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Universal p-wave tetramers in low-dimensional fermionic systems with three-body interaction
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Inspired by the narrow Feshbach resonance in systems with the two-body interaction, we propose a two-
channel model of three-component fermions with a three-body interaction that takes into account finite-range
effects in low dimensions. Within this model, the p-wave Efimov-like effect in the four-body sector is predicted
in fractional dimensions between d = 1 and d = 2. The impact of the finite-range interaction on the formation
of the four-body bound states in d = 1 is also discussed in detail.

DOI: 10.1103/PhysRevA.109.043322

I. INTRODUCTION

Few-body quantum physics is known to be drastically
different from its classical counterpart. The most famous
example is the Efimov effect [1–3] realized, as an infi-
nite tower of three-body bound states, in the three-boson
system at resonant two-body interaction. Similar behavior
is found [4,5] in the three-body sector of two-component
fermions. In the fermionic case, the Efimov effect occurs in
the odd-wave (typically p-wave) channels on a certain inter-
val of particle mass ratios. Being well-established in three
dimensions, this effect generally has a limitation on spatial
dimensionality [6]. Even for nonequal particle masses the
universal three-body bound states emerge in the noninteger
dimensions between 2 < d < 4. Exactly in two dimensions,
the super Efimov effect was found [7] in a system of
spin-polarized fermions with resonant p-wave interaction.
Attempts to find universal Efimov-like behavior in lower di-
mensions necessarily require the mixed-dimension geometries
[8] or higher-order few-body interactions, namely, four-body
[9] in one-dimensional (1D) systems and three-body [10] in
two-dimensional (2D) systems. In the latter cases, the system
parameters should be highly fine-tuned to provide the reso-
nant highest-order interaction and vanishing of all lower-order
couplings.

In recent years, research in this field has shifted to frac-
tional dimensions. Particularly, interesting analytical results
for a model with a zero-range two-body potential were ob-
tained in Refs. [11–13]. The existence of Efimov-like bound
states with a characteristic scaling law in the four-body sector
was reported in Ref. [14] for a bosonic system with a resonant
three-body interaction in noninteger (1 < d < 2) dimensions.
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Independently of the spatial dimension, for particles interact-
ing through a realistic two-body potential, three-body forces
typically appear [15–17] as an effective induced interaction.
The latter becomes dominant [18] when the two-body poten-
tial is tuned to a zero crossing. For effective field theories
above an upper critical dimension, the introduction of three-
body terms in the Lagrangians is mandatory to provide the
ultraviolet (UV) completeness of these theories. In context
of the Efimov physics, such a completion was proposed in
seminal papers by Bedaque et al. [19,20] and more recently
in Ref. [21] for a model of 1D spin-polarized fermions with
the contact two-body p-wave interaction. An active investi-
gation of 1D few- and many-body systems with three-body
interactions started with the publication of several articles
[22–25], describing general properties of SU(3) fermions and
(mostly) three-body states of bosons. Similarly to 2D sys-
tems of particles interacting with each other by a two-body
δ (pseudo)potential [26], the three-body contact interaction
exhibits the quantum scale anomaly in 1D systems, which
predetermines universal properties and thermodynamics of
dilute bosons [27,28] and fermions [29,30]. In the thermo-
dynamic limit, the three-body interaction is responsible for
the formation of the quantum droplet state [31,32] in the 1D
system of bosons and for the crossover transition [33] from
tightly bound vacuum trimers to the so-called Cooper triples.

The present work deals with the two-channel model of
three-component fermionic particles with unequal masses that
interact through the three-body forces in the fractional di-
mension. The simplified version of the proposed setup in
harmonic trapping potential was studied in Ref. [34] using the
high-temperature series at finite densities of constituents. In
particular, we are interested in finding regions in the parameter
space for the emergence of the four-body bound states and
revealing their peculiarities. Previously, important aspects of
the few-body physics of SU(3) fermions with a contact three-
body interaction in 1D systems were discussed by McKenney
and Drut in Ref. [35]. In this context, we complement these
previous studies by revealing the bound states of a system of
different fermionic species with unequal masses and gener-
alize these results to the case of finite interaction ranges and
higher dimensions.
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II. MODEL AND RENORMALIZATION

