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We investigate a noninteracting many-particle bosonic system, placed in an asymmetric double-well potential.
We first consider the dynamics of a single particle and determine its time-dependent probabilities to be in the
left or the right well of the potential. These probabilities obey the standard Josephson equations, which in their
many-particle interpretation also describe a globally coherent system, such as a Bose-Einstein condensate. This
system exhibits the widely studied Josephson oscillations of the population imbalance between the wells. In our
paper we go beyond the regime of global coherence by developing a formalism based on an effective density
matrix. This formalism gives rise to a generalization of Josephson equations, which differ from the standard ones
by an additional parameter, that has the meaning of the degree of fragmentation. We first consider the solution
of the generalized Josephson equations in the particular case of thermal equilibrium at finite temperatures, and
extend our discussion to the nonequilibrium regime afterwards. Our model leads to a constraint on the maximum
amplitude of Josephson oscillations for a given temperature and the total number of particles. A detailed analysis
of this constraint for typical experimental scenarios is given.
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I. INTRODUCTION

In this paper we study many-particle bosonic systems, as
they are investigated in cold atom physics with the help of
modern cooling and trapping techniques [1]. At low tem-
peratures bosons in a weakly interacting atomic gas can be
regarded as wave packets. When approaching critical temper-
ature, those wave packets begin to overlap until they form a
single matter wave at T = 0 [2]. This produces a unique state
of matter known as a Bose-Einstein condensate (BEC) [3].
Since the first experimental realization of a BEC [4,5], its
properties have been intensively studied in theory and ex-
periment [2,6–12] and led to various scientific applications
[6,13–18].

The quantum nature of a BEC manifests itself when the
gas is placed in a double-well potential. Due to the coherence
between the bosons in both wells, such a system exhibits
a unique interference phenomenon, known as the Josephson
effect [7,19–28]. This effect gives rise to collective oscilla-
tions of the particles, implying a time-dependent population
imbalance between the wells. This behavior has been widely
studied [20–28] and confirmed by the first realization of a
single bosonic Josephson junction in 2005 [29].

Due to the numerous difficulties in realizing ultracold tem-
peratures, nowadays BECs are accessible almost exclusively
for laboratory experiments in fundamental physics [6]. How-
ever, modern precision metrology can also be performed with
just laser cooled atoms, not being in a BEC state, since coher-
ence is not always an essential requirement in this area [6].
This in particular makes cooled atom-based precision tools
accessible for applications in technology. The aim of this
paper, therefore, is to study both the ultracold BEC and the
finite temperature regime apart from the BEC state.

In the ultracold BEC regime, oscillations in a double-well
potential are theoretically described by Josephson equations,
which are derived under the idealized assumption of zero tem-
perature T = 0. Thus, in the present paper we want to answer
a natural question: how are these equations generalized for
nonzero temperatures T > 0 and which additional effects do
they predict?

The paper is organized as follows. In Sec. II we intro-
duce the general features of a symmetric and an asymmetric
double-well potential and define the relevant properties of the
two lowest single-particle states of each. Based on this we de-
rive the standard Josephson equations, which can be applied to
describe a many-particle system in a globally coherent state.
Then in Sec. III the single-particle states are used to build up
the basis for the density matrix of a bosonic ensemble. From
that in Sec. III A we obtain an effective density matrix, that
can be used to calculate the expectation values of one-particle
operators. With the help of this matrix we then derive a gen-
eralization of Josephson equations and analyze the additional
physical effects they imply in Sec. III B. While the generalized
Josephson equations give rise to various modifications of the
standard Josephson effect, in Sec. IV we focus on a system
in thermal equilibrium and the occurrence of Josephson oscil-
lations between the wells in the nonequilibrium regime. The
conclusions are made in Sec. V.

II. A SINGLE QUANTUM PARTICLE IN A DOUBLE-WELL
POTENTIAL

In this paper we aim to consider a noninteracting many-
particle bosonic system, which is a reasonable approximation
of weakly interacting bosonic gases in many experimental
situations [7–11,30]. This allows us to start our discussion
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FIG. 1. Example geometries of (a) a symmetric double-well po-
tential V (x) with the two lowest-energy eigenstates φ0/1(x) of a
contained quantum particle and (b) an asymmetric double-well po-
tential V (x) + δV (x) with corresponding states ψ0/1(x).

at the level of single-particle states in this section and to
construct from that a density matrix for the many-particle
system afterwards.

A. The symmetric double-well potential

In what follows we want to keep our considerations as
general as possible, making them applicable to a wide range
of potentials that can be realized in experiment. For conve-
nience we will restrict our analysis to one spatial dimension,
assuming that the confinement in the other two directions
is sufficiently strong, such that excitations of perpendicular
modes are highly suppressed (see Appendix A).

