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Three-body bound states of quantum particles: Higher stability through braiding
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Motivated by recent cold atom experiments exploring the phase structure of Bose-Fermi mixtures, we propose
novel emergent bound states. Cold atoms embedded in a degenerate Fermi system interact via a fermionic analog
of the Casimir force, which is an attraction of a −1/r form at distances shorter than the Fermi wavelength.
Interestingly, the hydrogenic two-body bound states do not form in this regime because the interaction strength is
too weak under realistic conditions, and yet the three-body bound states can have a considerably higher degree of
stability. As a result, the trimer bound states can form even when the dimer states are unstable. A quasiclassical
analysis of quantum states supported by periodic orbits singles out the figure-eight orbits, predicting bound
states that are more stable than the ones originating from circular orbits. The discrete energies of these states
form families of resonances with a distinct structure, enabling a direct observation of signatures of figure-eight
braiding dynamics.
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Bose-Fermi mixtures have long been both practically im-
portant and theoretically a source of interesting and unconven-
tional physics. Bose gases are often used to sympathetically
cool down Fermi gasses to ultracold temperatures [1,2].
Theoretically, the fine control of ultracold atoms forming
Bose-Fermi mixtures has made possible the exploration of a
rich and varied phase diagram where bosons and fermions can
bind to form fermionic molecules [3–6], polarons, and other
novel bound states [7,8]. However, the phases dominated by
bosonic physics and the bound states they host are not yet
fully understood. Here, motivated by the recent experimental
demonstration of a long-range attractive interaction between
bosons [9] and observation of three-body resonances [10],
we consider unusual bosonic bound states formed from this
interaction in a weak coupling limit where |aeff| � R, k−1

F for
effective boson scattering length, aeff, and Fermi wave vector,
kF. One interesting aspect of this long-range interaction is that
it behaves as a hydrogenic −1/R potential at not too large
distances.

The bound states within this regime are of considerable
interest because of their simple, tunable hydrogenic charac-
ter. Here we investigate the two-body and three-body states
with the help of the semiclassical method. Interestingly, the
limited range of distances in which the 1/R behavior holds
proves to be more impactful for the dimer states than for the
trimer states. Namely, one finds that two-body states may be
rendered unstable, however, they can be stabilized by the addi-
tion of one more orbiting boson, leading to stable three-body
bound states.

A remarkable prediction of quantum theory is that when
the interactions between particles are not strong enough to
support a two-body bound state, they may nonetheless support
three-body bound states. This phenomenon has been explored
in the framework of Efimov trimers [11,12]. Efimov trimers
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are formed by particles interacting through short-range attrac-
tive interactions that are nearly resonant [11,12]. In this case,
an infinite tower of three-body bound states forms even though
two-body bound states are unstable. These trimer states have a
peculiar nested shell structure related to discrete scale invari-
ance and limit cycles in the renormalization group [13–15].
Efimov states have been a focus of active research in nuclear
and cold atom physics, culminating in recent observations of
a hierarchy of these states [16–18].

As we will see, the behavior in our problem is reminiscent
of the physics behind Efimov trimers, where an unstable dimer
is stabilized by an addition of a third particle. In our case,
however, this stabilization is mediated by long-range interac-
tions, whereas, for Efimov states, this stabilization is effected
by short-range interactions. Interestingly, such short-range in-
teractions also become relevant in our system, specifically in
the alternate weak coupling limit where R � |aeff|, k−1

F [8].
The bound states discussed here have a very different

character, originating from the long-range boson-boson in-
teraction mediated by fermions. This interaction, being of an
approximately 1/R character, supports two-body bound states
resembling textbook hydrogenic states. In addition, one can
envisage three-body states of various types stabilized by the
near-1/R attraction, as illustrated in Fig. 1. Among these, we
consider three-body states that possess radial symmetry and
the less conventional states, in which three particles move
along a figure-eight trajectory in a fixed plane under the in-
fluence of 1/R attraction.

An important question pertaining to the detection of these
dimer and trimer states is their stability. In a simplest frame-
work, stability can be analyzed for the dimers and trimers
completely isolated from other particles in the system. In
this regime, the property of the boson-boson interaction that
can potentially lead to instability is the weakening of the
1/R RKKY attraction at distances greater than the Fermi
wavelength and, at the same time, the direct short-range
boson-boson interaction. Interestingly, the impact of these
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FIG. 1. (a) Schematic of attractive force between bosons (blue),
mediated by the inward pressure due to scattering of fermions (red).
(b) A two-body orbit. (c) A circular three-body orbit. (d) A figure-
eight three-body orbit.

intrinsic effects on the stability of dimers is more pronounced
than its impact on the stability of trimers. Namely, for a range
of realistic interaction strengths, it can be shown that these
two-body configurations are no longer stable bound states,
while the three-body configurations remain proper bound
states. Further, in realistic systems, dimers and trimers can
also decay through nonintrinsic pathways due to scattering by
surrounding atoms. Here, trying to keep discussion simple, we
will only consider the intrinsic stability effects.