We consider a model of three-component Galilean-
invariant fermions with different masses mσ (σ = 1, 2, and
3) in d-dimensional space. All two-body interactions be-
tween particles are assumed to be suppressed, and only the
three-body potential [15] is switched on between fermions of
different sorts. In order to take into account the finite-range ef-
fects of the three-body interaction, we consider a two-channel
model that is very similar to that of the narrow Feshbach
resonance but in the three-body sector:

H =
∑

σ

∫
p
εσ (p) f †

σ,p fσ,p +
∫

p

[
p2

2M
+ δν�

]
c†

pcp

+ g
∫

p1,p2,p3

c†
p1+p2+p3

f3,p3 f2,p2 f1,p1 + H.c., (2.1)

where εσ (p) = p2

2mσ
,
∫

p = ∫ dp
(2π )d , M = m1 + m2 + m3 is the

mass of the composite fermion, and g and δν� are the
coupling and the detuning. The latter depends on the UV
cutoff � that restricts the upper integration limit in the above
momentum integrals. The anticommutators of the field op-
erators are fixed as follows, {cp, c†

p′ } = (2π )dδ(p − p′) and

{ fσ,p, f †
σ ′,p′ } = (2π )dδσ,σ ′δ(p − p′), and are equal to zero for

all other pairs. Before we proceed with the four-body bound
and scattering states, let us first consider the simplest interact-
ing system of three fermions. The latter solution sets up the
correct renormalization of the cutoff-dependent detuning δν�

and the relation of our model to the system with three-body
δ-like interaction [14]. The three-body state that describes
particles with zero total momentum can be written down as
follows:

|c〉 = Ac†
0|0〉

+
∫

p1,p2

Ap1,p2,−p1−p2 f †
1,p1

f †
2,p2

f †
3,−p1−p2

|0〉, (2.2)

where |0〉 is the vacuum state, and amplitudes A and Ap1,p2,p3

are subject to the Schrödinger equation. Denoting energy of
the system by E , we have

[δν� − E]A + g
∫

p1,p2

Ap1,p2,−p1−p2 = 0, (2.3)[∑
σ

εσ (pσ ) − E
]

Ap1,p2,p3 + gA = 0. (2.4)

The nontrivial solution to these coupled equations for the
bound states εg (negative E’s) reads

D(εg) = 0, (2.5)

where for convenience we have introduced an auxiliary func-
tion,

D(E ) = δν� − E − g2
∫

p
	23(p|E ), (2.6)

here and below 	23(p|E ) = 	23(E − p2

2M23
− ε1(p)),

	23(p, p′|E ) = 	23(E − (p+p′ )2

2M23
− ε1(p) − ε1(p′)), . . . , with

M23 = m2 + m3, and 	23(E ) = ∫
p

1
ε2(p)+ε3(p)−E . First, let us

discuss the limit of broad resonance. Keeping energy fixed

while setting g → ∞, we can identify the three-body bare
coupling constant g−1

3,� = −δν�/g2 which absorbs the UV
divergence of the integral in D(E ) (see the Appendix for more
details). This procedure relates the observable three-body
coupling g3 to the three-body bound-state energy ε∞ at the
broad resonance:

g−1
3 = −
(1 − d )

(2π )d

(m1m2m3

M

)d/2
|ε∞|d−1, (2.7)

where 
(z) is the gamma function [36]. Restoring the finite
magnitude of g and repeating the above calculation procedure,
one obtains the transcendental equation for the composite
fermion’s bound-state energy at narrow resonance:

εg + g2

g3

[
1 −

(
εg

ε∞

)d−1
]

= 0. (2.8)

There is always a single solution to this equation for positive
g3’s. At large coupling g it recovers the broad-resonant result
ε∞, while in a case of small g’s it asymptotically behaves as
εg ≈ −g2/g3. The unitarity limit, εg = 0, is reached at infinite
g3 for all dimensions above d = 1. The one-dimensional limit
of Eq. (2.8) is also well-defined:

εg = g2

2π

√
m1m2m3

M
ln

(
εg

ε∞

)
, (2.9)

although it is not for the three-body coupling (2.7). From
Eq. (2.9) it can be readily concluded that |εg| � |ε∞|. Finally,
the Galilean invariance allows us to generalize the above re-
sults to a nonzero composite fermion momentum p: the only
modification is the energy shift E → E − p2

2M in Eq. (2.6).

