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Miscibility of binary Bose-Einstein condensates with p-wave interaction
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We investigate the ground-state phase diagram of a binary mixture of Bose-Einstein condensates (BECs) with
competing interspecies s- and p-wave interactions. Exploiting a pseudopotential model for the l = 1 partial
wave, we derive an extended Gross-Pitaevskii (GP) equation for the BEC mixture that incorporates both s-
and p-wave interactions. Based on it, we study the miscible-immiscible transition of a binary BEC mixture
in the presence of interspecies p-wave interaction, by combining numerical solution of the GP equation and
Gaussian variational analysis. Our paper uncovers a dual effect—to either enhance or reduce miscibility—of
positive interspecies p-wave interaction, which can be precisely controlled by adjusting relevant experimental
parameters. By completely characterizing the miscibility phase diagram, we establish a promising avenue
towards experimental control of the miscibility of binary BEC mixtures via high partial-wave interactions.
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I. INTRODUCTION

Quantum gas mixtures stand as a versatile platform for ul-
tracold collision research, quantum simulation, and quantum
information processing across diverse atomic species [1–11].
A paramount prerequisite for these pursuits is the precise
control of the miscibility of cold gases, which is intricately
influenced by the interplay between atomic interactions and
experimental geometry [12–17].

The miscibility of a binary Bose-Einstein condensate
(BEC) mixture with s-wave interactions has been extensively
studied [9,18–22]. The mixtures can be in either a miscible
(M) or an immiscible (IM) phase, dependent on the strengths
of inter- and intraspecies interactions, particle number ratio,
trap potential, and geometry [23–26]. In the M phase, a ho-
mogeneous solution forms, while the IM phase exhibits a
ball-and-shell or side-by-side condensate structure [27–29].
Under the Thomas-Fermi approximation (TFA), the transition
is determined by (ac

12)2 = a11a22, where a11(22) denotes in-
traspecies s-wave scattering lengths of condensate 1(2), and
ac

12 is the critical interspecies s-wave scattering length for
phase separation. Manipulating this transition in binary BECs
is achievable via Feshbach resonance (FR), enabling control
of s-wave interaction strengths [30,31].

Exploiting beyond-s-wave broad FRs to enhance high
partial-wave interactions, making them competitive with s-
wave interaction and thus creating novel states of matter, is
of significant experimental interest [32–36]. A comprehen-
sive theoretical study of broad s-, p-, and d-wave FRs in
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various combinations of stable alkali-metal atoms was pre-
sented in [37]. Using Feshbach loss spectroscopy, new broad
s-, p-, and d-wave FRs have been identified in diverse atomic
mixtures, including Bose-Bose (41K - 41K, 23Na - 87Rb, and
85Rb - 87Rb) [33,38–42], Fermi-Fermi (6Li - 40K) [30,43–45],
and Bose-Fermi (41K - 6Li and 23Na - 40K) [42,46]. Notably,
the 23Na - 40K mixture exhibits a broad d-wave FR near 283
G accompanied by a slightly narrower s-wave resonance [46],
and the 85Rb - 87Rb mixture features a broad p-wave FR with
an associated s-wave resonance near 260 G [40]. The coexis-
tence of different partial wave FRs motivates the exploration
of experimental strategies that leverage multiple resonances to
control both inter- and intraspecies interactions [35,47,48].

In this paper, we investigate the miscibility of a binary
mixture of BECs with competing s- and p-wave interspecies
interactions, shedding light on how these interactions can
shape the ground-state miscibility phase diagram. Previous
studies extensively explored p-wave interactions in fermionic
systems or Bose-Fermi mixtures, while studies on p-wave
interactions in degenerate bosonic gases have been limited to
heteronuclear mixtures due to restrictions imposed by quan-
tum statistics. In contrast to the repulsive s-wave interspecies
interaction (a12 > 0) which always results in energy penalty
to the M phase and favors the IM phase, positive p-wave
interspecies interaction has more intricate effects. Dependent
on the specific overlapping configuration of the two conden-
sates, the p-wave interaction can contribute either positive or
negative mean-field energy to the mixture, thus favoring either
separation or mixing of the condensates. Such complex-
ity introduces characteristics to BEC miscibility compared
to the conventional s-wave scenario, offering the intriguing
possibility of manipulating miscibility through higher partial-
wave interactions. We investigate these aspects via numerical
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solution of the Gross-Pitaevskii equation (GPE), incorporat-
ing the p-wave interaction, and consolidate it with Gaussian
variational analysis. As a concrete application of our theory,
we study the miscibility phase diagram of an optically trapped
ultracold mixture of 87Rb - 23Na atoms near a relatively broad
p-wave FR around 284 G [49]. Such a condensate mixture
has a long lifetime due to its positive intra- and interspecies s-
wave scattering lengths [50,51]. We assume these background
s-wave interactions remain constant in the vicinity of the
p-wave resonance under consideration, a reasonable approx-
imation for the broad resonance and dilute limits considered
here.

The rest of the paper is structured as follows. Section II
outlines the theoretical model, starting with the derivation
of the p-wave interaction model for a binary BEC mixture
in Sec. II A, followed by the establishment of an extended
mean-field GP equation in Sec. II B. To gain insight into the
ground-state phases, we employ a simple Gaussian variational
ansatz in Sec. III for one-dimensional (1D) condensates. In
Sec. IV, we present the phase diagrams for two-dimensional
(2D) and three-dimensional (3D) regimes. Lastly, in Sec. V
we conclude with discussions.