I. EFFECTIVE INTERACTION

Here we focus on bound states of two and three bosons
embedded in a degenerate Fermi sea of cold atoms. Within
the weak attraction limit with |aeff| � R, k−1

F , a fermion-
mediated interaction arises through the so-called RKKY
mechanism [19–21], giving

U (R) = − 3α

(2kF)3

sin(2kFR) − 2kFR cos(2kFR)

R4
, (1)

where kF is the Fermi momentum, and the interaction strength
α depends on the boson-fermion scattering length and particle
masses as discussed below. The fermion-mediated RKKY in-
teraction between bosonic atoms was demonstrated in recent
experiments with a Bose-Einstein condensate of Cs atoms
embedded in a degenerate Fermi gas of Li atoms [9]. Fur-
ther, triatomic Feshbach resonances have been observed in
collisions between potassium (K) atoms and sodium potas-
sium (NaK) diatomics, suggesting possible fermion-mediated
bound states of two or more bosons [10]. As we will see, the
bound states formed due to the RKKY interactions originate
from classical orbit quantization and, therefore, form families
of resonances with distinct structure.

In this case, in place of the short-range Efimov interac-
tion, particles interact via a long-range interaction. Crucially,
though this interaction is oscillatory at long distances, a sim-
ple Taylor expansion reveals that it is an attractive power law
in R in a relatively wide range of distances, controlled by kF.
This can be seen by carrying out the expansion to lowest order

in 2kFR � 1:

U (R) = −α

R

(
1 + (2kFR)2

10
+ . . .

)
≈ −α

R
. (2)

This allows one to estimate the range of applicability of the
−1/R interaction as 2(kFR)2/5 � 1. In other words, once
bosons come approximately within one Fermi wavelength,
k−1

F , their attraction looks hydrogenic. Yet, if they come closer
than the effective bosonic scattering length, aeff , which in-
cludes he effect of the boson-fermion interaction, the original
RKKY form is supplemented by a short-range attractive in-
teraction leading to conventional Efimov states [8]. Typically
in the weak interaction limit, this correction from the boson-
fermion scattering is small (|kF aBF| � 1) and the effective
scattering length closely approximates the bare boson-boson
scattering: |aeff| ≈ aBB. Thus, the 1/R attraction occurs within
the range |aeff | ≈ aBB < R < k−1

F .
As a side remark, the origin of the 1/R attraction can

be seen in a direct physical manner as a mutual shielding
effect. Indeed, an anisotropy in the flux of fermions incident
on the two bosonic atoms, with one atom shielding the other
one, causes a net attractive force between the atoms via the
fermionic Casimir effect [22,23]. This behavior is illustrated
in Fig. 1(a).

II. BOUND STATES AND ORBITAL BRAIDING

Naturally, the behavior U (R) ∼ −1/R prompts the ques-
tion of whether the two-particle bound states of a hydrogenic
type, pictured schematically in Fig. 1(b), can occur. Nom-
inally, the stability of such hydrogenic states would not
depend on the interaction strength, α. However, since the
radius of a hydrogenic states scales inversely with interac-
tion strength, the α values do determine for which states
2kFR > 1. A simple expansion shows that the corrections
to the hydrogenic potential from the full RKKY expres-
sion involve additional (2kFR)2 factors. These contributions
can alter the behavior significantly if the Bohr radius, R0

is too large. When 2kFR � 1, perturbation theory around
hydrogenic states breaks down. Here, the RKKY interac-
tion effectively falls off as cos (2kFR)/R3, which decays too
quickly and oscillates too rapidly between positive and neg-
ative values to support bound states. Our analysis indicates
that α can be tuned by varying the fermion density and the
boson-fermion scattering length to a point where the RKKY
interactions are too weak to support two-body bound states.
Surprisingly, however, the requirements for the formation of
three-body bound states are not as stringent and such states
can still persist under realistic conditions.

The stability of these three-body states stands in sharp con-
trast to that of the classical three-body problem. Classically,
gravitational three-body orbits are made fragile by the lack
of integrability of the three-body classical dynamics. Namely,
three-body orbits are typically prone to decay into the more
stable configurations of a two-body orbit and an unbound third
body. However, in our problem this decay pathway is blocked
in the absence of two-body bound states. As a result, strik-
ingly, the quantum three-body orbits become more stable than
the classical three-body orbits: our trimer states are effectively

043323-2



THREE-BODY BOUND STATES OF QUANTUM PARTICLES: … PHYSICAL REVIEW A 109, 043323 (2024)

stabilized by the absence of two-body bound states (a behavior
similar to that of Efimov states).