III. FOUR-BODY PROBLEM

The wave function of an arbitrary four-body (composite
fermion + f1 atom) state with zero center-of-mass momentum
reads

| f1c〉 =
∫

p
Bp f †

1,pc†
−p|0〉 +

∫
p1,p′

1,p2

Bp1p′
1,p2,−p1−p′

1−p2

× f †
1,p1

f †
1,p′

1
f †
2,p2

f †
3,−p1−p′

1−p2
|0〉, (3.10)

where Bp1p′
1,p2,−p1−p′

1−p2 = −Bp′
1p1,p2,−p1−p′

1−p2 is the antisym-
metric function of the first two arguments. By acting with the
Hamiltonian H on the ansatz (3.10) one obtains the following
system of two coupled equations,[

ε1(p) + p2

2M
+ δν� − E

]
Bp

+ 2g
∫

p1,p2

Bpp1,p2,−p−p1−p2 = 0, (3.11)[∑
σ

εσ (pσ ) + ε1(p′
1) − E

]
Bp1p′

1,p2,p3

+ g

2
[Bp1 − Bp′

1
] = 0, (3.12)

for the wave function with eigenvalue E . For negative energies
E = ε4 (four-body bound states), Eqs. (3.11) and (3.12) can
be readily transformed into a single integral equation for the

043322-2



UNIVERSAL p-WAVE TETRAMERS IN … PHYSICAL REVIEW A 109, 043322 (2024)

function Bp,

D1(p|ε4)Bp + g2
∫

q
	23(p, q|ε4)Bq = 0, (3.13)

with the shorthand notation for function D1(p|E ) = D(E −
ε1(p) − p2

2M ). Because of the Fermi statistics, the four-body
bound states can only occur in the odd-wave channels. The
one requiring the shallowest potential well is the p wave with
the wave function of the following form Bp = (np/p)Bp (here
Bp depends on modulus p with n being a unit vector). As
it is expected for states with the orbital quantum number
l = 1, this is not a single wave function, but d mutually
orthogonal states parameterized by different ni satisfying the
condition nin j = δi j . Plugging the p-wave harmonics back
into Eq. (3.13) and performing the d-dimensional hyperangle
integration, we obtained the one-dimensional integral equa-
tion (see the Appendix) for amplitude Bp.

A. d > 1

Before discussing numerical results, let us consider the
limit of broad resonance g → ∞ and the disappearing three-
body bound state g3 → ∞. In the case of bosons, this limit
is characterized by the universal log-periodic wave function
that signals an emergence [14] of the Efimov-like effect in
the four-body sector. A very similar situation should be ob-
served in our system. However, its fermionic nature (and,
consequently, nonzero total angular momentum) demands the
total mass of the second and third particles M23 should be
small enough in comparison to m1 in order to provide the
effective attracting potential for the trapping of four particles.
The scaling limit (g, g3 → ∞) supposes the power-law behav-
ior Bp = 1/p1−d/2±η of the wave function. Then, the integral
equation transforms into the algebraic one on parameter η:

1 = 

(
1 − d/2+η

2

)



(
1 − d/2−η

2

)
m1M2d−3

−
(1 − d )
(1 + d/2)Md−1
23 (M + m1)d−1

× 2F1

(
1 − d/2 + η

2
, 1 − d/2 − η

2
;

2 + d

2
;

m2
1

M2

)
,

(3.14)

with 2F1(a, b; c; z) being the hypergeometric function [36].
Truly imaginary solutions η = iη0 determine a region (see
Fig. 1) of the four-body p-wave Efimov-like effect in the
considered system, with the universal ratio of energy levels

ε
(n)
4 /ε

(n+1)
4 = e2π/η0 (n � 1). (3.15)