II. THEORETICAL MODEL

A. p-wave interaction model

Modeling two-body interactions constitutes a fundamental
step in developing theories for many-body systems. In the
ultracold regime, atomic collisions are dominated by s-wave
scattering, which can be modeled accurately with a Fermi-
Huang pseudopotential [52,53]. The presence of non-s-wave
scattering resonances transforms this scenario and requires
tailoring pseudopotentials to these higher partial waves. Here,
we employ a concise single-channel p-wave pseudopotential
model derived by Idziaszek and Calarco [54,55]:

Vp(r) = π h̄2a3
p

mr

←∇δ(r) · ∂3

∂r3
r3 �∇, (1)

where
←∇ ( �∇) denotes the gradient operator acting on the

left (right) of the pseudopotential, ap is the energy-dependent
scattering length for p-wave interaction satisfying a3

p(k) =
− tan δ1(k)/k3 with δ1 the p-wave scattering phase shift, and
k is the wave vector associated with the collision energy E .
Such a single-channel pseudopotential model is applicable if
the splitting of the p-wave FR peak due to magnetic dipole
interactions is small such that the angular anisotropy of the
interaction can be neglected. It has been successfully applied,
e.g., in confirming geometric resonances [56,57], fermion
scattering within quasi-2D systems [54], and investigating
trap-induced shape resonances in p-wave interactions of ul-
tracold atoms [58].

We denote the atomic fields of the condensate mixture as
ψ̂(r) = [ψ̂1(r), ψ̂2(r)]T . The second-quantized form of the
pseudopotential Eq. (1) can be written as

V̂p = π h̄2νp

mr

∫
d3r(ψ̂†

2 ∇ψ̂
†
1 − ψ̂

†
1 ∇ψ̂

†
2 )(ψ̂2∇ψ̂1 − ψ̂1∇ψ̂2),

(2)

where νp = a3
p(k) is the p-wave scattering volume and mr de-

notes the reduced mass of the two atom species. .We note that
Eq. (2) can also be derived based on the p-wave interaction
model that involves p-wave molecular degrees of freedom via
adiabatic elimination of the molecular fields [13].

B. Extended Gross-Pitaevskii equation
with interspecies p-wave interaction

To describe the ground-state property of the BEC mixture,
we use a mean-field Gross-Pitaevskii equation that incor-
porates the interspecies p-wave interaction. The mean-field
energy functional governing a 3D BEC mixture is given
by [59]:

E [ψ∗,ψ] =
∫

d3r
2∑

i=1

(
h̄2

2mi
|∇ψi|2 + V i

T |ψi|2
)

+
∫

d3r

(
2∑

i=1

gi

2
|ψi|4 + g12|ψ1|2|ψ2|2

)

+
∫

d3r
π h̄2νp

mr
|ψ2∇ψ1 − ψ1∇ψ2|2, (3)

where the wave function is normalized as
∫

d3r|ψi|2 = Ni for
the two species i = 1, 2. The ground-state wave functions can
be obtained via the variational extremum condition

δ[E − μiNi]/δψ
∗
i = 0, (4)

where μi is the chemical potential of species i. The first line
of Eq. (3) describes the kinetic energy and harmonic trapping
potential of the two species, with V i

T = mi(ω2
ixx2 + ω2

iyy2 +
ω2

izz
2)/2, and mi and ωi being the mass and trapping frequency

of the species i. In the second line, gi = 4π h̄2ai/mi de-
notes the s-wave intraspecies interaction strength, and g12 =
2π h̄2a12/mr represents the interspecies interaction strength,
where ai (a12) denotes the s-wave intraspecies (interspecies)
scattering length, and mr = m1m2/(m1 + m2) is the reduced
mass.

Introducing the characteristic length scale l0 = √
h̄/m1ω1x

and energy scale ε0 = h̄ω1x, and redefining the normalized
mean-field wave function φi = l3/2

0 N−1/2
i ψi (i = 1, 2), the GP

equations derived from Eqs. (3) and (4) read

μ1φ1 =
[
−∇2

2
+

∑
σ

ξ 2
1σ σ 2

2
+ β1|φ1|2 + β12|φ2|2

]
φ1

−βp|φ2∇φ1 − φ1∇φ2|2, (5)

μ2φ2 =
[
−αm∇2

2
+

∑
σ

ξ 2
2σ σ 2

2αm
+ β2|φ2|2 + γ β12|φ1|2

]
φ2

− γ βp|φ1∇φ2 − φ2∇φ1|2, (6)

where αm = m1/m2, γ = N1/N2, and ξiσ = ωiσ /ω1x with σ =
x, y, z. The parameters βi = 4πaiαmNi/l0 and β12 = 2π (1 +
αm)a12N2/l0 are rescaled s-wave interaction strengths, and
βp = π (1 + αm)νpN2/l3

0 is the rescaled p-wave interaction
strength.
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Defining the dimensionless energy functional E =
E/(N1ε0), Eq. (3) can be recast as

E =
∫

d3r′ ∑
j=1,2

γ 1− j

[
1

2
α j−1

m |∇′φ j |2 + α1− j
m Vj (r

′)|φ j |2
]

+
∫

d3r′
[
β1

2
|φ1|4 + β2

2γ
|φ2|4 + β12|φ1|2|φ2|2

]

+ βp

∫
d3r′ |φ2∇φ1 − φ1∇φ2|2, (7)

with the rescaled potential Vj (r) = ∑
σ=x,y,z ξ 2

jσ σ 2/2.
To explore the interplay between s- and p-wave interac-

tions, we employ the imaginary-time evolution method [60] to
analyze the ground-state phase diagram of the BEC mixture.
Notably, this method is not a global optimization strategy; it
converges to local energy minima dependent on the initial trial
wave function. Successful application necessitates an initial
trial wave function encompassing all possible symmetries to
ensure convergence to the genuine ground state. This consid-
eration is crucial in our paper, given that p-wave interactions
may introduce excess metastable states (see Sec. III B). We
terminate the evolution upon reaching energy convergence
criteria, specifically |E (τn+1) − E (τn)|/E (τn) < 10−7, where
τn denotes discretized imaginary time. This criterion proves
sufficient for attaining the genuine ground state in our paper
below.