Further, as we will see, the three-body states originat-
ing from the RKKY interaction are highly sensitive to orbit
geometry. As appropriate for bound states supported by a
long-range attraction, the underlying physics here can be
best understood in a quasiclassical framework. Similar ap-
proaches have successfully been applied in the analysis of
bound states [24–26]. Below, we apply quasiclassical quan-
tization using the Gutzwiller trace formula framework. We
consider, as primary examples, two simple periodic orbits
of the three-body problem: the circular and the figure-eight
orbits [27] pictured in Figs. 1(c) and 1(d), respectively. For
both orbits the dynamics are locally stable, such that small
perturbations remain small at all times.

These orbits share similar dynamic symmetry. The figure-
eight orbit is a celebrated solution to the planar three-body
problem in which three equal-mass particles travel around the
same figure-eight curve with time shifts equal to 1/3 of the
period, as illustrated in Fig. 1(d).

The figure eight is the simplest periodic orbit in a large
family discovered by Moore [27]. Originally it was located
numerically using a functional gradient descent procedure
described in Appendices; its existence was later confirmed
by a rigorous analysis [28]. Circular orbits on which two and
three particles are chasing each other with 1/2 and 1/3 period
time shifts, as shown in Figs. 1(b), 1(c) provide a natural
comparison to figure-eight orbits.

Our analysis of the quantum states associated with these
orbits predicts Rydberg-like energy spectra

En = −C
α2m

4h̄2n2
, (3)

where the prefactor C depends on the orbit geometry and n is a
positive integer with an upper bound where our approximation
breaks down: 1 � n � nmax. For distinguishable particles n
takes all positive integer values, whereas for identical bosonic
particles n = 1 + 3k. The energy spectrum, Eq. (3), is written
in a form that facilitates comparison with the conventional Ry-
dberg spectrum. For two particles of equal masses, the latter
is given by setting C = 1. For the three-body circular-orbit
dynamics we find C = 18; for the figure-eight orbit we find
C ≈ 34. The large C values indicate that the three-body states
are considerably more stable than the two-body states.

The difference in binding strengths can be traced to par-
ticles’ orbit geometry and topology. Three particles moving
along a circular orbit will clearly interact more strongly than
two particles on the same orbit. Stronger binding for the
figure-eight states as compared to the circular-orbit states can
be attributed to the peculiar figure-eight braiding dynamics.
The dynamics is such that the three particles come much
closer to each other than particles moving along a circular
orbit of comparable orbit size, which translates into a larger
binding energy and higher stability.

These braiding dynamics should be contrasted with the
schemes for braiding of particles with anyon statistics [29,30]
or the physical braiding of qbits represented by trapped ions
or the like to perform actions of quantum gates [31–34]. These
operations typically require the intervention of an external
source for confinement or control of the dynamics, while the

braiding described here may exist in an isolated system. The
braiding described below illustrates the largely unexplored
quantum-coherent phenomena for this RKKY interaction.

Further, we note that the simple hydrogenic −1/R model
for the fermion-mediated attraction, assumed in Eq. (3), is
perfectly sufficient for assessing stability of low-lying states,
a question that will be the focus of this paper. The RKKY
interaction deviates from the simple model outside the range
2kFR � 1, where it falls off more rapidly than 1/R. This
behavior does not matter for the low-lying states so long as
their localization radius is small enough: 2kFR � 1; yet, it is
detrimental for the high-n states from Eq. (3) because a larger
n translates into a larger orbit radius. For realistic α values,
which are relatively small, we find that the spatial extent of
all hydrogenic two-body states exceeds the Fermi wavelength,
i.e., they fall outside the range 2kFR � 1 in which the −1/R
form holds. In contrast, for three-body states the value of α

is high enough to push the orbit radius under the 2kFR � 1
bound for a finite number of low-lying states, ensuring their
stability.

III. TWO-BODY STABILITY

To estimate the realistic interaction strength we use the
parameter values from the recent experiment in which the
fermion-mediated interaction was observed [9]. As shown
in (2), within the appropriate radius, the interaction appears
as a −1/R potential with which we can analyze bound states
for two and three bosonic particles

U (R) = −g2
BFmF k3

F

3h̄2π3R
= −α

R
, α = 0.0784

h̄2a2
BFk3

F

mp
, (4)

where mF and mp are the masses of the fermion and proton,
gBF and aBF are the boson-fermion coupling and scattering
length, and kF is the Fermi momentum.

It is instructive to start our discussion of the spectra by ex-
amining the two-body ground states. We estimate the typical
boson separation by considering the Bohr’s radius, R0 with
reduced mass, mB

2 :

2kFR0 = 4h̄2kF

mBα
= 4 × a−2

BFk−2
F

133 × 0.0784

= 1.39 × 107

(
a0

aBF

)2
(

k(0)
F

kF

)2

. (5)

Here, motivated by the form of α in Eq. (B9), we have
chosen to normalize aBF and kF by Bohr’s radius a0 and
k(0)