Note that η0 depends only on the spatial dimension and the
ratio of total mass of the second and third fermions M23

to mass of the first particle m1. Equation (3.14) possesses
solutions for any dimensions 1 < d < 2 at arbitrarily large
m1/M23 (typical magnitudes of mass ratio are m1/M23 ≈ 840
and m1/M23 ≈ 500 for d = 1.1 and d = 1.999, respectively).
Extremely close to d = 1, the lower threshold mass ratio for
an emergence of Efimov-like effect can be asymptotically
obtained as m1/M23 ≈ 0.757 × 21/(1−d ), combining analytical
and numerical approaches. Typical dependence of the scaling
factor eπ/η0 on the mass ratio for specific dimensions and
the d-behavior of exponent η0 are presented in Fig. 2. The

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

d

M
2
3
/m
1

Efimov-like effect

FIG. 1. Region where the p-wave Efimov-like effect in the
four-body sector of the three-component Fermi system with the
three-body interaction emerges.

asymptotic form of the appropriate wave functions is a linear
combination of two partial solutions:

Bp = sin [η0 ln(p/�0)]

p1−d/2
, (3.16)

where �0 is an arbitrary momentum scale related to the lowest
Efimov state. An emergent discrete scale invariance of the
asymptotic expression (3.16) for the wave function in the
scaling region is the characteristic feature of the Efimov-like
effects.

To verify the above predictions about the behavior of
our model in the four-particle sector, we have numerically
solved the integral equation (3.13) in the p-wave channel
by discretizing its kernel. The parameters of the system
were specially chosen to reveal the Efimov behavior as sim-
ply as possible. In particular, we set d = 1.5 and mass
ratios M23/m1 = 1/50 small enough to provide a strong
induced attractive potential between two f1 atoms. The three-
body binding energy is sent to zero, εg → 0, and coupling

0 25 50 75 100
0

50

100

1.0 1.2 1.4 1.6 1.8 2.0
0

1

2

3

ex
p
(π
/η
•)

m1/M23

d =1.3
d =1.5
d =1.7
d =1.9

η 0

d

m1/M23 =5
m1/M23 =12.5
m1/M23 =25
m1/M23 =37.5

FIG. 2. The scaling factor eπ/η0 as a function of mass ratio
m1/M23. The insert shows typical dependence of an exponent η0 on
the spatial dimension.
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TABLE I. The first five eigenvalues ε
(n)
4 (in units of m1+M

2m1Mr2
0

) of the

four-body problem in the p-wave channel. Numerical calculations
were performed in d = 1.5 and for mass ratios M23 = m1/50.

n |ε (n)
4 | ε

(n−1)
4 /ε

(n)
4

0 4.2250
1 3.4802 × 10−1 12.141
2 3.5671 × 10−2 9.7564
3 3.8086 × 10−3 9.3668
4 4.0949 × 10−4 9.3008
...

...
...

∞ 0 9.2909

g = √m1m2m3
M

1
r2−d

0
is parametrized by scale r0, which is related

to the effective range. Actually, this is the only dimensionful
parameter at unitary limit g−1

3 = 0. The four-body p-wave en-
ergies ε

(n)
4 are measured in units of m1+M

2m1Mr2
0
, and the numerical

prefactors for the first five levels are gathered in Table I.For
the identification of the level, the wave functions were also
calculated (see Fig. 3). In the third column, we show the
ratio of neighboring eigenenergies (3.15) which should tend
to e2π/η0 = 9.290 926 . . . at large n. It is seen, however, that
already for the fourth excited state this quantity ε

(3)
4 /ε

(4)
4 devi-

ates from the universal value by a tenth of a percent.
It was shown in Ref. [37] that the three-body system con-

taining two identical fermions interacting with an exterior
particle via a zero-range two-body potential possesses the
non-Efimov p-wave bound states at some mass ratios. These
trimers exhibit a continuous scale invariance and were also
found [38,39] in the quasi-2D geometries. The later stud-
ies [40] added a third type of trimer to the universal phase
diagram of the three-body system. At this point, we can spec-
ulate, since the problem requires a more detailed investigation
which is out of the scope of the present study, that a similar
variety of tetramers should be expected in our system above
the Efimov-like region in Fig. 1.