C. Order parameters

We adopted the following pair of order parameters to
identify distinct ground-state configurations, as introduced in
previous studies [25,61,62]:

η =
∫

d3r |φ1||φ2|, (8)

d =
∣∣∣∣
∫

d3r
(|φ1|2 − |φ2|2

)
r

∣∣∣∣. (9)

Here, η represents the density overlap between two BEC
species, and the wave functions of the two species (φi=1,2) are
normalized to unity. Thus, the value is close to 1 when the two
BECs overlap almost completely, and less than 1 otherwise,
distinguishing between the M and IM phases. The parame-
ter d measures the center-of-mass displacement between the
two condensates. Hence, the ground state resides in a sym-
metric immiscible (SIM) phase for (η < 1, d = 0), typically
exhibiting a ball-and-shell structure where one species forms
a shell around the other. In contrast, the ground state resides
in an asymmetric immiscible (AIM) phase for (η < 1, d > 0),
where the two condensates coexist side by side.

Before numerical calculations, let us qualitatively analyze
the role of each term in Eq. (7).

(i) Both kinetic and potential energy favor the mixing of the
two BECs, and they dominate the miscibility of the mixture
for small s- and p-wave interactions.

(ii) The intraspecies s-wave interaction energy monotoni-
cally decreases with the extension of the condensates’ wave
function, thereby favoring mixing.

(iii) The repulsive s-wave interspecies interaction between
the BECs favors the IM phase [12,19,21,22,28]. In the limit

FIG. 1. (a), (b) Ground-state phase diagram of a binary mixture
of BECs in one dimension, as a function of the dimensionless in-
terspecies s-wave interaction β12 and p-wave interaction βp. The
diagram is calculated via numerical imaginary-time evolution of the
GP equation. The schematic filled with red and green represents
the density distributions of the BECs in the miscible (M) and im-
miscible (IM) phases. We consider in (a) β1 = β2 = 0, i.e., without
intraspecies interactions; in (b) β1 = β2 = 2. Since the boundaries
of order parameters d and η are identical, only the diagrams of η

are shown. (c), (d) Dependence of the order parameter η on the
interspecies interaction β12 for different βp. We consider in (c) β1 =
β2 = 0 and in (d) β1 = β2 = 2.

a12 � a11, a22, the condensates cease to overlap, resulting in
complete phase separation.

(iv) The p-wave interspecies interaction is intricate, de-
pending not just on the wave function but also its gradient.

In the M phase, similar density profiles result in a small
interaction energy |φ2∇φ1 − φ1∇φ2|2 [see last line of Eq. (7)].
As condensates move apart in space, this term gradually in-
creases. Conversely, with minimal spatial overlap between
the condensates, this term approaches zero. Thus, for νp > 0,
p-wave interaction tends to either mix or entirely separate
BECs. Conversely, for νp < 0, partially mixed configurations
lower the p-wave interaction energy.

III. MISCIBILITY PHASE DIAGRAM OF
QUASI-ONE-DIMENSIONAL BEC MIXTURE

A. Numerical phase diagram

We investigate the miscibility phase diagram of a binary
BEC mixture in a quasi-1D geometry via imaginary time
evolution. To illustrate the essential physics, we make the
simplification assumption of equal masses (m1 = m2 = 1) and
trapping frequencies (ω1 = ω2 = 1) for the two condensates.
We initialize the condensates in two Gaussian wave functions
of the same standard deviation σ , whose center is displaced by
a distance δr . We make diverse choices of (σ, δr ) to guarantee
that imaginary time evolution converges to the genuine ground
state.

The resulting numerical phase diagram is shown in Fig. 1
against the effective s- and p-wave interspecies interactions
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β12 and βp. The mixture has two phases, the M phase and
the AIM phase, with the black dashed line representing the
phase boundary. In the AIM phase, the two BECs symmetri-
cally separate in opposite directions, with η < 1 and d > 0.
We show the order parameter η only, as the phase boundary
of d perfectly aligns with that of η. Figures 1(a) and 1(b)
show the ground-state phase diagram with and without s-wave
intraspecies interactions (β1, β2) respectively, which are qual-
itatively similar.

When both β12 and βp are small, i.e., (β12, βp) � (6.0, 4.0)
in Fig. 1(a) and (β12, βp) � (10.0, 6.0) in Fig. 1(b), the or-
der parameters η and d vary continuously across the phase
boundary [see the solid blue and red lines in Figs. 1(c) and
1(d)]. However, upon surpassing a threshold of the inter-
action strengths, the order parameter exhibits discontinuity
across the phase boundary [see the purple and green curves
in Figs. 1(c) and 1(d)]. This feature does not appear in the
conventional s-wave miscibility phase diagram, and thus is a
direct result of the p-wave interspecies interaction. Its physical
origin is investigated in the subsequent Sec. III B via Gaussian
variational analysis.

Comparing Figs. 1(c) and 1(d), we observe that nonzero
intraspecies interaction β1,2 does not modify the qualitative
features of the phase diagram—it only causes a slight expan-
sion of the phase boundary towards the AIM phase region.
For instance, when βp = 0, the threshold for η to drop from 1
shifts from β12 ≈ 2.0 to β12 ≈ 4.0. This result aligns with the
physical intuition that intraspecies interactions favor mixing
of the condensates, necessitating a stronger β12 for phase
separation.

