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Evolution of Efimov states
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The Efimov phenomenon manifests itself as an emergent discrete scaling symmetry in the quantum three-body
problem. In the unitarity limit, it leads to an infinite tower of three-body bound states with energies forming a
geometric sequence. In this work, we study the evolution of these so-called Efimov states using relativistic
scattering theory. We identify them as poles of the three-particle S matrix in the complex energy plane, and
we study how they transform from virtual states through bound states to resonances when we change the
interaction strength. We dial the scattering parameters toward the unitarity limit and observe the emergence of the
universal scaling of energies and couplings—a behavior known from the nonrelativistic case. We additionally
find that Efimov resonances follow unusual, cyclic trajectories accumulating at the three-body threshold and
then disappear at some values of the two-body scattering length. We propose a partial resolution to this “missing
states” problem.
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I. INTRODUCTION

The discovery of the Efimov effect in 1970 revealed the
formation of an infinite number of bound states, or trimers,
in a system of three nonrelativistic bosons [1,2]. Assuming
they interact via two-body forces characterized by a large
scattering length, the three-body binding energies form a ge-
ometric sequence with a quotient λ2 ≈ 515. The emergence
of the phenomenon is closely tied to the scale invariance
of the quantum-mechanical 1/r2 potential [3–6], and it is
the best known example of the renormalization-group limit
cycle [7–10].

The sequence of trimers becomes infinite in the so-called
unitarity limit, i.e., when the two-body scattering length, a,
is made arbitrarily large, a → ∞. While such behavior has
not been observed in nature, several nuclear [11–14] and
hadronic systems [15–19] may serve as proxies due to their
large scattering length. Furthermore, Efimov physics is re-
alized experimentally using ultracold atoms submerged in a
background magnetic field tuned to introduce a Feshbach
resonance and drive the system to the unitarity limit [20–32].
Given the generality of the result, this phenomenon has ig-
nited a rich line of research into universality across different
subfields [33–47].

*dawids@uw.edu
†m2islam@odu.edu
‡rbriceno@berkeley.edu
§awjackura@wm.edu

Although the unitarity limit does not seem to exist in
nature, we can expose the universal scaling behavior by ex-
ploring the evolution of Efimov states in the vicinity of this
limit. We investigate this evolution using relativistic scattering
theory, which has been derived as part of ongoing efforts to
develop a model-independent framework for studying three-
body systems [48–60]. Building on previous work [61], we
identify the trimers as poles of the S matrix in the complex
energy variable, and we study their behavior for various values
of a, including the a → ∞ limit. We provide evidence of the
discrete scaling relationship between the binding energies of
the three-body spectrum,

�En(a) = Q2
a �En+1(Qaa), (1)

where �En is the binding energy of the nth bound state, and
Qa is a scaling quotient that asymptotes to Efimov’s λ in the
unitarity limit. This scaling relationship holds as the states
evolve from bound states to unstable resonances, verifying
that the relativistic framework recovers the known nonrela-
tivistic results.

Similar three-body models were previously studied using
Faddeev equations [62–67] and nonrelativistic effective field
theories [9,68,69]. In particular, the authors of Refs. [70–72]
made noteworthy progress in the analysis of Efimov res-
onances. First attempts to understand the system of three
bosons in the relativistic framework have been made in
Refs. [73,74]. However, their result disagreed with the sub-
sequent light-front calculation [75] obtained in an equivalent
regularization scheme. Its redefinition [76] led to an approxi-
mate agreement between two approaches but also implied the
unphysical behavior of the trimer mass becoming imaginary
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at finite values of a. We do not observe any indication of the
Thomas collapse reported in this work.1

Nevertheless, by studying the analytic structure of the scat-
tering amplitude, we find a much richer picture of the trimers’
behavior than previously identified. We discuss intriguing
properties of their evolution across various unphysical Rie-
mann sheets of the complex energy plane, such as the
formation of cyclic trajectories of the three-body poles and the
emergent scaling property of the associated residues. More-
over, we identify a new, “quirky” state following a fractal
trajectory in the upper half of the unphysical Riemann sheet.
The behavior of the Efimov resonances is sufficiently puzzling
that it motivates us to conjecture about the structure of the
three-boson amplitudes and to call for further investigation of
these states.

We organize this article in the following manner.
Section II reviews the relativistic three-body framework used
to study the universality of three bosons. It also contains a
brief description of the analytic continuation of the three-
body scattering amplitude to the regions of the complex
energy plane where Efimov states appear. Section III presents
the main numerical results of this work, showing evidence
for Efimov trimers, and it discusses their behavior as the
poles of the 3 → 3 amplitude. Finally, the article concludes
with a summary in Sec. IV. The article has three technical
Appendixes.

II. THREE-BODY SCATTERING

We consider scattering of three identical spinless bosons of
mass m, labeled as “ϕ,” in their center-of-mass (c.m.) frame.
We assume the system’s total angular momentum is J = 0,
and we neglect contributions from the two-particle subsys-
tems of angular momentum higher than zero. The partial-wave
projected 3ϕ → 3ϕ amplitude, M3, depends on the total
relativistic energy E and two more variables. We describe
the system by splitting the scattering states into a spectator
particle and a pair, formed from the two other bosons, and we
use magnitudes of initial and final spectator momenta, k =
|k| and p = |p|, as the remaining kinematic parameters. In
what follows, we use a notation where all amplitude-like ob-
jects have an implicit energy dependence, e.g., M3(p, k; E ) ≡
M3(p, k).2

A. The integral equations

To describe the scattering process, we employ the relativis-
tic on-shell three-body equations defined in Ref. [49]. The

1One can find additional studies in Refs. [77–80] and a review of
the situation in Ref. [42].