We assume a symmetric, time-independent potential
V (x) = V (−x) without further specification of its explicit
shape. This potential enters the single-particle Hamiltonian

Ĥ0 = − h̄2

2m
∂2

x + V (x). (1)

The corresponding eigenvalue problem Ĥ0φ(x) = Eφ(x) can
be solved in terms of orthogonal basis functions φn(x) with
energies En. We assume that the Hamiltonian has at least two
normalized eigenstates: the ground state φ0(x) and the first
excited state φ1(x). Since the potential V (x) is symmetric, the
ground state is necessarily symmetric as well, while the first
excited state must be antisymmetric, as visualized in Fig. 1(a).
From these states we want to construct proper left and right
states φL/R(x), which describe the quantum particle being in
the left or right part of the potential. To do this we linearly

FIG. 2. Left and right well states in (a) a symmetric and (b) an
asymmetric double-well potential. The functional forms of both co-
incide, regardless of the value of V0 � E .

combine the energy eigenstates in the form

φL(x) = cos ξ φ0(x) + sin ξ φ1(x),

φR(x) = sin ξ φ0(x) − cos ξ φ1(x), (2)

with a parameter ξ that needs to be determined hereafter. To
investigate these states, we now introduce the left- and right-
side scalar products

〈 · | · 〉L + 〈 · | · 〉R = 〈 · | · 〉, (3)

which imply an integral over all negative or positive x, respec-
tively, such that their sum gives the standard scalar product.
Calculating the left- and right-side scalar products of the left
and right states (2) we obtain

〈φR|φR〉R = 〈φL|φL〉L = 1/2 + sin(2ξ )〈φ0|φ1〉L,

〈φR|φR〉L = 〈φL|φL〉R = 1/2 − sin(2ξ )〈φ0|φ1〉L. (4)

In this calculation we use 〈φ0|φ0〉L/R = 〈φ1|φ1〉L/R = 1/2,
which is clear by symmetry considerations. The scalar prod-
uct 〈φ0|φ1〉L = −〈φ0|φ1〉R can be chosen real and positive
by adapting the phases of the energy eigenstates. Recalling
that the scalar products (4) represent the probabilities to find
the particles of state φL/R(x) in the left or right part of the
potential, we can maximize this probability by the choice
ξ = π/4, leading to the states

φL(x) = 1√
2

[φ0(x) + φ1(x)],

φR(x) = 1√
2

[φ0(x) − φ1(x)], (5)

as the best fitting left and right states in the potential V (x),
shown in Fig. 2(a). The explicit shape of this potential now
only enters our consideration via the scalar product 〈φ0|φ1〉L,
which is a measure of how well the states φL/R(x) actually
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represent a particle at the left or right side of the poten-
tial. In particular, we will call all such potentials symmetric
double-well potentials, in which 〈φ0|φ1〉L = 1/2 − ε with a
sufficiently small ε > 0, such that

〈φR|φR〉R = 〈φL|φL〉L = 1 − ε,

〈φR|φR〉L = 〈φL|φL〉R = ε, (6)

and the φL/R(x) appropriately describe a single quantum par-
ticle in a left or right well state.

In the next section, we will use these definitions for the
symmetric double-well potential to extend our analysis to a
double-well potential with an additional potential step.

B. The asymmetric double-well potential

To describe a particle in an asymmetric double-well poten-
tial we extend the Hamiltonian

Ĥ = Ĥ0 + δV (x) (7)

by a small potential step

δV (x) =
{

V0 x < 0

0 elsewhere .
(8)

The solutions of the corresponding eigenvalue problem

Ĥψn(x) = Ẽnψn(x) (9)

can be obtained in the framework of first-order perturbation
theory, up to linear order in V0/E , where E = (E0 + E1)/2.
For that we use the states from Sec. II A and treat δV (x) as a
small perturbation of the symmetric double-well potential.

It is well known that in perturbation theory, states
strongly affect each other when they have similar energies.
For the symmetric double-well potential (6) the separation
of the ground and excited state from other possible states is
of the order of E . In contrast, their own energies are much
closer to each other, i.e., E1 − E0 = 	E � E . This is due
to the fact that the scalar product 〈φ0|φ1〉L = 1/2 − ε only
slightly deviates from 1/2, such that the states φ0(x) ≈ φ1(x)
closely resemble each other for x < 0, as also can be seen
in Fig. 1(a). In consequence, acting on them with the Hamil-
tonian Ĥ1 gives similar energy eigenvalues E0 ≈ E1, which
become degenerated in the ultimate case ε = 0. We, thus, can
restrict our investigation to the corrections of φ0(x) by φ1(x)
and vice versa, while we have to deal with the perturbation
theory for nearly degenerated states [31]. For that we make the
ansatz ψn(x) = c0

nφ0(x) + c1
nφ1(x) in Eq. (9) and integrate this

equation with the states φ∗
0 (x) and φ∗

1 (x), respectively. This,
together with the normalization of the corrected states, yields
six equations for the six constants c0

n, c1
n, and Ẽn with n = 0, 1.