B. Gaussian variational analysis

We employ a Gaussian variational method to investi-
gate further the ground-state phase diagram of the quasi-1D
BEC mixture. This method is suitable for weak interactions
and provides insights into single-component BECs and BEC
mixtures [63–65]. Without loss of generality, we set the in-
traspecies interaction (β1,2 = 0), and assume equal masses
(m1 = m2 = 1) and trapping frequencies (ω1 = ω2 = 1) of
the two condensates as in Sec. III A. Under these assumptions,
the numerical results in Sec. III A indicate that the two BECs
displace symmetrically along opposite directions in the IM
phase. Hence, we define the following two Gaussian varia-
tional wave functions for the condensates:

φ1(x) = 1

π1/4σ 1/2
e−(x−d )2/2σ 2

, (10)

φ2(x) = 1

π1/4σ 1/2
e−(x+d )2/2σ 2

, (11)

which suffice to capture the characteristics of both M and
AIM phases. This allows us to express the order parameter
η = exp(−d2/σ 2) and the dimensionless energy functional in
Eq. (7) as

E/N = 1

2σ 2
+ 1

2
(σ 2 + 2d2)

+ β12√
2π

e−2d2/σ 2 + 4βpd2

√
2πσ 5

e−2d2/σ 2
. (12)

The ground-state phase diagram from numerical minimization
of Eq. (12) is shown in Fig. 2(a), which aligns excellently with
Fig. 1(a). Notably, when βp = 0, both results indicate an AIM
phase entry threshold at β12 ≈ 2.0.

Next, we analyze the discontinuity of the order parameter η

using the Gaussian variational approach. Figures 2(b) and 2(c)
display the behavior of average energy E/N in the vicinity of
the phase boundary as a function of the order parameters d
and η. The discontinuity of η across the phase boundary stems
from the existence of two metastable states, as indicated by
arrows in Figs. 2(b) and 2(c) (with order parameters d ≈ ±1.0
and η ≈ 0.2). To further illustrate this, we consider two points
P1 = (4.4, 1.5) and P3 = (4.6, 1.5), lying in the M and AIM
phase respectively, in the vicinity of the phase transition point
P2 = (4.52, 1.5), as shown in the phase diagram Fig. 2(a). The
blue dot-dashed line in Fig. 2(b) corresponds to the point P1

in the M phase, which indicates that the energy of the two
metastable states is higher than the ground state (order param-
eter d = 0, η = 1). However, the energy of the two metastable
states decreases as we move from P1 to P3 by increasing β12.
When β12 = 4.6, corresponding to point P3 in Fig. 2(a), the
energy of the two metastable states becomes lowest, as shown
by the yellow dashed line in Figs. 2(b) and 2(c). Hence, the
order parameter d jumps abruptly from 0 to ±1 and η jumps
from 1 to 0.2 when crossing the transition point P2.

Moreover, the p-wave interspecies interaction enhances
mixing of the condensates. In Fig. 2(b), as βp increases from
1.5 to 1.7, the ground state undergoes a phase transition
from the AIM phase at position P3 (yellow dashed curve)
to the M phase at position P4 (purple dotted curve). These
two curves shows that the p-wave interaction introduces an
energy penalty to the metastable states, thereby enhancing
mixing. Consequently, to enter the AIM phase necessitates a
larger β12.

Next, we apply Landau’s theory to elucidate the character-
istics of the phase transition. To account for the metastable
states, we construct a Landau free-energy functional [66] by
expanding the energy functional Eq. (12) in power series of
the order parameter d up to the sixth order, assuming βp � 1.
We hence arrive at

ε(d, σ ) = E/N = A + Bd2 + Cd4 + Dd6, (13)

where we define

A = 1

2σ 2
+ 1

2
σ 2 + β12√

2πσ
, (14)

B = 1 − 2β12√
2πσ 3

+ 4βp√
2πσ 5

, (15)

C = 2√
2πσ 7

(β12σ
2 − 4βp), (16)

D = 4√
2πσ 9

(
2βp − 1

3
β12σ

2

)
. (17)

We minimize the Landau free-energy functional Eq. (13)
with respect to d and σ , in order to identify the ground and
metastable states of the mixture. We assume that near the
phase transition, ε(d, σ ) gradually changes with σ near the
phase transition point, whereas d can jump abruptly from zero
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FIG. 2. (a) Ground-state phase diagram of a binary mixture of BECs in one dimension, obtained via Gaussian variational analysis (see
Sec. III B). Several points (β12, βp) near the phase transition point P2 = (4.52, 1.5), including P1 = (4.4, 1.5), P3 = (4.6, 1.5), and P4 =
(4.6, 1.7), are marked. These points are used to illustrate the physical mechanism underlying the abrupt jumps of the order parameter across
the phase boundary (see Sec. III B). The dashed line corresponds to βp = 1.5. (b), (c) Gaussian variational energy of the BEC mixture, E/N ,
as a function of the order parameter d [panel (b)] and η [panel (c)], at points P1 (blue dashed line), P3 (orange solid line), and P4 (purple dotted
line). Light gray arrows indicate two possible metastable states with nonvanishing order parameter.

to nonzero values in the regime η < 1. As a result, σ can be
treated as a constant determined solely by β12 and βp, that is,
σ 
 σ (β12, βp). ε(d, σ ) can then be expressed as a standard
Landau free-energy functional that depends on d . Notably, the
inclusion of terms ∝ d6 in ε(d, σ ) allows it to account for
three metastable states (see Fig. 2). To ensure that the energy
has a lower bound, the condition D > 0 must be satisfied.
Utilizing ∂ε/∂d = 0 and ∂2ε/∂2d > 0, we find the metastable
states of the mixture:

d0 = 0, d2
± = −C + √

C2 − 3BD

3D
. (18)

It is clear that the presence of the metastable states requires
C2 − 3BD > 0 and C < 0; otherwise only one stable state
with d0 = 0 exists, which is the ground state of the mixture.