F ≈ π μm−1, the value from Ref. [9].
Which parameter values can support states with radii in

the range where our hydrogenic approximation holds? Choos-
ing the realistic values aBF = 100a0 and kF

k(0)
F

= 10 we find

2kFR0 ≈ 14. This value is too large to justify the approxi-
mation 2kFR � 1, indicating that no two-body bound states
occur in this case. However, the conditions for confinement
can be relaxed by tuning system parameters. Reference [9]
suggests stable Bose-Fermi mixtures whose interaction agrees
with perturbative calculations roughly in the range −500a0 <

aBF < 1000a0, outside of which, rapid losses cause heating
of the BEC into a normal gas. Thus, choosing higher values
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aBF = 500a0 and kF = 20k(0)
F , we obtain

2kFR0 = 0.14, (6)

which is justifiably small. However, in this limit, our hydro-
genic approximation is likely to be invalid for other reasons.
If the orbit size is smaller than the effective bosonic scattering
length, R < |aeff |, the bosons come close enough to be sen-
sitive to short-range forces that lead to qualitatively different
bound states [8]. In addition, accessing such high values of
aBF and kF may be practically challenging. Further discussion
and spectral estimates for accessible three-body states may be
found in Appendices.

IV. THREE-BODY STATES: SEMICLASSICAL
QUANTIZATION

Next we discuss three-body bound states and argue that the
conditions for supporting these states are less stringent than
those for two-body states. The three-body states are described
by the Hamiltonian

H (ri, pi ) =
∑

i

p2
i

2m
+

∑
i �=i′

U (ri − ri′ ), i, i′ = 1, 2, 3. (7)

We consider the long-range interactions U (r) ∼ −1/r and
employ quasiclassical methods, wherein bound states arise
from quantized periodic orbits. Importantly, unlike the two-
body problem, the three-body problem is nonintegrable; as a
result, the dynamics is chaotic in most of its phase space. Yet,
islands of stability associated with certain periodic orbits are
known to exist, giving rise to families of discrete states.

We analyze the three-body bound states using Gutzwiller’s
semiclassical quantization of nonintegrable Hamiltonian sys-
tems [35]. Gutzwiller’s approach identifies the contribution to
the density of states from quantum states associated with peri-
odic orbits, which allows one to separate discrete states from
the chaotic continuum. We apply this approach to the circular
and figure-eight orbits pictured in Figs. 1(c) and 1(d). We first
consider distinguishable particles; in this case the period of
the orbit equals the time it takes each particle to undergo a
full revolution. We then consider the case of indistinguishable
particles. In this case, the period is reduced by 1/3, since the
particles reach a permuted version of the initial point in phase
space after a third of the period, and thus arrive at the same
quantum state.

The Gutzwiller trace formula approximates the density of
states of a nonintegrable Hamiltonian system as [35]

D(E ) = D̄(E ) + Re
∑

p

Tp

π h̄

∞∑
r=1

Ap,re
irSp

h̄ − iσpr π

2 , (8)

where p sums over all primitive (nonrepeated) periodic or-
bits with energy E , period Tp, action Sp = ∫

p · dq, and r
sums over all repetitions of a primitive orbit. Here σpr is the
Maslov index for the rth repetition of the primitive orbit p,
see Ref. [36]. The amplitude factor Ap,r = | det(Mr

p − 1)|−1/2

is a function of the stability matrix Mp that describes the
local flow linearized about the primitive orbit p. The quantity
D̄(E ) is the average density of states of the system, which
depends smoothly on energy (the Thomas-Fermi contribution

associated with the chaotic states). In our calculations, we will
disregard this term because we only care about the oscillatory
contribution to the density of states coming from the sum
over classical periodic orbits. For simplicity, we set the am-
plitude factor Ap,r = 1 and also assume the Maslov index to
be additive over successive repetitions r of a primitive orbit p;
denoting the index for one revolution of the orbit as μ ≡ σp1

we write σpr = rμ. The oscillatory contribution to the density
of states is then given by a sum of terms multiplicative in r:

δD(E ) = Re
∑

p

Tp

π h̄

∞∑
r=1

exp

[
ir

(
Sp

h̄
− μπ

2

)]
. (9)

This produces something akin to a saddle-point approxi-
mation, omitting slow amplitude variations to track phase
variations on classical paths. The validity of the simplifying
assumptions that lead to Eq. (9) will be discussed in detail
elsewhere.

An essential property of periodic orbits allowing them to
support discrete states is linear stability. While generally rare
for periodic orbits of the three-body problem, this property
holds for the orbits of interest. The stability of the three-body
circular orbit is well known [27]; for the figure-eight orbits
it was demonstrated in Refs. [37,38] by verifying that all
eigenvalues of the stability matrix lie on the unit circle, and
later proven rigorously in Ref. [39].