2Strictly speaking, in this article we work with the pair-spectator
amplitude M(u,u)

3 , where specific spectators are chosen. The su-
perscript emphasizes that the initial and final states are “unsym-
metrized.” It becomes the genuine 3ϕ → 3ϕ amplitude M3 only
after symmetrization with respect to different spectator choices [49].
Keeping that in mind, we drop the (u, u) superscript from all the
amplitude-like objects.

amplitude is expressed as a sum of two objects,

M3(p, k) = D(p, k) + Mdf,3(p, k). (2)

The first term is called the ladder amplitude, and it describes
the scattering driven by one-particle exchanges, with the
three-body couplings “turned off.” The second term describes
a probability of an interaction due to short-range forces and
potential rescattering effects in the final and initial state.

The equation for the S-wave projection [61,81,82] of D is

D(p, k) = −M2(p) G(p, k)M2(k)

− M2(p)
∫

k′
G(p, k′)D(k′, k). (3)

The integral is defined as
∫

k ≡ ∫ kmax

0 dk k2/(2π )2ωk , where
kmax is the maximum allowed value of the momentum, and
ωk = √

m2 + k2 is the intermediate spectator energy. The am-
plitude D depends on two dynamic inputs: the 2ϕ → 2ϕ

scattering amplitude, M2, governed by the two-body inter-
actions within a pair, and the single-particle propagator, G,
describing the probability of a particle exchange (flip) be-
tween external pairs.

For sufficiently low energies of the interacting pair, the
S-wave amplitude M2 is described well in the leading-order
effective range expansion,

M2(k) = 16πεk

−1/a − iqk
, (4)

where εk =
√

(E − ωk )2 − k2 is the pair’s energy in its c.m.
frame, and qk =

√
ε2

k/4 − m2 is the relative momentum be-
tween the particles in the pair. Parameter a is the two-body
scattering length. Here, we employ this model regardless of
the energy εk .

Due to the square root in the definition of the relative mo-
mentum, one defines the two-body amplitude on two Riemann
branches in the complex εk variable. The first is the physical
sheet given by condition Imqk > 0, and the second (unphys-
ical) sheet is described by Imqk < 0. Regardless of the value
of |ma| � 1, the M2 amplitude has a pole in the εk variable,
corresponding to a state with mass mb = 2

√
m2 − 1/a2. It re-

sides on the real axis below the two-body threshold, εk < 2m.
If a > 0, the pole is on the first sheet and is associated with
a two-body bound state. Otherwise, it is a virtual state on the
second sheet.

The form of the on-shell one-particle exchange (OPE)
amplitude G is partially fixed by the three-body S matrix
unitarity. It is given by the relativistic boson propagator,

G(p, k) = 1

(E − ωp − ωk )2 − (p + k)2 − m2 + iε
. (5)

Projecting it to the total S wave produces a kinematic function
G(p, k) with logarithmic branch cuts,

G(p, k) = − 1

4pk
log

(
z(p, k) + iε − 2pk

z(p, k) + iε + 2pk

)
. (6)

Here z(p, k) = (E − ωk − ωp)2 − k2 − p2 − m2. The OPE
amplitude describes a long-range interaction between the
pairs, which, in addition to large scattering length a, is
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necessary to generate the Efimov spectrum.3 The second term
of Eq. (2), amplitude Mdf,3, depends on D and the so-called
three-body K matrix, K3, which describes short-distance
dynamics of three particles.4 In this article, we consider
the simplest scenario (the so-called isotropic approximation)
where it depends solely on the total energy of the system,
K3(p, k) ≡ K3(E ). In practice, it is an unconstrained function
of E consisting of a polynomial of arbitrary order and a sum of
poles. We note that K3 is a regularization-scheme-dependent
object; thus, any choice of K3 fixes the cutoff momentum.
Changes in the regularization lead to a different three-body
K matrix, assuring that the full three-body amplitude, M3, is
independent of the cutoff.

The amplitude Mdf,3 takes a form

Mdf,3(p, k) = L(p)
1

K−1
3 + F∞

3

L(k), (7)

where the “end cap” functions describing two-body rescatter-
ing contributions are

L(p) = 1

3
− M2(p)ρ(p) −

∫
k′
D(p, k′)ρ(k′). (8)

The three-body kinematic function, F∞
3 , describes the effects

of propagation of on-shell three-body states interacting either
within two-body subchannels or via one-particle exchanges. It
is expressed in terms of M2 and the D amplitude,

F∞
3 =

∫
k′

ρ(k′)L(k′). (9)

Finally, the phase space function, ρ, is defined as5

ρ(k) = − iqk

16πεk
. (10)

Following our previous work in Refs. [61,81], we numer-
ically solve the above integral equations to obtain M3 in
the complex energy plane on the physical and the nearest
unphysical sheets.

B. Trimer poles and thresholds

Scattering states are associated with poles of the amplitude,
with a residue corresponding to the coupling of the state to
an open channel. Lehmann-Symanzik-Zimmerman [83–86]
reduction implies that this identification holds for poles on
and off the real energy axis. Causality assures that a complex-
valued singularity cannot reside on the “physical” energy

3References [61,81] employ smooth regularization of the integral
equation, implemented by multiplying G(p, k) by an exponentially
falling function H (p, k). Here, we use the hard cutoff version of
H (p, k) that is equal to 1 in the range of integration and 0 otherwise.
It implies kmax = (E 2 − m2)/2E for the maximal value the momen-
tum can take. It corresponds to minimal εk′ = 0 of the pair in the
intermediate three-body state.