In the presence of metastable states, the phase transition is
of first order. The system’s ground state is the M phase (d =
d0 = 0) when ε(d0) < ε(d±); otherwise, it is in AIM phase
(d = d±). Thus, the first-order phase transition point satisfies
the equation ε(d0) = ε(d±), which simplifies to C2 = 4BD.

Summarizing the above analysis, we have approximately
determined the phase transition characteristics of the binary
BEC mixture. When C < 0 and D > 0, the ground state is in
the M phase if the condition 3BD < C2 < 4BD is met. In con-
trast, if C2 > 4BD, the ground state is in the IM phase and the
mixing configuration becomes metastable. The phase bound-
ary corresponds to the equation C2 = 4BD. By expressing
parameters B,C, and D in terms of β12, βp, and σ (β12, βp),
we can derive an approximate formula for the phase boundary.
In the regime that β12 and βp are small (σ 
 1), the phase
boundary formula reduces to

5β2
12 − 4(10βp +

√
2π )β12 + 24βp(2βp +

√
2π ) = 0. (19)

Notably, when βp = 0, this equation yields β12 = 4
5

√
2π ≈

2, which closely matches the numerical results in Figs. 1(a)
and 2(a).

IV. MISCIBILITY PHASE DIAGRAM
IN TWO AND THREE DIMENSIONS

A. Ground-state phase diagram without
intraspecies interactions

Extending our previous analysis, we explore below the
ground-state phase diagram of a binary mixture of BECs in
2D and 3D geometry. In higher spatial dimensions, metastable
states become more prevalent, posing challenges to the use
of imaginary time propagation methods for obtaining the true
ground state. To address this, we exploit two trial wave func-
tions, one with spherical symmetry (δr = 0) and the other with
asymmetry (δr = 3σ ), encompassing all possible symmetry-
broken configurations. Moreover, we temporarily exclude the
s-wave intraspecies interactions to highlight the effect of inter-
species interactions in this section. We denote 87Rb as species
1 and 23Na as species 2, utilizing an isotropic harmonic trap.
For species 1 (Rb atoms), we set ω1 = (2π )160 Hz, while
for species 2 (Na atoms), we set ω2 = ω1

√
m1/m2 ≈ 2ω1.

This choice ensures equal effective trap potentials despite the
differing atomic masses [20].

Figures 3(b) and 3(c) present the numerical phase diagrams
for a 2D and 3D mixture, and Fig. 3(a) shows the extended
phase diagram for a quasi-1D mixture. All panels exhibit
transitions between M and AIM phases as β12 and βp vary.
The M phase expands significantly with increasing the spatial
dimension, which can be intuitively understood as follows.
For a quasi-1D BEC mixture in the M phase and near the
phase boundary, reducing the transverse confinement allows
it to expand along the transverse direction, eventually form-
ing a 2D mixture. Such transverse expansion further reduces
the repulsive interspecies s-wave interaction, favoring the M
phase. The 3D phase diagram resembles the 2D one, but
with an even larger M phase region. For a specific β12, the
mixture undergoes a transition from the AIM to the M phase
with increasing βp. Therefore, (positive) p-wave interaction
enhances the miscibility of the BEC mixture.

It is interesting to compare Fig. 3(a) with Fig. 1(a), both
for the quasi-1D mixture. For small β12 and βp, Fig. 3(a)
aligns with Fig. 1(a), noting the differing vertical axis scal-
ing in Fig. 3. Notably, for β12 surpassing a threshold (β12 �
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FIG. 3. Ground-state phase diagram of a binary mixture of BECs in (a) one dimension, (b) two dimensions, and (c) three dimensions, as
a function of the dimensionless interspecies s-wave interaction β12 and p-wave interaction βp. As the boundaries of order parameters d and η

are identical, only the distribution of η is plotted. In the pure yellow region, the system is in a completely M phase (η = 1 and d = 0), while
in other regions, it is in an AIM phase (η < 1 and d > 0). In (c), along the line β12 = 43, several points from P5 = (43, 103)–P10 = (43, 0)
are marked. They offer insights into the dual effects of p-wave interaction for phase separation, as analyzed in Sec. IV A. The inset of panel
(c) zooms in the region inside the red dashed circle of panel (c).

β0
12 = 6.0 in one dimension), the M phase disappears, and

the ground state remains in the AIM phase regardless of βp.
Similar thresholds, β0

12 values of 18.0 (2D) and 48.0 (3D), are
observed [see Figs. 3(b) and 3(c)]. This phenomenon arises
because neither the completely AIM phase (η = 0, d > 0)
nor the completely M phase (η = 1.0, d = 0) receives energy
contributions from p-wave interactions. Beyond the threshold
of β12, the energy reduction in the AIM phase due to β12 sur-
passes the kinetic- and potential-energy reductions achieved
by mixing. Therefore, the mixture enters the AIM phase con-
sistently for sufficiently large β12. For a fixed value of βp, we
examine the dependence of the order parameters on β12, as
depicted in Fig. 4. As βp approaches zero (e.g., βp = 0.1),
the order parameters η and d evolve continuously with β12

in one dimension (blue solid line), two dimensions (red solid
lines), and three dimensions (yellow solid lines). However, at
βp = 1.0, only in three dimensions do the order parameters
vary smoothly with β12 (yellow dashed line), while in one
dimension and two dimensions, they exhibit discontinuous
jumps. Increasing βp to 10.0 results in a similar discontinuous
transition in three dimensions (purple dotted line). Thus, in all
spatial dimensions, the phase transition is continuous for weak
p-wave interaction and becomes first order for strong p-wave
interaction.

