounts explicitly for the transverse degrees of freedom

of the probing electron wave functions, we showcased the
ability to retrieve information about the optical near-field
and electromagnetic response of nanophotonic targets using
inelastic scattering of phase-shaped free electrons follow-
ing energy-momentum postselection. A numerical procedure
for evaluating derived observables was presented that al-
lows for flexibility regarding particle number, size, geometry,
and material composition. Example calculations for several
prototypical plasmonic monomer and dimer systems were
investigated to highlight the utility of our approach to an-
alyze mode symmetries, local response field characteristics,
chiral responses, and matter-wave diffraction phenomena. The
general procedures outlined for constructing wide-field plane-
wave and nondiffracting twisted and nontwisted electron
beams with distinct transverse polarization and topological
textures, in addition to the state- and energy-resolved ob-
servables, can be readily applied to many areas of atomic,
molecular, and materials physics. In particular, we have drawn
attention to an application of free-electron qubits, whereby
transitions between different OAM qubit states produce tran-
sition current densities with unique polarization and vector
profiles, including analogs of optical polarization states and
other more general forms of structured light. The theoretical
framework presented can be extended to describe beam co-
herence in electron holography [106,107] via a density-matrix
formalism [108] and utilized to explore the role of pure and
mixed electron states in inelastic scattering and the concurrent
transfer of quantum information in the form of quantized
energy and OAM [54,56,57,109]. Furthermore, the use of
transversely phase-structured free-electron states realizable
in TEMs, STEMs, and ultrafast TEMs can lead to addi-
tional manifestations of unique electromagnetic fields [27,28]
and electron paraxial skyrmionic beams [29], all of which
could play vital roles in the investigation of novel opti-
cally forbidden atomic, molecular, material, and topological
excitations [30,110–113].
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APPENDIX

1. Vacuum transition vector potentials and electric fields

The transition vector potentials and electric fields associated with each of the transition current densities in Sec. IV are
presented below. Specifically, the vacuum electric field

E0
f i(x, ω) = ic

ω

[(ω

c

)2
I
↔ + ∇∇

]
· A0

f i(x, ω)

= i

ω

∫
dx′

[(ω

c

)2
I
↔ + ∇∇

]
ei(ω/c)|x−x′ |

|x − x′|
(

L

vi

)
J f i(x′)

= −4π iω
∫

dx′↔G0(x, x′, ω) ·
(

L

vi

)
J f i(x′) (A1)

043502-15



AUSTIN G. NIXON et al. PHYSICAL REVIEW A 109, 043502 (2024)

plays an important role in the observable EEL and EEG processes and depends upon the vector potential

A0
f i(x, ω) = 1

c

∫
dx′ e

i(ω/c)|x−x′ |

|x − x′|
(

L

vi

)
J f i(x′), (A2)

presented here in the Lorenz gauge. Beginning with the transition current density in Eq. (18) associated with the transition
between single-plane-wave states ψki (x, y, z) and ψk f (x, y, z), where ki and k f are arbitrary wave vectors, the vacuum vector
potential

A0
k f ki

(x, ω) = 2πeh̄

mcviL2

eiq·x

(ω/c)2 − q2
Q (A3)

and electric field

E0
k f ki

(x, ω) = 2π ieγi

kiL2ω

eiq·x

(ω/c)2 − q2

[(
ω

c

)2

I
↔ − qq

]
· Q (A4)

are readily obtained upon using the integral identity
∫

dx′ei(ω/c)|x−x′ |e∓iq·x′
/|x − x′| = −4πe∓iq·x/[(ω/c)2 − q2].

The vacuum transition vector potential sourced by the superposition plane-wave state transition current density in Eq. (19)
takes the form

Aχ0
k′
‖,kxky

(x, ω) = 2πeh̄√
2mcviL2

eiq‖z

[
kxeikxx

(ω/c)2 − k2
x − q2

‖
x̂ + kyeiχ eikyy

(ω/c)2 − k2
y − q2

‖
ŷ + Q‖

(
eikxx

(ω/c)2 − k2
x − q2

‖
+ eiχ eikyy

(ω/c)2 − k2
y − q2

‖

)
ẑ
]

(A5)

for the superposition state ψ
χ

kxky
(x, y, z) = (1/

√
2L)[	kx (x, y) + 	ky (x, y)eiχ ]eik‖z introduced in Sec. III, transitioning to the final

pinhole state ψk′
‖ (x, y, z) = L−3/2eik′

‖z oriented along the TEM (ẑ) axis. Associated with this vector potential is the superposition
plane-wave state transition electric field