The only nontrivial, linearly independent solution is given by

ψ0(x) = C

⎛
⎜⎝φ0(x) − V0

	E +
√

	E2 + V 2
0

φ1(x)

⎞
⎟⎠,

ψ1(x) = C

⎛
⎜⎝φ1(x) + V0

	E +
√

	E2 + V 2
0

φ0(x)

⎞
⎟⎠, (10)

with C = 1√
2
(1 + 	E/

√
	E2 + V 2

0 )1/2. Those states satisfy
Eq. (9) to linear order in V0/E for the corrected energies

Ẽ0/1 = E + V0

2
∓ 1

2

√
	E2 + V 2

0 , (11)

where we assume that εV0/E can be neglected [see Eq. (6)].
The ψ0/1(x), hence, are energy eigenstates of the asymmetric
double-well potential, illustrated in Fig. 1(b).

As for the symmetric double-well potential in the last sec-
tion, we now can define the left and right well states ψL/R(x)
in the case of the asymmetric double-well potential:

ψL(x) = cos ξ ψ0(x) + sin ξ ψ1(x),

ψR(x) = sin ξ ψ0(x) − cos ξ ψ1(x), (12)

in total analogy to Eq. (2), but this time using the energy
eigenstates ψ0/1(x) as a basis.

We now again ask for the optimal states that maximize
〈ψR|ψR〉R and 〈ψL|ψL〉L. Inserting Eq. (10) into Eqs. (12)
we can formulate this question in the basis φ0/1(x) of the
symmetric double-well potential problem. In this basis the
optimal states φL/R(x) are already known and given by Eq. (5).
Therefore, we find that those states are optimal for both the
symmetric and the asymmetric case, i.e., ψL(x) = φL(x) and
ψR(x) = φR(x) (see Fig. 2). In Eqs. (12) this is achieved by
the choice

ξ = arcsin

[
1√
2

(
1 + V0/

√
	E2 + V 2

0

)1/2
]
, (13)

which for V0 = 0 recovers the symmetric case ξ = π/4.
Having found the optimal left and right states for the

asymmetric double-well potential, we can investigate their
dynamics, which is governed by the Hamiltonian operator (7).
With ψL/R(x) being a superposition of energy eigenstates, it
is clear that they do not satisfy an eigenvalue equation for a
particular energy. Instead, we obtain the coupled equations

ĤψL(x) = ELψL(x) + KψR(x),

ĤψR(x) = ERψR(x) + KψL(x), (14)

with the newly introduced constants

EL = E + V0, ER = E , K = −	E

2
. (15)

With that we find a coupling ∼	E between the left and right
state, which vanishes when the energies E0/1 degenerate, as it
is the case when the wells are separated by a very high poten-
tial barrier. Moreover, the difference EL − ER = V0 coincides
with the potential step (8), which is a well-known feature of a
Josephson junction [32].

C. Josephson equations and many-particle interpretation

In the last section we analyzed the eigenvalue equa-
tion Ĥψ0/1 = Ẽ0/1ψ0/1, holding for the time-dependent but
stationary states ψ0/1(x, t ) = exp(−iẼ0/1t/h̄)ψ0/1(x). From
the spatial wave functions ψ0(x) and ψ1(x) the left and right
states ψL(x) and ψR(x) were constructed [see Eqs. (12)]. Now
we want to investigate the evolution of the states ψL(x, t ) and
ψR(x, t ), which are not stationary states of a particular energy
EL/R, solely, as becomes clear in Eqs. (14). Instead, we can
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assume a time-dependent superposition of ψL(x) and ψR(x),
giving rise to a single wave function

ψ (x, t ) = wL(t )ψL(x) + wR(t )ψR(x). (16)

By using the action (14) of the one-particle Hamiltonian Ĥ
on the left and right well states, as well as the orthogonality
relation 〈ψL|ψR〉 = 0, we obtain

ih̄ẇL(t ) = ELwL(t ) + KwR(t ),

ih̄ẇR(t ) = ERwR(t ) + KwL(t ).

These equations describe the evolution of the coefficients
wL/R(t ), where |wL/R(t )|2 represent the time-dependent prob-
abilities to find the particle in the left or right well,
respectively. Here, the normalization condition would be
given by |wL(t )|2 + |wR(t )|2 = 1.

While so far we have applied the wave function (16) to
describe a single particle, it can also be used to represent
a many-particle system, as long as that system behaves co-
herently, i.e., is in a pure state. In this case, we only need
to renormalize Eq. (16) to obtain |wL(t )|2 + |wR(t )|2 = N ,
where N is the total number of bosons. Then, the |wL/R(t )|2 =
NL/R(t ) represent the population of the left and right well,
respectively.