This transition results from the presence of metastable
states, as extensively explored via the 1D Gaussian variational
analysis in Sec. III B. In the presence of βp, the system fea-
tures two metastable states with low symmetry (AIM phase).
Their energy is associated with βp, with larger βp correspond-
ing to higher energy. In the M phase, the energy of these
metastable states is higher than the completely mixed state. As
β12 increases, the energy of these states decreases, eventually
becoming lower than that of the higher-symmetry mixed state.
This results in a phase transition accompanied by a sudden
change in the order parameter and a phase transition. Larger
βp requires a higher β12 for this transition due to the increased
energy of metastable states.

Interestingly, the phase boundary in three dimensions be-
comes more intricate at the transition point between continuity
and discontinuity. This complexity is evident in the inset of
Fig. 3(c), revealing a distinct peninsula pattern around the

FIG. 4. Dependence of the order parameters η (a) and d (b) on
the interspecies s-wave interaction strength β12, for various inter-
species p-wave interaction strength βp and spatial dimension. Solid
line, βp = 0.1; dashed lines, βp = 1; purple dotted line, βp = 10.0
and in three dimensions.
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TABLE I. Characterization of the ground-state phase and energy of the BEC mixture at location 5–10 along the vertical dashed line
β12 = 43 in Fig. 3(c). M (AIM) corresponds to the miscible (asymmetric immiscible) phase. εtot is the total energy of the mixture. εki and
εpi are the kinetic and potential energies of the component i = 1, 2. εβ12 and εβp are the s- and p-wave interspecies interaction energies. All
energies are dimensionless.

Location Phase εtot η d εk1 εk2 εp1 εp2 εβ12 εβp Real phase

P = (43, −) M 4.552 1.000 0.000 0.464 0.464 1.230 1.230 1.164 0.000
P5 = (43, 103) AIM 4.720 0.026 2.226 1.115 1.115 1.230 1.230 0.001 0.029 M
P6 = (43, 35) AIM 4.564 0.283 1.997 0.871 0.871 1.241 1.241 0.098 0.242 M
P7 = (43, 27) AIM 4.537 0.356 1.917 0.805 0.805 1.249 1.249 0.153 0.276 AIM
P8 = (43, 20) AIM 4.578 0.823 1.079 0.523 0.523 1.270 1.270 0.786 0.206 M
P9 = (43, 10) AIM 4.341 0.325 0.236 0.696 0.696 1.194 1.194 0.325 0.236 AIM
P10 = (43, 0) AIM 3.976 0.391 1.537 0.807 0.807 1.032 1.032 0.298 0.000 AIM

transition point due to the dual effect of p-wave interactions.
In contrast, while present in the 1D and 2D cases, this fea-
ture is less pronounced. The energy changes at points P5–P10

[marked in Fig. 3(c)] in Table I reveal that, for β12 = 43,
variations in βp induce changes in the individual compo-
nent energies of the binary BEC mixture. Regardless of βp,
the energy contribution from p-wave interactions consistently
remains zero in the completely M phase, maintaining the
total-energy constant (εtot = 4.552 in Table I). Thus, if the
energy of the AIM phase is lower than this value, the true
ground state should be in the AIM phase. Although the AIM
configuration reduces the energy associated with β12, it simul-
taneously increases the kinetic and potential energies of both
BEC components, as well as the p-wave interaction energy
introduced by incomplete separation of two BECs.

At P10 (βp � 0) with a sufficiently large β12 (> β0
12), the

ground state resides in the AIM phase, significantly reducing
the energy introduced by β12. As βp increases to 103 at P5,
a transition to the completely M phase becomes accessible,
nullifying dominant p-wave interaction energy and decreasing
kinetic energy compared to the AIM configuration. However,
this transition raises the s-wave interspecies interaction energy
εβ12 from 0.001 to 1.164 due to wave-function overlap. From
P10 to P8, where βp increases from 0 to 20, the ground state
undergoes a transition from the AIM to the M phase, with
the order parameter η rising from 0.391 to 1.00. Here, p-
wave interaction lowers εtot and enhances mixing. Reaching
βp = 27 at P7, the mixture reverts to the AIM phase to reduce
the total energy εtot, with a reduced η = 0.356 and d = 1.917.
In this case, p-wave interaction enhances phase separation.
We emphasize that the energy difference of the ground and
metastable states is very small at points P6–P9 in Table I, and
such intricacy results in a more complex phase boundary.

Notably, the SIM phase, frequently reported in the lit-
erature [20,25], is absent in Fig. 3. This is due to our
assumption that both BECs share the same intraspecies in-
teraction strength and have the same spherically symmetric
harmonic trap and an equal number of atoms. Generally
speaking, the interplay between M, SIM, and AIM phases
primarily depends on the competition between interspecies s-
wave interactions and factors such as kinetic energy, potential
energy, and intraspecies interactions—the former determines
the miscibility, while the latter dictates the spherical sym-
metry of the ground state. Attaining an SIM phase involves

investigating factors leading to distinct intraspecies interac-
tions, including variations in masses, harmonic trap frequen-
cies, diverse intraspecies s-wave scattering lengths, and the
relative atomic number ratio of the two species, as detailed in
the subsequent discussion.

B. Ground-state phase diagram with intraspecies interactions

Until now, our focus has been on a simplified model,
neglecting intraspecies interactions (β1 and β2) and as-
suming equal masses and trapping frequencies for both
species. In practical experiments, however, intraspecies inter-
actions play a crucial role. Repulsive intraspecies interactions
(∝ βi|φi|4) tend to expand individual condensates, thus fa-
voring the miscible phase [25,61,67]. This effect is evident
in Fig. 1, where the nonzero intraspecies interaction β1 =
β2 = 2 significantly extends the boundary of the M phase
at β1 = β2 = 0. Intraspecies interactions not only broaden
density profiles for both species but also trigger the emergence
of a SIM phase (d = 0, η < 1) [20,25], where the less-bound
BEC encapsulates the other, resembling a symmetric spher-
ical shell with lower energy and higher symmetry than the
AIM phase.