Eχ0
k′
‖,kxky

(x, ω) = −2π ieh̄√
2mωL2vi

[
k2

x + Q‖q‖ − (
ω
c

)2

k2
x + q2

‖ − (
ω
c

)2 kxeikxxx̂ + k2
y + Q‖q‖ − (

ω
c

)2

k2
y + q2

‖ − (
ω
c

)2 kyeikyyeiχ ŷ

+
(

k2
x q‖ + Q‖q2

‖ − Q‖
(

ω
c

)2

k2
x + q2

‖ − (
ω
c

)2 eikxx + k2
y q‖ + Q‖q2

‖ − Q‖
(

ω
c

)2

k2
y + q2

‖ − (
ω
c

)2 eikyyeiχ

)
ẑ
]

eiq‖z, (A6)

where Q = ki + k f and q = ki − k f are the same total and recoil wave vectors defined previously.
In the case of focused beams, more specifically in the small-beamwidth limit, we present only the vacuum transition fields

involving one unit of OAM exchange between initial and final electron-scattering states. The narrow-beam limit, whereby the
transverse electron wave function reduces to the transverse δ function [51], is adopted in all expressions. The transition vector
potential and electric field associated with the HG transition current density in Eq. (23) describing the scattering from ψ10(x, y, z)
to ψ00(x, y, z) are

A0
00,10(x, ω) = − 2ieh̄

mvicw0

[
K0

(
q‖�R0

γi

)
x̂ + i

q‖Q‖w2
0

4γi

�x

�R0
K1

(
q‖�R0

γi

)
ẑ
]

eiq‖z (A7)

and

E0
00,10(x, ω) = 2h̄e

mw0ωvi

[
ω2

c2
I
↔ + ∇∇

]
·
[

K0

(
q‖�R0

γi

)
x̂ + i

q‖Q‖w2
0

4γi

�x

�R0
K1

(
q‖�R0

γi

)
ẑ
]

eiq‖z

= h̄e

2mw0ωvi

{[(
4ω2

c2
+ q2

‖
γ 2

i

(
4 + q‖Q‖w2

0

) �x2

�R2
0

)
K0

(
q‖�R0

γi

)
+ q‖

γi

(
4 + q‖Q‖w2

0

) (�x2 − �y2)

�R3
0

K1

(
q‖�R0

γi

)]
x̂

+ q2
‖

γ 2
i

(
4 + q‖Q‖w2

0

)�x�y

�R2
0

K2

(
q‖�R0

γi

)
ŷ + i

γi

�x

�R0

(
q‖Q‖w2

0
ω2

c2
− q2

‖
(
1 + q‖Q‖w2

0

))
K1

(
q‖�R0

γi

)
ẑ
}

eiq‖z,

(A8)

respectively, where �R0 = |R − R0|, �x = |x − x0|, and �y = |y − y0|. By symmetry, scattering from HG ψ01(x, y, z) to
ψ00(x, y, z) can be obtained from Eqs. (A7) and by (A8) interchanging x̂ with ŷ, resulting in A0

00,01(x, ω) and E0
00,01(x, ω).

If the transverse state does not change in the scattering process, as is the case in the conventional EEL signal, the vacuum vector
potential and electric field associated with the current density in Eq. (24) where n′ = n = 0 and m′ = m = 0 become

A0
00,00(x, ω) =

(
h̄e

mvic

)
Q‖K0

(
q‖�R0

γi

)
ẑeiq‖z (A9)
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and

E0
00,00(x, ω) = h̄e

ωmvi
Q‖

[
q2

‖
γi�R0

K1

(
q‖�R0

γ

)
(�xx̂ + �yŷ) + i

(
ω2

c2
− q2

‖

)
K0

(
q‖�R0

γ

)
ẑ
]

eiq‖z. (A10)

The latter is the well-known classical field of a uniformly moving point electron [51,69] in the nonrecoil approximation where
q‖ = ω/vi and Q‖ = 2ki

‖.
Transitions between LG states ψ�p(ρ, φ, z) and ψ�′ p′ (ρ, φ, z) involving one unit of OAM can be derived from the above HG

transitions by linear combination. Specifically,

A0
�′=0,p′=0,�=±1,p=0(ρ, φ, z, ω) = 1√

2

[
A0

00,10(x, ω) ± iA0
00,01(x, ω

)
] (A11)

and

E0
�′=0,p′=0,�=±1,p=0(ρ, φ, z, ω) = 1√

2

[
E0

00,10(x, ω) ± iE0
00,01(x, ω)

]
. (A12)

All electric fields introduced in the Appendix are coded within the e-DDA and can be used to calculate the presented EEL
observables in both wide-field and focused-beam limits.