4Compared to Refs. [48,49], we drop the “df” label from this object
to simplify the notation.

5It differs slightly from Refs. [48,49], where the phase space was
proportional to the cutoff function. We also drop the “3” subscript
from the definition of the phase space to simplify the notation.

plane and must instead appear in unphysical Riemann sheets
generated by square-root and logarithmic branch cuts of the
scattering amplitude. Depending on the location in the com-
plex plane and the sheet, these poles are associated with bound
states (real-valued, physical sheet), virtual states (real-valued,
unphysical sheet), or resonances (complex-valued, unphysical
sheet).

The relativistic three-body amplitude, M3(p, k), exhibits
poles associated with trimers in the E2 plane. Near the nth
pole, it behaves like

M3(p, k) = −
n(p) 
n(k)

E2 − E2
n

+ · · · , (11)

where En is the trimer energy, and ellipses indicate higher-
order terms. Bound or virtual states have ImEn = 0, while
resonances have ImEn �= 0. The residue, i.e., the coupling
of the nth trimer to the 3ϕ state, factorizes into momentum-
dependent vertex factors 
n(k) that are closely related to the
Faddeev wave functions in the nonrelativistic limit.

To access the trimer poles of M3, one needs to extend
the solution of the integral equation from physical to com-
plex values of kinematic variables p, k, and E . Analytic
continuation to the complex plane depends on the nature
of the singularities of the three-body scattering amplitude
encoded in Eq. (3). In addition to potential poles, the M3

amplitude has a logarithmic branch cut inherited from the
partial-wave projected propagator, G. Furthermore, it has two
possible physical thresholds manifesting as corresponding
branch points. These are the square-root bound-state-spectator
threshold at E (ϕb)

thr = m + mb and the logarithmic three-body
threshold at E (3ϕ)

thr = 3m [87,88]. Unphysical sheets are asso-
ciated with these two singularities.

The emergence of these thresholds in Eq. (2) has a non-
perturbative origin. The three-body amplitude inherits the
singularities of M2 in the external momentum variables, p
and k. The threshold branch points of M3(p, k) in the E2

plane emerge from the second term of Eq. (3) when these
energy-dependent singularities in the k′ variable coincide with
the origin of the integration interval, k′ = 0 [61,88,89]. The
branch cut at E = E (ϕb)

thr arises from the collision of point
k′ = 0 with the two-body bound-state pole. The E (3ϕ)

thr branch
point appears from the collision with the square-root branch
point of M2.

To extend M3 to the unphysical Riemann sheets of the
E2 plane, either through the ϕb or the 3ϕ cut, one needs
to avoid integrating over the discontinuities associated with
the above-mentioned collisions, i.e., avoid coincidence of the
integration interval with the pole or threshold cut in k′. We
accomplish this by deforming the integration contour into
the complex k′ momentum plane. In doing this, we ensure
that the deformed integration path avoids logarithmic branch
points of G(p, k′) and all other singularities induced by the
nonperturbative nature of the equation [6]. The reader can find
a detailed description of this procedure in Appendix A.

III. EFIMOV TRIMERS

In the remainder of this work, we set K3 = 0. This choice
is motivated by the desired simplicity of the discussion and
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FIG. 1. Left panel: ratios of subsequent binding energies vs ma (x-axis). The horizontal axis for �E1/�E2 (dashed line) is rescaled by λ. We
show the Efimov ratio, λ2, as a horizontal, gray line. Right panel: normalized residues of the first three bound-state poles of the Mϕb amplitude
as functions of ma. The bottom red graph corresponds to the ground state. The upper two curves correspond to excited states (indistinguishable
within the numerical precision). The scattering lengths for these residues are rescaled by appropriate powers of λ, as indicated in the legend.

does not affect the generality of the presented results. For
interested readers, we discuss the nonzero case in Appendix B,
where we argue that the universal scaling behavior of poles is
independent of K3.

A. Bound-state poles and residues

Close to the unitarity limit, i.e., for |ma| 	 1, we find that
M3 develops multiple bound-state poles. We observe that
their binding energies, �En = En − E (3ϕ)

thr , obey the discrete
scaling symmetry given in Eq. (1), which is characteristic
of the Efimov phenomenon. The quotient Qa → λ as ma →
∞, confirming that the relativistic framework recovers the
expected Efimov scaling when the binding energies become
small compared to the scale-invariance breaking quantities
like m or the cutoff kmax. At small values of a > 0, the
ground state exhibits a noticeable deviation from the scal-
ing behavior. Nevertheless, its qualitative features (e.g., pole
trajectory, residues) remain analogous to shallow trimers of
nonrelativistic binding energies. In agreement with Efimov’s
prediction, the discrete scaling symmetry emerges not only
in the unitarity limit but for finite values of a as well (with
Qa �= λ).

This is shown on the left panel of Fig. 1, where the ratios of
subsequent binding energies approach the square of Efimov’s
constant in the unitary limit. Extrapolated values are 0.7%
away from λ2 for the �E1/�E2 ratio, and 0.001% for the
�E2/�E3 one, which we consider an excellent agreement.
For finite values of ma, both ratios show a similar functional
dependence on the scattering length. Although the energies
exhibit a dependence on K3, their ratios are mostly indepen-
dent of its value, in agreement with the argument made in
Appendix B.