Atom number plays a crucial role in determining the
ground-state symmetry and phase boundary structure of bi-
nary BEC mixtures, as demonstrated in works that consider
the only s-wave interaction [20,25,68,69]. The critical scat-
tering length (ac

12) for phase separation is found to be
atom number dependent, as shown in the investigation of
spontaneous symmetry breaking (SSB) in a trapped Na-Rb
BEC mixture [20]. Further investigation in [25] explores
how atom number ratio (γ = N1/N2) influences miscibility-
immiscibility transitions. In a homonuclear BEC mixture
involving two magnetic sublevels mF = ±1 of the hyperfine
spin F = 1 state, both species share identical intraspecies
s-wave scattering lengths, as demonstrated in the 23Na - 23Na
BEC mixture [62]. Phase diagrams in the γ -a12 plane display
three distinct phases: M, AIM, and SIM. The absence of the
SIM phase at γ = 1 aligns with our earlier numerical findings.
However, in a binary BEC mixture with differing intraspecies
s-wave scattering lengths, an SIM phase can emerge between
the M and AIM phases at γ = 1. Below, we extend this discus-
sion to the scenario where the interspecies p-wave interaction
is present.
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FIG. 5. Ground-state phase diagram of a 87Rb - 23Na mixture in the N-a12 plane. The interspecies scattering lengths are a11 = 113.4 a.u.

and a22 = 57.0 a.u.. The p-wave interspecies interactions βp/β
BG
12 are zero in (a), 0.2 in (b), 0.8 in (c), and 3.6 in (d), and the background

scattering length aBG
12 = 67 a.u. (a1–d1) Distribution of the order parameter η. (a2–d2) Distribution the order parameter d . The red and black

dashed lines represent the phase boundaries determined by numerical calculation, and the light gray solid lines in (a1)–(d1) represent the critical
value of a12 = 80 a.u. The density profiles of the two BEC components at locations P11 = (5 × 102, 100 a.u.), P12 = (1 × 104, 100 a.u.),
P13 = (1.8 × 104, 100 a.u.), and P14 = (3 × 104, 100 a.u.) in panel (a2) are shown in (e1)–(e4) respectively.

Our numerical simulation employs parameters close
to a broad p-wave FR at approximately 284 G in the
87Rb |1,+1〉 + 23Na |1,+1〉 channel [49]. Two s-wave res-
onances at 347.8 and 478.8 G have been also observed near
this p-wave resonance. Hereafter, we only consider the case of
γ = 1 and take the s-wave scattering length a11 = 113.4 a.u.

and a22 = 57.0 a.u. as constants independent of the mag-
netic field [50,51]. By minimizing the energy functional of
Eq. (7) for the 3D case, we arrive at the phase diagram
presented in Fig. 5. From Figs. 5(a)–5(d), the p-wave inter-
action strength βp/β

BG
12 is chosen increasingly, as 0.0, 0.2, 0.8

and 3.6; the background s-wave scattering length is fixed at
aBG

12 = 67 a.u. [49].
Without the p-wave interaction [Fig. 5(a)], the critical in-

terspecies scattering length is ac0
12 = 62.5 a.u., beyond which

phase separation occurs in the TFA. However, results from
Fig. 5(a1)–5(d1) indicate a significant influence to ac

12 of the
atom number N . For small N , ac

12 roughly scales with N−1,
whereas for large N , the N dependence of ac

12 remains nearly
constant due to the substantial differences in intraspecies in-
teractions. These distinctions give rise to a shell-filling effect
for the Na atoms [20], defining the shell as the spatial region
between the mean field of the more tightly trapped Rb atoms
and the less confined Na atoms, manifesting as the SIM region
in Figs. 5(a2) and 5(b2). However, if a12 falls below the
critical value of ac

12 ≈ 80 a.u. [see the light gray solid lines
in Figs. 5(a1)–5(d1)], the mixture remains in the M phase due
to the dominant intraspecies repulsive interactions. Upon sur-
passing this threshold, the mixture undergoes a configuration
transition towards the SIM phase, as interspecies interac-
tions and other terms begin to dominate over intraspecies

interactions. Specifically, the Rb atom at the trap center
gives rise to a spherically symmetrical potential barrier to
the Na atoms; the latter thus forms a symmetrical shell
structure. Upon increasing a12, the wave-function overlap (η)
decreases. Beyond the phase boundary (black dashed line)
in Fig. 5(a2), interspecies interaction becomes dominant. To
minimize interaction energy, the two species disperse in op-
posite directions due to the strong repulsive interaction. The
symmetry-broken ground state features an approximately pla-
nar boundary between the two hemispheres of each species
[Fig. 5(e2)], reducing both kinetic energy from boundary cur-
vature and interface volume. In this parameter regime, the
system undergoes SSB, entering the AIM phase [20].

Furthermore, we focus on the case of a12 = 100 a.u. in the
absence of p-wave interaction. The variation of the mixture’s
ground-state phase with increasing N , labeled as P11–P14 in
Fig. 5(a2), is depicted in Figs. 5(e1)–5(e4). At small N , the
dominance of kinetic energy forms a significant barrier hin-
dering phase separation. Consequently, the system initially
adopts a symmetric M phase [P11 with Fig. 5(e1)]. As N
increases, interaction energy rises faster than kinetic energy,
as a result of the higher-order scaling of interaction ener-
gies with respect to N than kinetic energy. The energy loss
associated with phase separation, driven by the interspecies
interactions between two species, compensates for the gain in
kinetic energy, favoring an AIM phase [P12 with Fig. 5(e2)].
As N continues to increase (while still remaining in the AIM
phase), the Na atoms wrap further around the Rb core. The
Rb core is pushed slightly off the trap center, but the trap is
so tight that large displacements are energetically unfavorable
[P13 with Fig. 5(e3)]. Eventually, as the number of atoms
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FIG. 6. Ground-state phase diagram for the 87Rb - 23Na mixture with fixed a11 = 113.4 a.u. and a22 = 57.0 a.u. in the N-(βp/β
BG
12 )1/3 plane.