Another important aspect of our three-body problem is that
orbits are unique up to symmetries of the equations of motion,
including translation, rotation, and rescaling of the ri and pi
variables

ri → 1

β
ri, pi → β1/2 pi, H → βH. (10)

We use this scaling symmetry to rewrite our trace formula
in terms of a single reference orbit. Indeed, Eq. (10) defines a
continuous family of orbits that are equivalent up to a rescal-
ing. If r(t ), p(t ) define a solution with energy E , period T , and
action S, then another solution is given by

r′(t ) = β−1r(β3/2t ), p′(t ) = β1/2 p(β3/2t ) (11)

with energy E ′ = βE , period T ′ = β−3/2T , and action S′ =
β−1/2S, for any β > 0. This scaling has consequences for our
trace formula. Because each orbit with energy E can con-
tribute to the density of states only at D(E ), our calculations
in Eq. (9) must incorporate the scaling relations. To proceed,
we calculate the energy, period, and action of one particular
reference orbit, which we label Ē , T̄ , and S̄. We define a
scaling factor β for an orbit with energy E , taken relative to
an orbit with energy Ē , such that βE = E/Ē . Then the action
and the period of the rescaled orbit can be written as

SE = β
−1/2
E S̄, TE = β

−3/2
E T̄ . (12)

Focusing on the case of distinguishable particles, we can write
the oscillatory contribution to the density of states from the
entire family of figure-eight orbits:

δD(E ) = Re
T̄ β

−3/2
E

π h̄

∞∑
r=1

exp

[
ir

(
S̄

h̄
β

−1/2
E − μπ

2

)]
. (13)
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The sum over repetitions r is a geometric series equal to

δD(E ) = Re
T̄ β

−3/2
E

π h̄

exp
[
i
(

S̄
h̄ β

−1/2
E − μπ

2

)]
1 − exp

[
i
(

S̄
h̄ β

−1/2
E − μπ

2

)] . (14)

Poles of this expression describe the discrete energy spectrum
of the bound states formed by particles confined to the orbit
of interest.

V. THREE-BODY STATES: SPECTRAL ESTIMATES

From Eq. (14), we can calculate a spectrum using a ref-
erence orbit as input; however, the resulting spectrum should
be independent of the reference orbit chosen. The poles of
Eq. (14) lead to δ functions in the density of states whenever
S̄
h̄ ( Ē

E )
1/2 − μπ

2 = 2πn. Rearranging this condition yields the
energies En of an orbit with distinguishable particles, labeled
by a quantum number n:

En = Ē S̄2

4h̄2π2
(
n + μ

4

)2 . (15)

Further focusing on the figure-eight solution and using the
numerical method described in Appendices, we find Ē =
−1.2935α and S̄ = 16.1609(αm)1/2. The values Ē and S̄ de-
pend on the orbit used as an initial condition in the relaxation
dynamics. However, their product Ē S̄2 is a universal constant
independent of the details of the procedure. Comparing to
Eq. (3), we evaluate

C = Ē S̄2/π2α2m = 34.23 . . . , (16)

and set the Maslov index to its one-body and two-body value
μ = 4 (and shift n + 1 → n) to yield our expected spectrum.

Our analysis of the figure-eight orbit can be easily extended
to circular orbits. In the case of distinguishable particles, we
need only calculate Ē and S̄ for a reference radius, r = 1 in
appropriate units, and plug these values into Eq. (15). We find
values

Ē = −31/2α

2
, S̄ = 2π (33/2αm)1/2, (17)

which gives En = −9α2m/2h̄2(n + μ

4 )2, which is nothing but
Eq. (3) with C = 18.

We now consider how Eq. (15) must be modified for
the case of indistinguishable particles. This is done by ac-
counting for the permutation symmetry of the three-particle
states. As noted above, the circular and figure-eight orbits
share a dynamical symmetry. This shared symmetry allows
us to consider either the circular orbit or figure-eight orbit
with total period T and action S, where the particles start at
the initial point (r, p) in phase space. After a time T/3, the
particles reach a permuted version of the initial phase space
point, (Pr, Pp), where P is the operator corresponding to the
permutation (123). Since the particles are indistinguishable,
the system has reached a quantum state identical to the initial
state. Thus, we can think of T/3 as the new period of the
system. Then the action of the system becomes S/3. Since the
Maslov index for the modified orbit is one-third of the value
for the original orbit, we replace S̄ with S̄/3 and μ with μ/3
in Eq. (15). This yields the spectrum in Eq. (3) with n taking
values 1, 4, 7, 10, and so on.

A more intuitive way to arrive at this result is to consider
the ground state for distinguishable particles for which the
wave function is nodeless and is therefore identical to that for
the ground state of bosonic particles. The number of nodes
for the excited states, from permutation symmetry, must equal
3k for some positive integer k value, which leads to Eq. (3)
with n = 1 + 3k as above. These selection rules for quantum
numbers reflect the permutation symmetry of the three-body
states of identical bosons. One can view this property as a
special case of the constraints on the three-body states due to
braiding dynamics of identical particles.