On the right panel of Fig. 1, we show that the analogous
property holds for the residues associated with the trimer
poles. At positive values of a, we reduce the three-particle
to the bound-state-particle amplitude, Mϕb [introduced in
Eq. (A1)], and we extract the residues from the Laurent ex-
pansion,

Mϕb = − |
ϕb|2
E2 − E2

n

+ · · · . (12)

Residue |
ϕb|2 describes the coupling strength between the
trimer and the ϕb state. We normalize it with the two-body
coupling g2 and plot it as a function of ma. As we can see,
rescaling the characteristic length scales brings all residues
close to each other, with almost no difference between the
second and the third trimer and an O(10%) discrepancy be-
tween these two and the first one. Despite the relatively small
binding energy of the deep bound state, we understand it as a
remnant of relativistic effects in the formation of this state.

Finally, in Fig. 2, we verify numerically the known analytic
form for the nonrelativistic vertex function, which was derived
in Ref. [90] and confirmed in Ref. [91],

|
(k)|2 = |c||A|2 256π5/2

31/4

m2κ2

k2(κ2 + 3k2/4)

× sin2(s0 sinh−1(
√

3k/2κ ))

sinh2(πs0/2)
. (13)

Here, κ = −√|m�E | and s0 ≈ 1.006. Normalization con-
stant |c| = 96.351, while A is close to 1 when ma →
∞. The plot in Fig. 2 was obtained for the first three
trimers at ma = −106, which corresponds to binding

FIG. 2. Residues of the M3 amplitude at the first three trimer
poles for ma = −106. Dashed black lines represent the analytic
prediction of Ref. [90].
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FIG. 3. Trajectories of the first three trimer poles in the (κ/m, 1/ma) plane where κ = sgn(Re�E )
√|mRe�E | (states are ordered by their

distance from the ϕb threshold). The 3ϕ and ϕb thresholds are shown explicitly as gray and orange lines. Solid lines denote physical bound
states, while dashed ones denote either virtual bound states on the unphysical ϕb sheet or resonances on the nearest 3ϕ sheet. Stars denote
the emergence of a virtual state from the logarithmic cut on the second ϕb sheet. Circles denote the evolution of this virtual state onto a real
bound state. Squares denote the further evolution of the state to three-body resonance. Insets show the behavior of trimers near the three-body
threshold.

energies: �E1/m = −2.8 × 10−2, �E2/m = −5.5 × 10−5,
and �E3/m = −1.1 × 10−7. The presented agreement of the
nonrelativistic result with our finding is another confirmation
that the observed states are undoubtedly Efimov in nature. As
expected, we can observe a discrepancy between our numer-
ical result and the analytic formula for momenta that can be
considered relativistic, p/m = O(1).

B. Virtual states and resonances

By dialing ma to smaller values, we trace the trimers
on their trajectories that span across multiple Riemann
sheets associated with the dimer-particle and three-particle
cuts. The trimers evolve from the virtual states (small,
positive a) through bound states (large a of both signs)
to resonances (small, negative a). In Fig. 3, we present
their trajectories on the so-called Efimov plot, i.e., in the
(κ, 1/a) plane, where the (generalized) binding momentum
κ = sgn(Re�E )

√|mRe�E |.
All excited states follow similar trajectories. They emerge

as virtual states on the unphysical ϕb sheet from the loga-
rithmic cut inherited by M3 from the one-particle exchange
amplitude, G. They approach the dimer-particle threshold and
move to the first sheet, becoming bound states. They remain
bound states for large negative values of a and evolve to
become resonances on the nearest unphysical sheet associated
with the logarithmic 3ϕ threshold cut.

We trace their motion on this sheet, in the complex �E
variable, and present it in Fig. 4. (See also the Supplemental
Material for a video of the info presented in Fig. 4 [92].) At
a given finite value of ma, there is only a single resonance
pole in the unphysical sheet. As we decrease ma from zero to

ma = −8.71, the “ground-state” resonance moves to the
three-body threshold on an arc from complex infinity. It is
natural since ma → 0 corresponds to no dynamics and the
removal of all but the free states from the spectrum.

−0.4
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−0.4 −0.3 −0.2 −0.1 0.0
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E
/m

)

ΔE1

λ2 ΔE2

λ4 ΔE3

3ϕ |thr.

FIG. 4. Trajectories of the first three resonances on the nearest
unphysical Riemann sheet of the complex �E plane. Energies of
the second and third trimers are rescaled by λ2 and λ4, respectively.
At large |ma| and close to the threshold, all trajectories exhibit
discrete scaling symmetry. As |ma| decreases, the scaling symmetry
breaks down, although for the second and third resonant states the
discrepancy between the trajectories remains small.
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By contrast, the excited three-body resonances follow
cyclic trajectories, which start and end at the three-body
threshold and accumulate near this point. By rescaling them
by an appropriate power of λ2, we observe that they nearly
overlap, providing additional evidence of the discrete scale in-
variance in the three-boson system. Similar trajectories of the
Efimov resonances were previously noticed in Refs. [66,93],
where a nonrelativistic approach was used.