0.01 0.1 1 10
-0.08

-0.04

0.00

0.04

0.08

pr0

n =0
n =1
n =2
n =3

B(n)p

FIG. 3. The ground-state and the first few excited states’ wave
functions B(n)

p (un-normalized) of the four-body problem in the p-
wave channel.
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n =1
n =2
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ε 4
/ε
g
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ε 4
/ε
g

m1/m2,3
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n =1
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1.0

1.2

ε 4
/ε
g

m1/m2,3

=2

n =0
n =1

FIG. 4. Four-body energy levels (in units of εg) as functions of
mass ratio m1/m2,3 at the different effective ranges [parametrized by
γ = ln( ε∞

εg
)] of the three-body interaction.

B. d = 1

The one-dimensional case is of particular interest due to
potential realization in experiments and/or numerical simula-
tions. According to the previous section, there is no four-body
Efimov-like effect in the considered system in 1D, but a
strong imbalance between masses of atoms may lead to the
formation of the bound states. Projection onto p-wave states
in the four-body Schrödinger equation (3.13) in d = 1 reduces
to choosing the odd Bp = −B−p solutions. An appropriate
eigenvalue ε4 at finite ranges (g < ∞) of the interaction po-
tential should be deeper than the three-body bound-states εg.
Therefore, it is natural to pick dimensionless units in a way
that the four-body energies are measured in units of εg, and the
effective range is determined by closeness of the three-body
bound-state energy to its broad-resonance value γ = ln( ε∞

εg
).

Then γ = 0 corresponds to the zero-range r0 = 0 case, while
γ > 0 refers to the model with narrow resonance. Introducing
the momentum scale p0 such that m1+M

2m1M p2
0 = |εg|, one can

readily rewrite Eq. (3.13) in dimensionless units in 1D as∫ ∞

−∞
dq

bq√(
q − m1

M p
)2 +

(
1 − m2

1
M2

)
(p2 + λ)

= [γ (p2 + λ − 1) + ln(p2 + λ)]bp, (3.17)

with λ = ε4/εg being the dimensionless eigenvalue and
Bp0 p = bp. Recall that due to the fermionic nature of the
considered system, solutions for bp should be searched on
a class of odd functions. The results of numerical diagonal-
ization are presented in Fig. 4. Since, both m2 and m3 enter
Eq. (3.17) only in combination M23, we can freely take them
equal to each other, m2 = m3. Our calculations demonstrate
that even at the broad resonance γ = 0, which is the most
favorable limit for the existence of the four-body bound states,
the first level emerges at m1/m2 ≈ 2.5 (the second and the
third ones at ≈13.0 and ≈31.5, respectively). These tetramers
are universal; i.e., their energies ε4 are proportional to ε∞ at
any coupling strength, and the proportionality factor depends
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0 1 2 3 4 5
0.0

0.1

0.2

B(0)p

p/p0

=0

=0.5

=1

=2

FIG. 5. The four-body ground-state wave functions B(0)
p (un-

normalized) at different values of the effective range and fixed mass
ratio m1/M23 = 7.75 in 1D.

only on the mass ratio m1/M23. A qualitatively similar sit-
uation is realized [41] in the three-body system composed
of two identical fermions interacting through the two-body
contact potential with a particle of another sort. With an
increase of the effective range, these values shift towards
larger m1/m2 ratios. Particularly, when εg = ε∞/e, the first
three tetramers are found at m1/m2 ≈ 5.5, m1/m2 ≈ 32.5, and
m1/m2 ≈ 78.5. We have also obtained the four-body ground-
state wave functions in 1D (see Fig. 5) with m1/m2 = 15.5 at
various effective ranges. For comparison, the first two four-
body eigenstates are depicted in Fig. 6 for zero γ = 0 and
nonzero γ = 0.5 effective ranges of the three-body interac-
tion.

Figure 4 (especially zero-range case) reveals an intrinsic
dependence of the eigenvalues at the large mass imbalance.
Indeed, the integral in Eq. (3.17) possesses a nonintegrable
singularity at q = m1

M p when m1/M = 1. This fact together
with parity properties of the wave function bp allows for the
asymptotic (with logarithmic precision) determination of the
four-body bound states:

γ (λ − 1) + ln λ − ln
Cγ

1 − m2
1/M2

+ · · · = 0. (3.18)

The constant Cγ should be determined for every four-body
energy level separately by imposing the solution to Eq. (3.18)
to be consistent with the large- m1