Staying with the many-particle interpretation and by
defining wL/R(t ) = √

NL/R(t )eiθL/R (t ) we find the coupled dif-
ferential equations

h̄Ż = 2K
√

1 − Z2 sin θ, (17)

h̄θ̇ = EL − ER − 2KZ cos θ√
1 − Z2

, (18)

for the fractional population imbalance Z (t ) = [NL(t ) −
NR(t )]/N and the phase difference θ (t ) = θR(t ) − θL(t ).
These are standard Josephson equations, as they are used in
literature to describe the standard Josephson effect [20–26].
As we recapitulate in Appendix B, the general solution of
these equations leads to oscillations of the observable popu-
lation imbalance Z (t ) with the frequency

√
	E2 + V 2

0 /h̄.
Having found these familiar expressions for a many-

particle system in a pure state, in what follows we will
investigate what happens when the pure state assumption is
not initially made. We will show that this leads to a generaliza-
tion of Josephson equations, opening up a way to investigate
many-particle dynamics in the double-well potential beyond
the regime of global coherence.

III. MANY-PARTICLE BOSONIC SYSTEM IN A
DOUBLE-WELL POTENTIAL

In the last section we have studied the dynamics of a
single particle based on the generic features of a double-well
potential giving rise to specific eigenstates and energies. The
following ideas, however, can be applied to an arbitrary two-
state system.

Having defined single-particle states |ψ0/1〉 in a given ge-
ometry, we can elaborate a description of a many-particle
system. For that we assume the Hamiltonian of a bosonic

ensemble of N noninteracting particles, given by

Ĥ =
N∑

i=1

Ĥ (xi ) (19)

with the single-particle Hamiltonian (7). The assumption
of noninteracting particles is valid, as long as the one-
dimensional (1D) particle density is much smaller than the
inverse of the scattering length for the considered bosons [33].
The consequences of this assumption for the thermalization
process are discussed in Appendix A. In general, one would
describe such a system by introducing the Hermitian density
operator [34]

ρ̂ =
N∑

N1=0

N∑
Ñ1=0

pN1Ñ1
(t )|�N1〉〈�Ñ1

|, (20)

where pN1N1 is the probability that the system is in a state
with N1 excited particles. The normalization condition for the
density matrix reads

∑N
N1=0 pN1N1 = 1. Moreover, the state

|�N1〉 in Eq. (20) is given by

|�N1〉 = 1√
N!(N − N1)!N1!

∫
dx1 . . . dxN

×
∑
j(N1 )

ψ
σ

N1
j (1)(x1)ψ

σ
N1
j (2)(x2) . . . ψ

σ
N1
j (N )(xN )

× |x1, . . . , xN 〉, (21)

where the sum is over all possible configurations j(N1) of
single-particle states for a fixed number N1. Each configura-
tion is labeled by an index j and characterized by a vector
σ j = (σ j (1), σ j (2), . . . , σ j (N )), defining the state of each
particle.

Since the state |�N1〉 is constructed from the single-particle
states ψ0(x) and ψ1(x), the σ j (i) can only take the value 0 or 1.
However, the particle i is still allowed to be in a superposition
of both states, since the coefficients pN1,Ñ1

for N1 
= Ñ1 are not
necessarily zero.

A. Effective density-matrix description

In this section we will reformulate the description of a
many-particle system by the density matrix (20) in terms of an
effective density matrix in the basis of the one-particle states
|ψ0〉 and |ψ1〉, which appear as the two lowest states in the
double-well potential. In the following we are particularly in-
terested in the occupation probabilities of these states, needed
to investigate the Josephson effect.

For this purpose, we consider a generic single-particle
operator

Ô = Ô ⊕ 1 ⊕ · · · ⊕ 1︸ ︷︷ ︸
N times

+1 ⊕ Ô ⊕ · · · ⊕ 1 + . . .

+ 1 ⊕ 1 ⊕ · · · ⊕ Ô

in the N-particle Hilbert space, constructed from the operator
Ô, acting on a single-particle state. For instance, the occupa-
tion number operator N̂0/1 is given by the particular choice
Ô = |ψ0/1〉〈ψ0/1| in the formula above. The expectation value
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of a many-particle operator then reads

〈Ô〉ρ = tr(ρ̂Ô) =
N∑

N1=0

N∑
Ñ1=0

pN1Ñ1
〈ψÑ1

|Ô|ψN1〉

=
N∑

N1=0

pN1N1 [N1〈ψ1|Ô|ψ1〉 + (N − N1)〈ψ0|Ô|ψ0〉]

+
N−1∑
N1=0

√
(N1 + 1)(N − N1)[pN1+1,N1〈ψ0|Ô|ψ1〉

+ pN1,N1+1〈ψ1|Ô|ψ0〉] (22)

(see Ref. [35]). In front of the expectation values 〈ψi|Ô|ψ j〉
we now can read off the coefficients αi j , which contain all
information accessible by the measurement of one-particle
observables:

α00 =
N∑

N1=0

(N − N1)pN1N1 ,

α11 =
N∑

N1=0

N1 pN1N1 ,

α01 =
N−1∑
N1=0

√
(N1 + 1)(N − N1)pN1+1,N1 ,

α10 = α∗
01.