Moreover, we discover an interesting pattern as these
excited trimers move between the physical and unphysical
Riemann sheets. Namely, the first excited resonance of energy
�E2 emerges from the threshold on the unphysical sheet at the
same value, ma = −8.71, at which the ground-state resonance
reaches this point and becomes a bound state on the physical
energy plane. It leads to a “missing poles” problem: one
pole reaches the threshold, and two emerge. This behavior is
repeated for all states, i.e., whenever the nth resonance enters
the threshold, the (n + 1)th resonance appears on the unphys-
ical sheet, and the nth bound state appears on the physical
one. Furthermore, we find that the residues of all three poles
converge to the same value when they approach the 3ϕ branch
point; see Appendix C

This puzzling behavior violates our expectation that the
number of poles, equivalent to the number of physical states,
must be conserved when one varies the theory parameters
[94]. The only exception is the instance of lifted spectrum
degeneracy, which we verify does not happen in our system
by studying the order of trimer poles.

We propose a possible resolution to this puzzle by noting
that the three-body scattering amplitude has infinitely many
unphysical sheets; see Fig. 5. We label the two nearest sheets
±1 while denoting the physical sheet by 0. States in the −1
plane are the complex-conjugate or “mirror” poles of those
in the +1 sheet. This is unlike the two-body case, where the
Schwarz reflection principle ensures that a resonance pole has
its mirror image on the same sheet. For the three-body ampli-
tude, similarly to a complex logarithm, it implies a reflection
between the ±n sheets.

We conjecture that the missing poles come from the higher
Riemann branches, one from each. The nth state approaches
the threshold from complex infinity on the nth Riemann sheet
and moves to the (n − 1)th one, where it starts evolving
on a cyclic trajectory. Eventually, in the unitarity limit, it
travels to the physical energy plane, contributing to the ge-
ometric sequence of bound states. We depict this idea in
Fig. 5, where the dashed lines represent trajectories of n � 4
states. References [66,93] did not address the “missing poles”
issue.

One could verify this conjecture by analytically continuing
the amplitude to the higher Riemann sheets. Although we
were unable to extend our solution to the other sheets, we have
performed numerical extrapolations presented in Appendix C
that further support this conjecture. Our proposal only par-
tially resolves the puzzle. Whenever a resonance approaches
the threshold, its “mirror” image does the same. Yet, we ob-
serve only one bound state emerging on the physical energy
plane. The “mirror” poles seem to vanish when meeting their
complex-conjugate partners at the threshold, which, again,
violates our expectation about the conservation of the number
of states.

Re ΔE

sheet 0
(physical)

sheet −1

sheet +2

sheet +1

ΔE1ΔE2ΔE2ΔE3

Im ΔE

mirror pole
loops

conjectured
“missing” poles

resonance
pole loops

Efimov states

physical axis

3ϕ |thr.

FIG. 5. Riemann surfaces of the three-body amplitude in �E .
The trajectories of the trimers are shown, along with three bound-
state positions for some a. On the nearest unphysical sheet, the
second and third trimers exhibit the cyclic behavior as shown in
Fig. 4. Mirror poles are found by continuing up to sheet −1. We
postulate that the higher trimers come from the further unphysical
sheets (� +2), where their cyclic behavior repeats.

C. Additional “quirky” pole

In addition to the regular Efimov resonances in the +1
Riemann sheet of the complex E2 plane, we also find a new,
“quirky” state in the upper half-plane, ImE2 > 0. We trace its
trajectory with the changing two-body scattering length and
we present it in Fig. 6, denoting its binding energy as �Eq. We
observe as it approaches the three-body threshold from a deep
region of the complex plane, supposedly the complex infinity.
Interestingly, as the magnitude of ma increases, it bypasses the
three-body branch point and turns back. This pattern keeps re-
peating for arbitrarily high values of ma. The fractal trajectory
it forms has a self-similarity factor converging to Efimov’s
constant, λ2, as we dial a → ∞.

We find this state unexpected, and, at this point, we cannot
draw any conclusions on its nature. The pole approaches the
three-body branch point in the unitarity limit and could play a
role in the accumulation of bound-state poles at the threshold.
It could be a physically interesting phenomenon or simply
an artifact of the relativistic integral equations. At this time,
neither option can be ruled out, and further investigation is
needed.

IV. CONCLUSION

To summarize, we found and presented the emergence of
the Efimov effect from the relativistic three-body scattering
equations. In particular, we discovered evidence of the dis-
crete scaling symmetry in the trajectories of resonances in the
nearby unphysical sheet of complex energy. By studying the
evolution of the spectrum onto unphysical sheets, we make
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FIG. 6. Evolution of the “quirky” pole in the upper half-plane of the +1 Riemann sheet. The pole approaches the threshold from complex
infinity. As |ma| decreases, its trajectory forms a fractal pattern with rescaling quotient converging to λ2.

several observations suggesting that the Efimov phenomenon
is closely related to the logarithmic nature of the three-body
unitarity cut, i.e., the presence of infinitely many branches.
At the same time, our conjecture about the behavior of the
trimer trajectories cannot be the end of the story because of
the mirror fashion in which + and − sheets contribute trimer
poles to the physical sheet.