Lastly, as a consistency check, we verify that these states
lie within the regime of validity for our hydrogenic poten-
tial. Choosing the same values for the interspecies scattering
length and the Fermi momentum as above, aBF = 100a0 and
kF

k(0)
F

= 10 and an effective scattering length within the uncer-

tainty stated in [9], |aeff | ∼ aBB = 25a0, we check that they lie
in the region of validity, approximately between the effective
scattering length and Fermi wavelength: 25a0 < R < 600a0.
These estimates confirm that (2kFR0 )2

10 � 1 and R0
|aeff | � 1. Start-

ing from the relation in Eq. (5) and rescaling it by the factors
of C = 18 and C ≈ 34 for the three-body circular and fig-
ure eight of orbits gives

2kFR0 = 1.39 × 107

C

(
a0

aBF

)2
(

k(0)
F

kF

)2

. (18)

Choosing the same values for the interspecies scattering
length and the Fermi momentum as above, aBF = 100a0 and
kF

k(0)
F

= 10, we find (2kFR0 )2

10 ≈ 0.06 � 1 for the circular orbit

and (2kFR0 )2

10 ≈ 0.02 � 1 for the figure-eight orbit. Scaling this
relation by 2kFaeff , with |aeff | ≈ 25a0:

R0

|aeff | = 4.16 × 1010

C

(
a0

aeff

)(
a0

aBF

)2
(

k(0)
F

kF

)3

. (19)

With the values mentioned above, we find R0
aeff

≈ 9 > 1 for the

circular orbit and R0
aeff

≈ 5 > 1 for figure-eight orbit. As such,

the small values of 2kFR0 and large values R0
|aeff | of justify our

−1/R approximation. With the parameters mentioned above,
the relevant energy scales for these bound states are as fol-
lows:

ν̃1 = Cν1 = 28.1 kHz (circular three-body orbit)

ν̃1 = Cν1 = 53.5 kHz (figure-eight orbit). (20)

However, as these were only estimates, potentially tighter con-
finement of the three-body states may enable higher binding
energies and stability over two-body states.

VI. CONCLUSION AND DISCUSSION

We have shown that a mixed Bose-Fermi system tuned to
the appropriate interspecies scattering length, aBF, can give
rise to bosonic bound states within a particular weak coupling
limit where |aeff | � R, k−1

F . Further, one can tune the interac-
tion such that none of these bound states is stable when only
comprised of two particles, however, three-body states can be
stable, and those with braiding semiclassical orbits even more
so than standard circular orbits.
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We attribute the higher stability of the figure-eight states,
as compared to the ones on circular orbits, to the intertwining
character of the braiding dynamics that brings particles much
closer together for the same orbit radius. The three-body states
are further stabilized by the lack of stable two-body states, as
discussed above.

We emphasize the general character of our analysis, which
can be applied to both other three-body orbits and the n-body
problem. This is because the derivation of Eq. (15) depends
only on the scaling properties of the system, and not on the
number of particles.

Interestingly, the figure-eight orbit is known to exist in the
n-body problem for all odd n � 3 [40], and one could thus
use the same method to analyze the spectra of n-body bound
states of the figure-eight orbit. As in the three-body case,
quantum statistics of identical particles will manifest itself
through holes in the discrete spectrum.

It should be noted that these states would still be subject to
three-body losses that might hinder the observation of these
states. Though we do not address these losses here, better un-
derstanding of the dynamical stability of these states would be
an interesting and important step towards their experimental
characterization.

Quantum states associated with these orbits, if realized in
experiment, can provide a unique opportunity to demonstrate
braiding that results directly from unitary quantum evolution
and does not depend on external driving. The potential for
braiding in three-body dynamics and the sensitivity to the
different resulting geometries make these states particularly
promising systems for further study.
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APPENDIX A: ORBIT RELAXATION

The Gutzwiller trace formula relies on quantities such as
the action, energy, and stability matrix eigenvalues of the pe-
riodic orbits of a dynamical system. To extract these quantities
for a periodic orbit of the planar three-body problem, we
require a numerical solution of the orbit, since in general no
closed-form solution exists.

Here, we describe a numerical relaxation procedure for
locating periodic orbits of the planar n-body problem in phase
space, based off of work by Moore [27]. The procedure
is a functional gradient descent that minimizes the action
functional S[r1(t ) . . . rn(t )], where r1(t ) . . . rn(t ) are the tra-
jectories of n-point particles each with identical mass, m. We
start by choosing fictional periodic orbits for each particle.
To each orbit we apply a functional differential equation in
fictional time τ :

dri(t )

dτ
= γ

⎛
⎝m

d2ri(t )

dt2
−

∑
j �=i

F i j (t )

⎞
⎠, i, j = 1 . . . n,

(A1)

where F i j (t ) = −α
ri (t )−r j (t )

|ri (t )−r j (t )|3 is the force from particle j act-
ing on particle i at time t , and γ is a parameter that controls the
descent rate. Once dri(t )/dτ = 0 for each ri(t ), the procedure
has converged upon solutions to the equations of motion, since
md2ri(t )/dt2 = ∑

j �=i F i j (t ). The right-hand side of Eq. (A1)

can be rewritten as − 1
m ∇S[r1(t ) . . . rn(t )], where ∇S is the

functional gradient or the variational derivative of S. The pro-
cedure is then a functional gradient descent, which decreases
the action at each step until the procedure converges and the
action reaches a local minimum.