We now formally rearrange Eq. (22) and introduce the
effective density matrix ρ̂e:

〈Ô〉ρ = 〈ψ0| [〈ψ1|]
[
α00 α01

α10 α11

]
Ô

[|ψ0〉
|ψ1〉

]
= tr(ρ̂eÔ). (23)

As we show in Appendix C, this effective density matrix,
which we obtained from the calculation of one-particle ex-
pectation values, coincides with the reduced density matrix of
a single particle in a bath of all the other N − 1 bosons [36].
It therefore can be interpreted as a description of the many-
particle ensemble by an average boson.

Further, we are interested in the population of the left and
right potential wells rather than the occupation of the global
ground and excited states |ψ0/1〉. Therefore, in the following
we will describe the system in the basis of left and right well
states |ψL/R〉, introduced in Sec. II. Here this is done by the
matrix transformation[|ψL〉

|ψR〉
]

=
[

cos ξ |ψ0〉 + sin ξ |ψ1〉
sin ξ |ψ0〉 − cos ξ |ψ1〉

]
= T̂

[|ψ0〉
|ψ1〉

]
, (24)

where the parameter ξ is given by Eq. (13) for the asymmetric
double-well potential. The matrix T̂ now can be used to ex-
press the effective density matrix ρ̂eLR = T̂ ρ̂eT̂ −1 in the left
and right well basis. In general, this Hermitian 2 × 2 matrix
can be parametrized by

ρ̂eLR =
[

NL(t ) A(t )eiθ (t )

A(t )e−iθ (t ) NR(t )

]
, (25)

where NL(t ) and NR(t ) are the occupation numbers of the
left and right well, respectively. Moreover, by tr(ρ̂eLR) = N =
NL(t ) + NR(t ) the total number of particles is conserved. The

nondiagonal complex matrix elements describe the interfer-
ence between left and right well states and therefore induce
the coupling between the wells by a mixing parameter A(t )
and the phase difference θ (t ) between them.

In what follows, we will derive the equations of mo-
tion for ρ̂eLR, which will generalize the standard Josephson
equations (17) and (18) to the case where the system is not
described by a single wave function.

B. Generalized Josephson equations

With the help of the effective density matrix (25), we can
go beyond the description of a many-particle system by a pure
state. This will give us the opportunity to consider a wider
range of physical setups. For instance, this will enable us to
describe bosonic systems at finite temperatures.

The evolution of the effective density matrix is given by the
Liouville equation

ih̄
∂

∂t
ρ̂eLR = [ĤeLR, ρ̂eLR], (26)

with the Hamiltonian operator ĤeLR = Ĥ |ψL〉〈ψL| +
Ĥ |ψR〉〈ψR|, where the single-particle Hamiltonian Ĥ is
given by Eq. (7). By using the action of Ĥ on the left and
right well states |ψL/R〉 given in Eqs. (14), the Liouville
equation reduces to the three coupled differential equations

h̄Ż = 4
K

N
A sin θ, (27)

h̄θ̇ = EL − ER − KNZ

A
cos θ, (28)

Ȧ

A
=

[
θ̇ + ER − EL

h̄

]
tan θ. (29)

In what follows we want to draw attention to the addi-
tional physical effects that are described by the generalized
Josephson equations (27)–(29) in comparison to the standard
Eqs. (17) and (18). For this purpose, we use the fact that these
equations can be rewritten in the form

h̄Ż = 2K
√

f 2 − Z2 sin θ, (30)

h̄θ̇ = EL − ER − 2KZ cos θ√
f 2 − Z2

, (31)

as we show in Appendix D. The structure of these equations is
obtained by formally integrating Eq. (29) for A(t ) and elimi-
nating the mixing parameter in the Josephson equations (27)
and (28) for Z (t ) and θ (t ). The representation (30), (31) of
the generalized Josephson equations only deviates from the
standard ones by the newly introduced constant parameter f .
At the level of the effective density matrix, f is fixed by the
initial condition ρ̂eLR(t = 0).

For f = 1 we recover the standard Josephson equations,
i.e., dynamics in the pure state regime. At the level of the
effective density matrix this corresponds to the special choice
A(t ) = √

NL(t )NR(t ) = N
√

1 − Z (t )2/2. In this case the ef-
fective density matrix is a projector |ψ〉〈ψ | to one of its
eigenvectors, representing a globally coherent state, such that
〈Ô〉ρ = 〈ψ |Ô|ψ〉. In this regime the system can be described
by the single wave function ψ , given by Eq. (16).
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For general values of f the eigenvalues of the effective
density matrix ρ̂e are given by N (1 ± f )/2 (see Appendix D).
Recalling the interpretation of the effective density matrix
as the reduced density matrix for an average boson, these
eigenvalues have to be non-negative, to ensure non-negative
probabilities. This leads to the restriction | f | � 1. Following
the discussion of BEC fragmentation, given in Refs. [37,38],
we choose f > 0 and use the term degree of fragmentation
for the 1 − f parameter, implying f = 1 for a nonfragmented
globally coherent state and f = 0 for two incoherent frag-
mented states. The f parameter can be associated with the
commonly used degree of coherence, or coherence factor,
which defines the visibility of interference fringes in an in-
terference experiment with fragmented BECs [3]. However,
notice that the same terms are used differently in the studies
of quantum fluctuations in BECs [39,40], where a strongly
interacting system is discussed (see also Appendix D).