The “missing pole” problem is not just a mathematical
curiosity but points to a deficiency in our knowledge about the
analytic structure and properties of three-particle scattering
amplitudes. This, in turn, affects our understanding of the
nature of particles that couple strongly to three-particle states
[95–104]. Having relativistic scattering amplitudes that satisfy
unitarity and whose analytic structure we can fully control
will impact a broad set of experimental, phenomenological,
and lattice QCD studies. As a result, we close by encouraging
further investigations along these lines.
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APPENDIX A: ANALYTIC CONTINUATION

Here, we briefly describe the analytic continuation of the
integral equation defining the D(p, k) amplitude. We wish
to extend it from the real axis to the complex energy, which
is achieved by the method of the integration contour de-
formation. Generalization of the integration interval from a
straight real line to a complex curved path is motivated by the

presence of movable (energy-dependent) singularities of
G(p, k′), M2(k′), and D(k′, k) that can cross the real k′
momentum axis when E2 becomes complex-valued. These
singularities must be avoided at each value of E2 and p; other-
wise, the final result becomes contour-dependent, invalidating
the uniqueness of the analytic continuation.

The main focus of this article, i.e., identification of the
trimer states as poles of the amplitude, requires a solution of
the integral equation for real energies below the ϕb and 3ϕ

thresholds and for complex energy in the unphysical Riemann
sheets associated with these two branch cuts. We first briefly
summarize methods employed in Refs. [61,81] to analyze the
ϕb system, and only then we describe the continuation of the
amplitude through the three-body cut. We focus on the K3 = 0
case for clarity of presentation. Once we compute the ladder
amplitude from Eq. (3), we can obtain the full M3 amplitude
by utilizing the remaining formulas in Sec. II.

1. The dimer-particle threshold

In Ref. [60], we explained how the scattering amplitude
between a two-body bound state and a spectator, Mϕb, is
obtained from the three-body scattering amplitude using the
LSZ reduction formula. The amplitude D(p, k) has poles at
values of the pairs’ energies squared, ε2

p, ε
2
k , equal to that of

the bound state, m2
b. The residue of the three-body amplitude

at these poles is proportional to Mϕb. Explicitly, expanding
D(p, k) in their vicinity, we find

D(p, k) = g2 Mϕb(E )(
ε2

p − m2
b

)(
ε2

k − m2
b

) + · · · , (A1)

where g2 = 128πmb/a. Continuing the external spectator mo-
menta, p and k, to the value corresponding to the two-body
bound state pole, qb,

qb = λ1/2
(
E2, m2

b, m2
)

2E
, (A2)
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FIG. 7. Imaginary part of M2(k′) in the complex k′ plane for ma = −6 and s/m2 = 9.01 − 0.01i. Black lines represent branch cuts,
and blue dots are branch points. Three example integration contours are shown. On the left panel, C1 (yellow, straight line) is the original
integration interval of Eq. (3) defining the solution, M3(p, k), on the physical Riemann sheet of the complex E 2 plane. To continue the
three-body amplitude through the three-body cut, one deforms C1 → C2. Amplitude M2 in the integration kernel must be evaluated on its
second sheet when k′ belongs to the green, dashed piece of C2. On the right panel, we show an example contour, C3, defining the ladder
amplitude on the +2 unphysical Riemann sheet of the E 2 plane.

brings ε2
p, ε

2
k → m2

b, allowing us to extract the residue from
the above formula. Here λ(x, y, z) = x2 + y2 + z2 − 2xy −
2xz − 2yz is the Källén triangle function.

The trimer bound and virtual states are poles of the Mϕb

amplitude below the ϕb threshold that lie on the first and
second Riemann sheets, respectively. From the two-body S
matrix unitarity, the analytic continuation of the amplitude to
the unphysical Riemann sheet, MII

ϕb, is known explicitly,

MII
ϕb(E ) = Mϕb(E )

1 + 2iρϕb(E )Mϕb(E )
, (A3)

where ρϕb(E ) is a ϕb phase-space factor,

ρϕb(E ) = qb

8πE
. (A4)

Thus, the knowledge of Mϕb on the first Riemann sheet is suf-
ficient to recover both the positions of the three-body bound
and virtual states.

The main complication in extending the three-body am-
plitude below the dimer-particle threshold E (ϕb)

thr is the
logarithmic branch cut of the homogeneous and inhomoge-
neous terms of the integral equation in the p variable. It
originates from the OPE partial-wave projected propagator,
Eq. (6), present in both of these terms and thus is an “inher-
ited” singularity of the D amplitude, appearing in its left-hand
argument [61]. At a fixed value of momentum k and total
energy, the inhomogeneous term of the equation contributes a
fixed cut that has to be avoided by the deformed integration
contour. In particular, for external momentum k = qb and
E < E (ϕb)

thr , the cut may take a complicated shape resembling
a circle; see Fig. 4 in Ref. [61].

The OPE amplitude in the homogeneous part of the equa-
tion is evaluated at complex momenta k′ along the contour
chosen to avoid this fixed quasicircular shape. Since the right-
hand argument of G(p, k′) takes infinitely many values, this
amplitude contributes a whole set of singularities to the left-
argument dependence of the ladder amplitude that we call a
domain of nonanalyticity. Note that this area of the complex
k′ plane is defined by the specific integration path chosen.
The deformed contour must detour this region of the complex
plane, a condition we call self-consistency of the integration

contour. Only self-consistent integration paths define proper
analytic continuation of the integral equation solution. An ex-
ample domain of nonanalyticity is found in Fig. 8 of Ref. [61].

We refer the reader interested in more details to this work.
Once we verified that all singularities of the integration kernel
and of the ladder amplitude D(k′, k) are bypassed, we may
attempt to solve the integral equation numerically along the
deformed contour, as described in Appendix C therein.

2. Three-particle threshold

Analytic continuation of the ladder amplitude through the
three-body (logarithmic) cut to the associated unphysical Rie-
mann sheet requires further explanation that is new to this
work.