As described by Moore, applying the procedure leads to
a few possibilities, one of which is the convergence to a
genuine periodic orbit of the system. In this case, the nature
of the solution is determined by the topology of the initial
orbit. In particular, if we plot the orbits of n bodies in the
plane against time, the orbits draw out a braid of n strands
in three-dimensional space time. This braid is a topological
classification of the motion, which remains constant over the
course of relaxation, as long as no collisions between particles
occur. Other possibilities of applying relaxation are that two or
more of the particles collide, causing a change in topology, or
that one or more of the particles escapes to infinity. Escape
occurs when the braid is separable, i.e., when the strands
can be separated into two or more isolated subsets. For 1/r
potentials, certain braids always lead to collision, forbidding
any solution from having that braid type (the same is not true
of strong-force 1/r2 potentials, where there is a solution for
every braid). The reasons for this are discussed in detail by
Moore and will not be the subject of this description.

In summary, the relaxation method is a relatively fast, ac-
curate way of locating solutions to the planar n-body problem
of a desired topology, allowing us to obtain the quantities nec-
essary for the Gutzwiller trace formula. For instance, we can
easily locate the three-body figure-eight solution by choosing
initial trajectories of the form:

r1(t ) =
(

sin
(
t − 2π

3

)
sin

(
t − 2π

3

)
cos

(
t − 2π

3

)
)

(A2)

r2(t ) =
(

sin (t )
sin (t ) cos (t )

)
(A3)

r3(t ) =
(

sin
(
t + 2π

3

)
sin

(
t + 2π

3

)
cos

(
t + 2π

3

)) (A4)

for 0 � t � 2π , where the trajectories are overlapping figure-
eight orbits with period 2π , phase shifted from one another
by 2π

3 . Applying the relaxation method converges to the true
figure-eight solution with period 2π and energy Ē = −1.2935
(for α = 1, m = 1).

APPENDIX B: RKKY DERIVATION

The fermion-mediated RKKY interaction observed in
Ref. [9] takes place between bosons in a Bose-Einstein con-
densate of cesium atoms and is mediated by the degenerate
Fermi gas of lithium atoms in which they are embedded. The
Hamiltonian for bosons embedded in a Fermi sea is of the
form

H = HB + HF + Hint. (B1)
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In a second-quantized form, the fermion and boson terms read

HF =
∫

d3rφ†(r)
p2

2mF
φ(r),

HB =
∫

d3rψ†(r)

(
p2

2mB
+ gBB

2
ψ†(r)ψ (r)

)
ψ (r) (B2)

where gBB = 4π h̄2aBB
mB

is the intraspecies coupling constant, aBB

is the corresponding scattering length, and mB(F ) is the boson
(fermion) mass. For our purposes, however, the interspecies
interaction term is most important. To lowest order it reads:

Hint = gBF

∫
d3rψ†(r)φ†(r)φ(r)ψ (r), gBF = 2π h̄2aBF

m∗
(B3)

with aBF the interspecies scattering length, and m∗ =
mBmF /(mB + mF ) as the reduced mass. The fermion-
mediated interaction can be obtained by integrating out the
fermion degrees of freedom. To lowest order in the coupling
gBF, this gives an effective bosonic interaction [41]

Ĥint ≈ 1

2

∫
d3rd3r′ψ†(r)ψ†(r′)U (r − r′)ψ (r′)ψ (r), (B4)

where U (R) is the RKKY interaction potential given by

U (R) = −3α
sin(2kF R) − 2kF R cos(2kF R)

R4
, (B5)

with an explicit coupling strength given by

3α = g2
BFmF

h̄2(2π )3
. (B6)

For the system studied in Ref. [9], the bosons are 133Cs
and the fermions are 6Li. Taking mB = 113mp and mF = 6mp,
where mp is the proton mass, gives the reduced mass m∗ ≈
113·6

113+6 mp ≈ 5.7mp and the coupling strength

gBF = 2π h̄2aBF

5.7mp
. (B7)

For small R, by carrying out the expansion to lowest order in
2kF R � 1,

sin 2kF R − 2kF R cos 2kF R

R4
≈ (2kF )3

3R
, (B8)

we can write U (R) as a gravitational potential

U (R) = −g2
BFmF k3

F

3h̄2π3R
= −α

R
, α = 0.0784

h̄2a2
BFk3

F

mp
, (B9)

where we substituted the expression for the interspecies inter-
action strength gBF, Eq. (B7).

From this interaction, we may derive the expected ground-
state energy of a hydrogenic two-body state. Two interacting
particles are described by the Hamiltonian

H = p2
1

2m
+ p2

2

2m
+ U (r1 − r2), (B10)

where from now on m labels the bosonic mass.