2. Observables under interchange of initial and final states

The EEL rate w f i is proportional to
∫

dx dx′J∗
f i(x) · ↔

G(x, x′, ω) · J f i(x′). By interchanging the 3D coordinates x and x′ and
invoking reciprocity, i.e., Gαβ (x, x′, ω) = Gβα (x′, x, ω),

∫
dx dx′[J f i(R)eiq‖z]∗αGαβ (x, x′, ω)[J f i(R′)eiq‖z′

]β =
∫

dx dx′[J f i(R)]∗αGαβ (x, x′, ω)[J f i(R′)]βe−iq‖(z−z′ )

=
∫

dx dx′[Ji f (R)]αGαβ (x, x′, ω)[Ji f (R′)]∗βe−iq‖(z−z′ )

=
∫

dx dx′[Ji f (R′)]∗βGβα (x′, x, ω)[Ji f (R)]αe−iq‖(z−z′ )

=
∫

dx dx′[Ji f (R)]∗αGαβ (x, x′, ω)[Ji f (R′)]βe−iq‖(z′−z)

=
∫

dx dx′[Ji f (R)ei(−q‖ )z]∗αGαβ (x, x′, ω)[Ji f (R′)ei(−q‖ )z′
]β, (A13)

where α, β = x, y, z and Einstein summation notation has been used. Equation (A13) can be equivalently expressed as w f i(q‖) =
wi f (−q‖) provided Gαβ (x, x′, ω) = Gβα (x′, x, ω). Said differently, interchanging the initial and final transverse states together
with changing the sign of the recoil momentum wave vector q‖ leaves the EEL observable invariant in a reciprocal medium.

In the case of an isolated dipolar target at position xd characterized by frequency-dependent polarizability α
↔(ω),

↔
G(x, x′, ω)

satisfies the reciprocity condition when the polarizability tensor is complex symmetric, i.e., when α
↔(ω) = α

↔T (ω).

3. Laser-stimulated coherent states of the target

Under the assumption that the stimulating laser field couples to a single target mode (labeled �), which is driven into the
coherent state |α�〉, the rate at which the probing electron gains energy as the target transitions to the sum of final Fock states
|n′

�〉 is

w
gain
f i = 2π

h̄c2

∑
n′

�

∣∣∣∣∣
∑

ν

∫
dx J f i(x, t ) · 〈n′

�|A(+)
ν (x)aνe−iων t |α�〉

∣∣∣∣∣
2

δ(E f − Ei )

= 2π

h̄c2

∑
n′

�

∣∣∣∣∣α�〈n′
�|α�〉

∫
dx A(+)

� (x) · J f i(x)

∣∣∣∣∣
2

δ(E f − Ei ). (A14)
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Coherent states can be written as |α〉 = e−|α|2/2 ∑∞
n=0(αn/

√
n!)|n〉, where |n〉 = [(a†)n/

√
n!]|0〉. When expressed in terms of the

electric field E(±)
� (x) = ±(iω�)/cA(±)

� (x) together with |〈n′
�|α�〉|2 = (|α�|2n′

�/n′
�!)e−|α�|2 , Eq. (A14) can be cast as

w
gain
f i = 2π

( |α�|
h̄ω�

)2
( ∑

n′
�

|α�|2n′
�

n′
�!

)
e−|α�|2

∣∣∣∣
∫

dx E(+)
� (x) · J f i(x)

∣∣∣∣
2

δ((E f − Ei )/h̄)

= 2π

( |α�|
h̄ω�

)2∣∣∣∣
∫

dx E(+)
� (x) · J f i(x)

∣∣∣∣
2

δ((E f − Ei )/h̄). (A15)

[1] E. N. Lassettre, Collision cross-section studies on molecular
gases and the dissociation of oxygen and water, Radiat. Res.
Suppl. 1, 530 (1959).

[2] E. N. Lassettre, M. E. Krasnow, and S. Silverman, Inelastic
scattering of electrons by helium, J. Chem. Phys. 40, 1242
(1964).

[3] J. A. Bradley, G. T. Seidler, G. Cooper, M. Vos, A. P.
Hitchcock, A. P. Sorini, C. Schlimmer, and K. P. Nagle, Com-
parative study of the valence electronic excitations of N2 by
inelastic x-ray and electron scattering, Phys. Rev. Lett. 105,
053202 (2010).

[4] M. Adrian, J. Dubochet, J. Lepault, and A. W. McDowall,
Cryo-electron microscopy of viruses, Nature (London) 308, 32
(1984).

[5] P. Rez, T. Aoki, K. March, D. Gur, O. L. Krivanek, N. Dellby,
T. C. Lovejoy, S. G. Wolf, and H. Cohen, Damage-free vi-
brational spectroscopy of biological materials in the electron
microscope, Nat. Commun. 7, 10945 (2016).