To simplify the discussion, let us amputate the external
two-body amplitudes from the integral equation, obtaining,

d (p, k) = −G(p, k) −
∫

k′
G(p, k′)M2(k′) d (k′, k), (A5)

where D(p, k) = M2(p) d (p, k)M2(k). In addition to de-
ciding whether the behavior of the singularities of the OPE
amplitude demands integration contour deformation, one has
to consider the singularities of the two-body amplitude, M2,
in the integration kernel. As described in the main text, the
singularities of the amplitude in the E variable emerge from
the collision of the integration end point with the singularities
of M2 in the integration kernel. The three-body right-hand
cut of the three-body amplitude arises when the right-hand,
two-body branch point of M2 at

k′ = λ1/2(E2, m2, (2m)2)
2E

(A6)

coincides with the lower limit of integration, k′ = 0. A par-
ticular choice of the integration contour behavior around this
branch point determines the Riemann sheet of the obtained
integral equation solutions; see Fig. 7.

Namely, when the integration contour circumvents the
branch point from the top, and the M2 is evaluated exclusively
on its first Riemann sheet, the integral equation defines the
amplitude on the first (physical) Riemann sheet above
the three-particle threshold. It is not the only available option.
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FIG. 8. Imaginary part of the amplitude m2 d (p, k) in the complex E 2 plane for ma = −8.1 and εp = εk = 2m2. The left panel represents
the solution on sheet 0, while the right panel is obtained via the analytic continuation to the nearest unphysical sheet. The “quirky” trimer pole
is visible in the right panel, in the upper left corner of the frame.

The integration contour can pass the branch point from the
bottom. In this case, the three-body amplitude is computed
on its first unphysical (+1) Riemann sheet of the complex E
plane. Since there is a cut extending from the εk′ = (2m)2

point, to properly define the analytic continuation of the
three-body amplitude, one must add a relevant discontinuity
function to M2 when evaluating the integration kernel in this
case, as indicated by the dashed green line in Fig. 7.

Finally, when the integration contour encircles the branch
point n times, as shown in the right panel of Fig. 7, the ampli-
tude is computed on the (1 + n)th Riemann sheet, using the
notation of Fig. 5. We remind the reader that the three-body
cut is logarithmic, i.e., contrary to algebraic discontinuities
such as in the square root function, it is associated with
infinitely many Riemann sheets. Winding around the branch
point generates them in the integral-equation representation
of the three-body amplitude.

In Fig. 8 we present an example solution of Eq. (A5) for
ma = −8.1 and external momenta p = k chosen such that
ε2

k = ε2
p = 2m2. The solution on the physical Riemann sheet

(left panel) exhibits a clear resonance “bump” above the real
axis, hinting at a pole on the nearest unphysical sheet. The
right panel presents the result of the analytic continuation
to the +1 branch of the amplitude, which reveals a ground-
state pole at position E2

1 /m2 ≈ 9.0050 − 0.0012i. It is a pole
indicated by the red color in Figs. 3 and 4 in the main text.
Another pole, which we called the “quirky” state, is found in
the upper half-plane, at position E/m2 ≈ 8.9944 + 0.0087i.
We also observe another “bump” in the amplitude above the
real axis on sheet +1, a hint that another pole can be expected
on sheet +2.

3. Three-particle threshold—sheets � +2

Unfortunately, we found it practically impossible to define
integration contours of the type presented in the right panel of
Fig. 7 that would be self-consistent, i.e., that would avoid ad-
ditional singularities generated by the one-particle exchange
amplitude. We note that the domain of nonanalyticity always

seems to contain the branch point of M2(k′), meaning that it is
unattainable to encircle it with a looplike integration contour
without crossing the forbidden area in the complex k′ plane.
A rigorous solution to the problem of nonconsistency of the
integration paths required to extend the three-body amplitude
to sheets � +2 needs additional study and is beyond the scope
of this paper. As we note in the main text, continuation to the
higher Riemann sheets is most probably the solution to the
“missing pole” problem and thus will be of practical interest
in the future studies of the three-body problem.

APPENDIX B: A NONZERO THREE-BODY K MATRIX

We note that separation into long- and short-range forces
is ambiguous since K3 is a regularization-scheme-dependent
object [60]. The cutoff dependence of D is compensated
by the changes of Mdf,3 under variations of K3, assuring
the scattering amplitude is independent of the regularization
choice. In the main text, we consider the case K3 = 0, for
which Mdf,3 = 0 and M3 = D. The purpose of this and the
subsequent subsection is to argue that this particular choice
does not affect our main conclusions. In particular, we would
like to verify that near the unitarity, M3 develops Efimov
bound states for a nonzero three-body K matrix.

From Eq. (7), we see that Mdf,3 contributes poles to the
full three-body amplitude whenever

K−1
3 + F∞

3

∣∣
E=En

= 0. (B1)

As a first step, we would like to show that all the poles of
M3 are those described by the above equation. Although it is
evident that Eq. (B1) does indeed describe some states, it is
not immediately clear that it governs all of them. In particular,
the first term in Eq. (2), D, can contribute additional poles to
the full three-body amplitude.