IV. GENERALIZED JOSEPHSON EFFECT

Let us now briefly summarize what we have done so
far. We started with a noninteracting N-particle bosonic
system, described by the (N + 1) × (N + 1) dimensional
density matrix (20). Then, we formulated an effective den-
sity matrix (25), which contains all the information about
the many-particle system relevant for the calculation of
one-particle observables. In this framework we derived the
generalized Josephson equations (27)–(29) and their gen-
eral solution for the evolution of the effective density-matrix
elements (see Appendix E). This allows us to describe vari-
ous regimes of many-particle dynamics: in what follows, we
first use the generalized Josephson equations to investigate
a bosonic system in thermal equilibrium. The thermalization
process, which leads to this state, is not part of the present dis-
cussion. However, we briefly elaborate on that in Appendix A.

In particular, we will utilize the description of the many-
particle system by a canonical ensemble to determine the
parameters of the effective density matrix in terms of the
temperature T , the particle number N , and the energy differ-
ence 	Ẽ = Ẽ1 − Ẽ0. Afterwards, we extend the discussion to
the case of nonequilibrium leading to oscillatory dynamics.
These oscillations are studied in the pure state and in the
generalized cases. Moreover, the corresponding behavior of
the degree of fragmentation 1 − f is analyzed. This will allow
us to investigate how the interplay of temperature, particle
number, and the geometry of the double-well potential affects
the particle dynamics.

A. Effective density matrix in thermal equilibrium

In the following, we want to describe a closed many-
particle bosonic system in thermal equilibrium of finite
temperature T . In thermodynamics and statistical physics this
is typically done by assuming a canonical ensemble with the
density matrix

ρ̂ = Z−1e−βĤ , (32)

where we introduced β = 1/kBT , and Ĥ is given by
Eq. (19) [34]. Moreover, the partition function Z = tr(e−βĤ )
ensures the normalization trρ̂ = 1.

Projecting the density operator (32) to the basis of states
|�N1〉, as done in Eq. (20), we can read off the density-matrix
elements:

pN1Ñ1
= 〈�N1 |Z−1e−βĤ |�Ñ1

〉
= Z−1e−β(N−N1 )Ẽ0−βN1Ẽ1δN1,Ñ1

.

We find that the original density matrix ρ̂ is diagonal, which
also results in a diagonal effective density matrix ρ̂e in the
|ψ0/1〉 basis with

α00 = Z−1
N∑

N1=0

(N − N1)e−βẼ1N1−βẼ0(N−N1 )

= 1 + Ne(N+1)β	Ẽ − (N + 1)eNβ	Ẽ

(1 − e−β	Ẽ )(e(N+1)β	Ẽ − 1)
, (33)

α11 = Z−1
N∑

N1=0

N1e−βẼ1N1−βẼ0(N−N1 )

= e(N+1)β	Ẽ + N − (N + 1)eβ	Ẽ

(eβ	Ẽ − 1)(e(N+1)β	Ẽ − 1)
, (34)

α01 = α10 = 0, (35)

where 	Ẽ =
√

	E2 + V 2
0 [see Eq. (11)], and consistently

α00 + α11 = N . This gives rise to the effective density matrix

ρ̂e =
[
α00 0
0 α11

]
(36)

as the starting point for our investigation of the generalized
Josephson effect in thermal equilibrium.

B. Static solution in thermal equilibrium

In this paper we assume a Bose gas with negligibly small
interactions. In such a system the establishment of thermal
equilibrium takes a very long time 	tth � h̄/	E that is
much larger than the typical time scale of dynamics in the
double-well potential (see also Appendix A). In this section,
we assume that the system has already undergone this ther-
malization process and reached thermal equilibrium. Then
the elements of the effective density matrix ρ̂e are given by
Eqs. (33)–(35) and we are ready to apply our formalism to
describe the generalized Josephson effect in this regime.

For that purpose we consider the effective density matrix
in the left and right well basis. Applying the transformation T̂
from Eq. (24) to Eq. (36), we obtain

ρ̂eLR(V0) = N

2

[
1 0
0 1

]
+ δN01

2
√

	E2 + V 2
0

[−V0 	E
	E V0

]
,

(37)

where we introduced the population imbalance
δN01(N, β	Ẽ ) = α00 − α11 between ground and excited
states. Using Eq. (37) as a specific initial condition for these
solutions we find

Z (t ) = − V0

	Ẽ

δN01

N
, A(t ) = 	E

	Ẽ

δN01

2
, θ (t ) = 0, (38)

such that no oscillations between the wells occur. In conse-
quence, Eq. (37) is not only the initial condition but a static
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FIG. 3. Bottom: Degree of condensation f = δN01/N as a func-
tion of temperature T in thermal equilibrium. Top: Populations of the
ground Ẽ0 and excited states Ẽ1 shown schematically.

solution for the effective density matrix, i.e., for the dynam-
ics of the system. We recognize that Eqs. (38) represent the
unique solution of the generalized Josephson equations for
N particles in a given double-well potential geometry at
temperature T .