The value of s-wave interspecies interaction in (a) is the background scattering length a12 = 67 a.u., while in (b), it is set to a12 = 100 a.u. (a1)
and (b1) correspond to the order parameter η, while (a2) and (b2) correspond to the order parameter d . The red, black, and yellow dashed lines
represent the phase boundaries given by numerical imaginary-time evolution of the GP equation.

grows sufficiently, the Na atoms completely encompass the Rb
core by filling the available shell-like space. Thus, the mixture
enters the SIM phase [P14 with Fig. 5(e4)].

The p-wave interspecies interaction has dual effects:
Figs. 5(a1)–5(c1) show that ac

12 increases to about 100 a.u. as
p-wave interaction increases to βp = 0.8βBG

12 . In this regime,
the p-wave interaction enhances mixing of the two BECs.
However, when βp further increases to 3.6βBG

12 in Figs. 5(d1)
and 5(d2), ac

12 decreases. In this regime, p-wave interaction
enhances phase separation. This is similar to the phenomenon
in Fig. 3(c). Another consequence of p-wave interaction is
that the SIM phase region gradually decreases as the βp in-
creases, as shown by the changes in the order parameter d
in Figs. 5(a2)–5(d2). Consider a certain position in the SIM
phase near the AIM phase boundary in Fig. 5(b1), such as
position P14. Although the spherical shell configuration re-
duces the kinetic energy and s-wave intraspecies interaction
by reducing the boundary curvature, it also increases the in-
terface volume of the two-component BEC. Simultaneously,
the additional p-wave interaction tends to the reduction of the
interface volume, resulting in a rightward shift of the AIM
phase boundary. As βp increases, the AIM phase expands until
the SIM phase region is no longer visible in Figs. 5(c2)–5(d2).
In addition, the order parameters become discontinuous as βp

becomes sufficiently large in Figs. 5(d1)–5(d2); the underly-
ing mechanism has been explained in Sec. III B.

Figure 6 compares the ground-state phase diagram in the
(βp/β

BG
12 )1/3-N plane at different aBG

12 : aBG
12 = 67 and 100 a.u.

Significant differences emerge when using p-wave interac-
tions to modulate the miscible-immiscible phase transition. In
Figs. 6(a), where aBG

12 < ac
12, the system exclusively exhibits

M and SIM phases. The addition of p-wave interaction mainly
facilitates the mixing of the two BECs, driving a transition

from the SIM phase towards the M phase. As discussed above,
the AIM phase exists only if aBG

12 is sufficiently large. Con-
versely, when aBG

12 � ac
12, as observed in Figs. 6(b), all three

phases exist. When N � 104, interspecies interaction (∝ β12)
is weaker than kinetic energy; the latter promotes mixing. The
inclusion of p-wave interaction enhances mixing, driving the
AIM phase at βp = 0 to the M phase. As N increases, the
M-to-AIM phase boundary approximates a straight line, akin
to the steep boundary observed when β12 surpasses the critical
value βc

12 in Fig. 3. However, when N > 104, the p-wave inter-
action manifests dual effects: weak βp promotes mixing and
strong enough βp triggers phase separation. With increasing
βp, the order parameter η first increases and then decreases,
as clearly depicted in Fig. 6(b1). Upon reaching N > 105, the
mixture enters the TFA regime (β1(2) � 1). The ground state
undergoes SSB around βp/β

BG
12 ≈ 1.0, entering directly the

AIM phase. Correspondingly, the order parameter d exhibits
an abrupt change, increasing from zero to d � 3 [70].

Finally, we note that while we have primarily focused on
investigating the role of p-wave interaction to the miscible-
immiscible phase transition, other factors such as particle
number ratio and trap configuration may also slightly influ-
ence the phase boundary [23,25,69]. The detailed analysis of
these is beyond the scope of this paper.

V. CONCLUSIONS AND DISCUSSIONS

In summary, we have derived a mean-field equation incor-
porating p-wave interactions by employing a single-channel
p-wave pseudopotential model. Our exploration of the
ground-state phase diagram in a binary BEC with both in-
terspecies s-wave and p-wave interactions has revealed richer
characteristics than those arising from s-wave interactions
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alone. Positive p-wave interactions exhibit a dual impact, ei-
ther promoting the mixing or driving the separation of BEC
components. This introduces an avenue for experimentally
controlling the mixing behavior of BEC mixtures, suggesting
potential directions for future studies. In practical 87Rb - 23Na
BEC mixture experiments, achieving precise control over both
s- and p-wave interactions is challenging. However, specific
magnetic-field positions present a favorable scenario where
a particular s-wave FR and a specific p-wave FR are closely
aligned in diverse binary mixtures [37,40].

In the broader scope of diverse mixtures involving various
atomic species, multiple factors such as the atom number ra-
tio, mass imbalance, and disparities in trapping configurations
among the constituents could potentially influence miscibility
[25,69], providing avenues for future investigation. Addition-
ally, it is important to highlight that our focus has primarily
centered on the ground-state properties of BEC mixtures.
The dynamics, especially the evolution of phase separation,
remain unexplored in our present research [28,71–73]. Given

that p-wave interactions involve gradient correlations between
wave functions of the two components, investigating the phase
separation dynamics prompted by p-wave interactions holds
promise for future investigation.
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