Assume D has a pole at position En,0, i.e., it can be ex-
panded as

D(p, k) = −
n,0(p)
n,0(k)

E2 − E2
n,0

+ · · · , (B2)
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FIG. 9. Inverse −1/F∞
3 as a function of �E for ma = 106 (periodic, red curves). Pole positions of M3 are determined by crossing

with K3. Two typical forms of K3 are presented: a constant K(0)
3 /m = 2.5 × 105 represented by a horizontal, blue line, and the so-called

isotropic approximation represented by a curved orange graph [105,106]. For the latter: K(0)
3 /m = 105, K(1)

3 /m = 4.5 × 109, and � = (E 2 −
(E (3ϕ)

thr )2 )/(E (3ϕ)
thr )2. Dots represent binding energies in the limit K3 = 0 for which M3 = D.

where the subscript “0” is meant to emphasize that this corre-
sponds to the K3 = 0 limit of M3. We note that when D has
a pole in E2, from Eqs. (8) and (9) it is clear that so do L and
F∞

3 . In its vicinity, these functions take the form

L(p) = 
n,0(p)

E2 − E2
n,0

∫
k′


n,0(k′)ρ(k′) + · · · , (B3)

F∞
3 = 1

E2 − E2
n,0

[∫
k′


n,0(k′)ρ(k′)
]2

+ · · · . (B4)

Using these expansions in Eq. (7), we find

Mdf,3(p, k) = 
n,0(p)
n,0(k)

E2 − E2
n,0

+ · · · , (B5)

which exactly cancels the pole contributions from D in
Eq. (2). As a result, the only poles present in M3 are those
given by Eq. (B1).

Equation (B1) describes states appearing in the K3 = 0
limit since the F∞

3 function has the same poles as D, i.e., it
diverges whenever E = En. Close to unitarity, by evaluating
Eq. (9) numerically, we find that F∞

3 becomes a log-periodic
function of binding energy, �E . Moreover, the sign of the
F∞

3
′s first derivative is constrained below the threshold. These

features are shown in Fig. 9. Thus, in the K3 = 0 case, the
bounds states obey the discrete scaling symmetry characteris-
tic of Efimov’s phenomenon. As we go to higher a, poles of
F∞

3 accumulate near the energy threshold, and the energy gap
between them becomes increasingly small.

In that region, regardless of its functional form, K3 is to
a good approximation constant;6 see an orange line in Fig. 9
for an example. Therefore, near the threshold, we recover the
Efimov scaling for any model of K3—an effect ensuring the
universality of our result. It also confirms the cutoff indepen-
dence of this behavior at unitarity since various models of the
three-body K matrix are equivalent to differing regularization
choices.

6Except for instances when it has a pole exactly at the threshold.

APPENDIX C: MATCHING OF POLE RESIDUES
AT THE THREE-BODY THRESHOLD

As explained in the main text, by studying the evolution of
the trimer poles, we found that the nth resonance on the +1
sheet reaches the 3ϕ threshold at the same value of the two-
body scattering length at which the nth bound state emerges
on the physical energy plane, and the (n + 1)th resonance
appears on the +1 sheet. For instance, for n = 1 this occurs
around ma = −8.71, while for n = 2 it occurs around ma =
−203. Moreover, even though the residues behave in a seem-
ingly unrelated manner away from the E (3ϕ)

thr , they converge
to the same number at the value of ma where the transition
between Riemann sheets occurs.

In Fig. 10, we present the numerical evidence of this sur-
prising behavior for the n = 1 case. We fix p = k by choosing
εp = εk = 2m2, and we compute the residues of the first
bound state and the first and second resonances. We normalize
them by M2(p)2 to cancel enhancement from the two-body
rescatterings in the final and initial pairs.

Although we cannot analytically continue the amplitude to
the Riemann sheets higher than the first unphysical one, for
some values of the scattering length, we see its enhancement
above the real axis on the +1 sheet. It is reminiscent of
the narrow resonant “bump” and suggests the existence of a
pole in the lower half-plane of the +2 sheet. Working under
the assumption that this pole is located near the threshold at
ma = −8.71, we perform a Breit-Wigner fit to the D(p, p)
amplitude iε above the real energy axis to extract its position
and residue. We use the model,

D(p, p) = − 
2
m

E2 + iε − E2
m

+ f (E ), (C1)

where we again fix p = k such that εk = εp = 2m2. The 
2
m

is a complex residue, Em is the pole position of the modeled
trimer, and f (E ) is a background quadratic function. We per-
form several fits, differing by the value of ε and the form
of f (E ). Our model depends, in total, on four real parame-
ters when f (E ) = 0 up to ten for f (E ) = c0 + c1E + c3E2,
where all ci are complex numbers. At each ma, we find little
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FIG. 10. The ma dependence of the normalized trimer residues. Real (left panel) and imaginary (right panel) part of the bound-state residue
is shown as a red, solid line. Residues of resonance poles are presented as dashed lines without bands. The first resonance is to the right of the
dashed, vertical line, while the second is to the left. The +2 sheet pole, obtained through the extrapolation procedure, is shown with an error
band estimate. Around ma = −8.71 the poles approach the threshold, and all residues converge to the same value, around −0.061.

variability in values of 
2
m and E2

m between different fits, and
we take the largest difference between any two of them as the
error estimate.

The pole position extracted in this way approaches the
three-body threshold as ma → −8.71. In Fig. 10, we also
show evidence that the residue of this pole converges to the

same value as the residues of the remaining ones, supporting
our conjecture about the missing poles. It indicates that the
sheet +2 pole is the second Efimov state, as suggested in
Fig. 5. However, we note that this result is obtained in an
approximate, model-dependent manner and is less reliable
than the exact analytic continuation of the amplitude.
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