From the solution (37) we find that, in thermal equilibrium,
the degree of fragmentation 1 − f = 1 − δN01/N equals the
population imbalance between the excited state |ψ1〉 and the
ground state |ψ0〉. In this case f reaches from f = 0 for
kBT � 	Ẽ to f = 1 for kBT � 	Ẽ , as shown in Fig. 3.
The latter particularly holds true for T = 0, where α00 = N ,
such that the bosons form a global BEC in the double-well
potential system. Hence, in thermal equilibrium f ∈ [0, 1] can
be interpreted as the degree of condensation. In the literature
such a parameter is also used to introduce T 
= 0 effects in
the Gross-Pitaevskii equation phenomenologically [41]. How-
ever, in our model it arises from first principles of statistics of
a many-particle quantum system and has a wider interpreta-
tion in the nonequilibrium case.

We can summarize the findings of this section with the
evident statement that in the case of thermal equilibrium the
solutions of the generalized Josephson equations are static and
the system exhibits no Josephson oscillations. However, the
insights from this section will be of great value also for the
study of the nonequilibrium case in the next section.

C. Josephson effect in the nonequilibrium regime

We now will discuss how Josephson oscillations appear
as an out-of-equilibrium phenomenon in a particular exper-
imental scenario [42]. First a cloud of atoms is thermalized
to the equilibrium configuration with some population im-
balance between the wells, induced by the energy difference
EL − ER = V i

0 . Then, the potential step between the wells is
instantly lowered to a new value V f

0 < V i
0 , bringing the system

out of equilibrium. Directly after that, the system evolves ac-
cording to Eqs. (27)–(29), but with EL − ER = V f

0 . The initial
conditions for the system are given by ρ̂eLR(V i

0 ) from Eq. (37).
Plugging that into the general solutions to the generalized
Josephson equations we present in Appendix E, we obtain the

FIG. 4. Oscillations of the population imbalance Z (t ) as a func-
tion of dimensionless time 	Et/h̄. The initial potential step is chosen
as V i

0 = 	E and the final potential step V f
0 = 0. The number of parti-

cles is fixed to N = 103, while the temperature is T = 2.5 × 10−4 K
(red dotted), T = 10−6 K (blue dashed), and T = 10−8 K (blue
solid).

population imbalance

Z (t ) = − V f
0√

	E2 + (
V i

0

)2

δNi
01

N

− V i
0 − V f

0√
	E2 + (

V i
0

)2

δNi
01

N
cos

(
	Et

h̄

)
, (39)

showing an oscillatory behavior. Here, for the sake of sim-
plicity we only consider terms to linear order in the parameter
V f

0 /	E , which is assumed to be small in our further discus-
sion. This includes the case considered in Ref. [42], where the
final double-well potential is symmetric V f

0 = 0.
As can be seen in Eq. (39), the amplitude of oscillations

is proportional to the difference between the initial and fi-
nal potential step V i

0 − V f
0 , which also quantifies how far

the system is from the initial equilibrium state. In the limit
V i

0 � 	E we observe the maximum possible amplitude of
oscillations δNi

01/N for given N , 	E , and T (see Fig. 4 for
particular temperatures). In the opposite case if V i

0 � 	E the
amplitude of Josephson oscillations is proportional to a small
ratio (V i

0 − V f
0 )/	E .

The f parameter in the nonequilibrium regime reads f =
δNi

01/N , where δNi
01 = αi

00 − αi
11 is the initial population im-

balance between the ground and first excited state with the
energies Ẽ i

0 and Ẽ i
1, respectively. Moreover, the f parame-

ter remains independent of the new potential step V f
0 and

is preserved from the initial thermal equilibrium condition,
discussed in Sec. IV B. In general the values V i

0 , V f
0 , and 	E

are known from the experimental setup [42], which allows us
to deduce f from the oscillation amplitude. The f parameter
depends only on the number of bosons N and 	Ẽ i/(kBT ).
Thus, by the measurement of the amplitude of Josephson
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oscillations in the Bose gas it is possible to determine the
thermodynamic temperature it had before the potential step
was lowered V i

0 → V f
0 .

The pure state case f = 1, for which standard Josephson
equations hold, is realized for kBT � 	Ẽ i, allowing for the
maximum possible oscillation amplitude. The opposite regime
of f = 0 can be achieved either in the case of high tempera-
tures or in the case of nearly degenerated initial energy levels
Ẽ i

0/1 in the double-well potential, i.e., 	Ẽ i ≈ 0. Nearly de-
generated energy levels appear for very high potential barriers
between the two wells. In such a geometry the populations of
each well become weakly coupled, as can be seen in Eqs. (14)
and (15). This is exactly the regime where the system can
be seen as two separate, weakly interacting systems (often
referred to as coupled BECs), as it is done, e.g., in the Bose-
Hubbard model [3,23].