M23
tail of the eigenvalue

0 2 4
-0.1

0.0

0.1

=0
n=0
n=1

p/p0

B(n)p

0 2 4

0.0

0.1

0.2

B(n)p

p/p0

=0.5
n=0
n=1

FIG. 6. Four-body wave functions (unnormalized) of the first two
energy levels for mass ratio m1/M23 = 15.25 at two effective ranges
γ = 0 (left) and γ = 0.5 (right).

behavior found numerically. From Eq. (3.18) one immediately
recognizes the linear dependence of ε4 on m1/m2,3 (in the limit
m1/m2,3 � 1) at broad resonance. Although the asymptotic
solution (3.18) qualitatively explains the eigenvalue behavior
at large mass imbalance, the logarithmic accuracy does not al-
low the quantitative description of the numerically calculated
curves in Fig. 4 at intermediate mass ratios.

IV. SUMMARY

In conclusion, we have proposed an effective model of
contact three-body interaction that includes the effects of
finiteness of the potential range. Applying this effective
description to the three-component Fermi system with the
suppressed two-body interactions in the fractional dimension
above d = 1, we have predicted the emergence of the Efimov-
like physics in the p-wave channel of the four-body sector.
Being substantially suppressed below d ≈ 1.1 this effect can
be, in principle, observed in any dimension between d = 1
and d = 2 at a huge mass imbalance of constituent particles.
Analytic estimations in the scaling limit are supported by
numerically exact calculations for finite effective ranges at
unitarity. The detailed analysis of the one-dimensional prob-
lem revealed the necessary conditions for the occurrence of
negative eigenvalues in the four-body spectrum, in the case
of both broad and narrow resonances. Particularly, it is shown
that depending on the mass ratios of fermions with three-body
interactions, one can, in principle, observe an arbitrarily large
number of the tetramer levels. The effect is suppressed for the
nonzero effective ranges towards larger mass imbalance.
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APPENDIX

For self-sufficiency of the material presented, all important
explicit expressions for functions used in the main text are
collected in this section. In arbitrary d , the f2 − f3 vacuum
bubble reads

	23(E ) = 
(1 − d/2)

(2π )d/2

(
m2m3

M23

)d/2

(−E )d/2−1. (A1)

By substituting 	23(E ) into Eq. (2.6), we see that the integral
over p diverges at UV. To cure this issue we can define the
detuning parameter δν� as follows:

δν� − g2
∫

p
	23(p|0) = −g2

g3
, (A2)

with the right-hand side being finite. It is easy to relate, by
utilizing equation D(εg) = 0, the newly introduced parameter
g3 to the three-body bound-state energy at broad resonance
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(g → ∞, while keeping ε∞ finite):

−g2

g3
− g2

∫
p

[	23(p|ε∞) − 	23(p|0)] = 0. (A3)

Of course, the coupling g falls out from the final result,
and calculating the remaining convergent integral one obtains
Eq. (2.7) in the main text. With g3 (and δν�) being related to
ε∞, we can repeat the calculations of the three-body bound-
state energies εg at finite g’s [see Eq. (2.8)].

The p-wave partial harmonics of function 	23(p, q|ε4) in
Eq. (3.13) is found after the solid-angle averaging:

1

�d

∫
d�d

pq
pq

	23(p, q|ε4)

= π23(p, q|ε4)

= −
(2 − d/2)

(2π )d/2d

(
m2m3

M23

)d/2

× z 2F1
(
1 − d

4 , 3
2 − d

4 ; 1 + d
2 ; z2

)
( p2+q2

2m1M23/M + |ε4|
)1−d/2 , (A4)

where z = pq/M23
p2+q2

2m1M23/M +|ε4|
. Then the final one-dimensional inte-

gral equation utilized for numerical calculations in arbitrary
dimension d reads

D1(p|ε4)Bp = �d

(2π )d

∫ ∞

0
dqqd−1π23(p, q|ε4)Bq, (A5)

with the function in the right-hand side explicitly given by

D1(p|ε4) = p2

2m1
+ p2

2M + |ε4| + g2

g3
[

( p2

2m1
+ p2

2M +|ε4|)d−1

|ε∞|d−1 − 1]. In the
d = 1 case the above equation reduces, after passing to di-
mensionless variables, to Eq. (3.17) in the main text.
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