[6] R. Fernandez-Leiro and S. H. W. Scheres, Unravelling biolog-
ical macromolecules with cryo-electron microscopy, Nature
(London) 537, 339 (2016).

[7] J. A. Hachtel, J. Huang, I. Popovs, S. Jansone-Popova, J. K.
Keum, J. Jakowski, T. C. Lovejoy, N. Dellby, O. L. Krivanek,
and J. C. Idrobo, Identification of site-specific isotopic la-
bels by vibrational spectroscopy in the electron microscope,
Science 363, 525 (2019).

[8] J. Li, J. Li, J. Tang, Z. Tao, S. Xue, J. Liu, H. Peng,
X.-Q. Chen, J. Guo, and X. Zhu, Direct observation of topo-
logical phonons in graphene, Phys. Rev. Lett. 131, 116602
(2023).

[9] C. Dwyer, T. Aoki, P. Rez, S. L. Y. Chang, T. C. Lovejoy,
and O. L. Krivanek, Electron-beam mapping of vibrational
modes with nanometer spatial resolution, Phys. Rev. Lett. 117,
256101 (2016).

[10] M. J. Lagos, A. Trügler, U. Hohenester, and P. E. Batson, Map-
ping vibrational surface and bulk modes in a single nanocube,
Nature (London) 543, 529 (2017).

[11] R. Senga, K. Suenaga, P. Barone, S. Morishita, F. Mauri, and
T. Pichler, Position and momentum mapping of vibrations in
graphene nanostructures, Nature (London) 573, 247 (2019).

[12] A. Polman, M. Kociak, and F. J. García de Abajo, Electron-
beam spectroscopy for nanophotonics, Nat. Mater. 18, 1158
(2019).

[13] Y. Auad, E. J. C. Dias, M. Tencé, J.-D. Blazit, X. Li, L. F.
Zagonel, O. Stéphan, L. H. G. Tizei, F. J. García de Abajo, and
M. Kociak, µeV electron spectromicroscopy using free-space
light, Nat. Commun. 14, 4442 (2023).

[14] F. Araoka, T. Verbiest, K. Clays, and A. Persoons, Interactions
of twisted light with chiral molecules: An experimental inves-
tigation, Phys. Rev. A 71, 055401 (2005).

[15] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.
Woerdman, Orbital angular momentum of light and the trans-
formation of Laguerre-Gaussian laser modes, Phys. Rev. A 45,
8185 (1992).

[16] G. Molina-Terriza, J. P. Torres, and L. Torner, Twisted pho-
tons, Nat. Phys. 3, 305 (2007).

[17] J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni,
R. W. Boyd, and E. Karimi, Structured quantum waves, Nat.
Phys. 11, 629 (2015).

[18] A. M. Yao and M. J. Padgett, Orbital angular momentum:
Origins, behavior and applications, Adv. Opt. Photonics 3, 161
(2011).

[19] H. Zhao, Y. Ma, Z. Gao, N. Liu, T. Wu, S. Wu, X. Feng,
J. Hone, S. Strauf, and L. Feng, High-purity generation and
switching of twisted single photons, Phys. Rev. Lett. 131,
183801 (2023).

[20] G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W.
Beijersbergen, and M. J. Padgett, Efficient sorting of or-
bital angular momentum states of light, Phys. Rev. Lett. 105,
153601 (2010).

[21] H. Di Lorenzo Pires, H. C. B. Florijn, and M. P. van Exter,
Measurement of the spiral spectrum of entangled two-photon
states, Phys. Rev. Lett. 104, 020505 (2010).

[22] E. Karimi, D. Giovannini, E. Bolduc, N. Bent, F. M. Miatto,
M. J. Padgett, and R. W. Boyd, Exploring the quantum nature
of the radial degree of freedom of a photon via Hong-Ou-
Mandel interference, Phys. Rev. A 89, 013829 (2014).

[23] Y. Zhou, M. Mirhosseini, D. Fu, J. Zhao, S. M. Hashemi
Rafsanjani, A. E. Willner, and R. W. Boyd, Sorting photons
by radial quantum number, Phys. Rev. Lett. 119, 263602
(2017).

[24] D. Zia, N. Dehghan, A. D’Errico, F. Sciarrino, and E. Karimi,
Interferometric imaging of amplitude and phase of spatial
biphoton states, Nat. Photon. 17, 1009 (2023).

[25] S. Karan, R. Prasad, and A. K. Jha, Postselection-free
controlled generation of a high-dimensional orbital-angular-
momentum entangled state, Phys. Rev. Appl. 20, 054027
(2023).
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