APPENDIX C: SPECTRAL ESTIMATES

The discrete energy spectrum is found readily by separat-
ing the center-of-mass motion, which, as mentioned in the
main text, gives a hydrogenic Rydberg formula with a reduced
mass for different orbit geometries, characterized by a con-
stant, C,

En = −C

4

α2m

h̄2n2
, n = 1, 2, 3 . . . (C1)

Where C = 1 for the two-body hydrogenic state. With this,
we estimate the two-body ground-state frequency ν1 = |E1|

2π h̄ as

ν1 = α2m

4h̄3(2π )
= 133mp

8π h̄3

(
0.0784 · k3

F h̄2a2
BF

mp

)2

≈ 1.56 × 10−11

(
aBF

a0

)4
(

kF

k(0)
F

)6

[Hz], (C2)

where we have chosen to normalize the scattering length aBF

and the Fermi wave vector kF by Bohr’s radius a0 and k(0)
F ≈

π μm−1, the value from Ref. [9]. Choosing aBF = 100a0 and
kF = 10k(0)

F , we find from Eq. (C2) the value ν1 ≈ 1.56 kHz,
or in units of temperature, hν1/kB ≈ 1.16 × 10−8 K. The fre-
quencies for the circular three-body state and figure-eight state
can easily be derived from this value as

ν̃1 = Cν1 = 28.1 kHz (circular three-body orbit)

ν̃1 = Cν1 = 53.5 kHz (figure-eight orbit), (C3)

where the coefficients for the circular and figure-eight or-
bits are C = 18 and C ≈ 34.23, respectively. If, instead, we
choose higher values: aBF = 500a0 and kF = 20k(0)

F , we find
a fairly large frequency value for the two-body state

ν1 = 6.24 × 107 Hz, (C4)

which in units of temperature is hν1/kB = 4.6 × 10−4 K. To
find the radius for these conditions, we simply calculate the
Bohr’s radius for a reduced mass m

2 .

R0 = 2h̄2

mBα
= 2 · a−2

BFk−3
F

133 · 0.0784
= 2.2

(
a0

aBF

)2
(

k(0)
F

kF

)3

[meters],

(C5)
where, we normalize the expression as in Eq. (C2). Then for
the quantity 2kF R, which we previously approximated to be
small, we have

2kF R0 = 2

(
kF

k(0)
F

)
k(0)

F R0 = 1.39 · 107

(
a0

aBF

)2
(

k(0)
F

kF

)2

.

(C6)
As noted in the main text, this yields 2kF R0 ≈ 14 for

the former two-body conditions and 2kF R0 ≈ 0.14 for the
latter. More generally, since the energy and orbital radius
scale inversely, we should only expect stable, approximately
hydrogenic orbits to exist in the regime where aBF × kF >√

107

C (a0 × k(0)
F ). Yet, this RKKY interaction is only expected

to hold on length scales where R
aeff

> 1 [23]. When the average
separation between bosons approaches the effective bosonic
scattering length, many-body effects become more prominent
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and a different potential function must be used [23]. The
effective boson-boson scattering length is [9]

aeff = aBB − kF

2π

(mB + mF )2

mBmF
a2

BF

≈
mB
mF

�1
aBB − mB

mF

(kF aBF)

2π
aBF. (C7)

If we assume that aBB and aBF are of relatively similar
size, then this implies that aeff is determined by the bare
boson-boson scattering length term, roughly when
mB
mF

(kF aBF) � 1, and determined by the boson-fermion
scattering when mB

mF
(kF aBF) � 1. If we choose a typical

experimental value, aBB = 25a0 [9], then for aBF = 100a0

and kF = 10k(0)
F ,

aeff = aBB − kF

2π

(mB + mF )2

mBmF
a2

BF = −33a0, (C8)

which is far smaller than the Bohr radius for any of the states
described with these parameters. For aBF = 500a0 and kF =

20k(0)
F , we see

aeff = aBB − kF

2π

(mB + mF )2

mBmF
a2

BF = −2907a0, (C9)

whose magnitude is much larger than the two-body Bohr
radius of R0 ≈ 0.14/(2kF ) ≈ 21a0. Thus, we expect the two-
body state to be unstable in this regime.

More generally, we should be cautious of exiting the weak
attraction limit: kF aBF > 1. To assure stable bound states exist
we must attempt to self-consistently check that orbital radii,
R, lie in the regime where aeff < R < k−1

F . This ensures that
one remains in the appropriate limit required for the effective
RKKY interaction. However, issues arise if one pushes to
the regime where (kF aBF) > 1. Here, from Eq. (C7), without
independently fine tuning aBB, we expect bound states to exist
roughly within a domain: 1

2π
mB
mF

(kF aBF)2 < kF R < 1. How-
ever, we have already assumed that mB

mF
� 1 and (kF aBF) > 1,

so this inequality cannot be satisfied.
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