The equilibrium position of the oscillations (39) is given by

the averages 〈Z (t )〉t = −V f
0 /

√
	E2 + (V i

0 )2 × δNi
01/N and

〈θ (t )〉t = 0 over one period of oscillations. We see that this
equilibrium position depends on the initial value of potential
step V i

0 , implying that the system “remembers” the initial con-
dition. By direct comparison with Eqs. (38) we find that this
equilibrium position does not represent a static thermal equi-
librium solution of the generalized Josephson equations for
the new double-well potential with the potential step V f

0 .
Thus, to reach the new static equilibrium the system must
“forget” its initial condition during the process of thermaliza-
tion. Therefore, this process must not only cause a damping
of the oscillations but also has to shift the equilibrium po-
sition to the position of a, yet undefined, new static thermal
equilibrium. While this process itself is not accessible within
our model directly (see also Appendix A), we can deduce
some conclusions about its final state. The exact nature of the
thermalization process defines to which final thermal equilib-
rium state the system tends. All these possible final thermal
equilibrium states are labeled by their degree of fragmentation
1 − f . For each of those f ∈ [0, 1] there is a unique static
solution of the generalized Josephson equations (30) and (31)
and the degree of fragmentation for the final equilibrium state
does not necessarily coincide with the initial one. Assuming a
fixed degree of fragmentation 1 − f = 1 − δNi

01/N , inherited
from the initial condition, one would need to allow for a loss
of energy. Otherwise, assuming the energy to be conserved,
one has to account for an increase of the degree of fragmen-
tation to allow for thermalization to happen. This means that
the system is less coherent after an adiabatic thermalization
process.

A more detailed analysis of the thermalization mechanism
in dependence of the underlying physical processes can be an
interesting future perspective of our paper.

D. Implications for cold atom experiments

In what follows, we consider an N-particle system of initial
temperature T and discuss the implications of our model for
different experimental setups. In Table I we give the upper
limit for the amplitude of Josephson oscillations (39), de-
termined by the initial degree of condensation f = δNi

01/N
for experimentally relevant scenarios, related to typical

TABLE I. Limit on maximum amplitude of Josephson oscilla-
tions δNi

01/N for typical temperatures T and particle numbers N ,
related to specific experimental scenarios. In the table we take an
exemplary oscillation frequency of 	E/h̄ = 103 rad/s out of the
typical range of 102–104 rad/s [7,17,23,29,42].

Temperature regime N f = δNi
01/N

Optical molasses 103 0.0051
or magneto-optical trap 104 0.0508
T = 2.5 × 10−4 K 105 0.4443

106 0.9345
Collimated beam 103 0.7401
(transverse) 104 0.9739
T = 10−6 K 105 0.9974

106 0.9997
BEC T = 10−8 K 103 0.9983

104 0.9998
105 0.9999
106 1.0000

temperatures and cooling techniques [43]. The corresponding
oscillations for N = 103 and different temperatures are visu-
alized in Fig. 4.

On its way to ultracold temperatures the many-particle
bosonic system undergoes different cooling stages of char-
acteristic temperatures. The first stage is the formation of a
longitudinal supersonic beam with a narrow velocity distribu-
tion (about T ∝ 8 K) [44].

If lower temperatures are pursued, the beam can be placed
in a magneto-optical trap and can be laser cooled to tempera-
tures of T ∝ 2.5 × 10−4 K [45]. In this regime the f param-
eter sensitively depends on the particle number, ranging from
N ∝ 103 to 106 in typical experiments [7,17,18,21,23,29,42].
While for 103 particles we see that the amplitude of Josephson
oscillations is restricted to maximally 0.5% of all particles, for
106 this amplitude is barely restricted.

At the next cooling stage the atoms are placed in an opti-
cal dipole trap reaching typical temperatures in the range of
T ∝ 10−6 K [46]. For low particle numbers ∝ 103, in this
regime, it is necessary to use not the standard, but the gen-
eralized Josephson equations with a degree of fragmentation
of 1 − f ≈ 0.25 (see Table I). To describe such a cold (but
not yet ultracold) Bose gas correctly is of interest for modern
precision metrology [6].

Finally, evaporative cooling and adiabatic expansion can
lead to the BEC formation at T ∝ 10−8 K [4] with almost all
particles condensed in the ground state, such that δNi

01 ≈ N .
In this regime the system is almost fully coherent and can
be represented by a single wave function to good approxi-
mation. Here, the standard Josephson equations are sufficient
to describe the dynamics of the many-particle system. In the
BEC regime our model puts no significant restriction on the
amplitude of Josephson oscillations, in agreement with the
experimental observations [7,17,23,29,42].

V. CONCLUSIONS

In this paper we derived a generalization of the standard
Josephson equations, which can be used to describe bosonic
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many-particle systems in the noncoherent regime, apart from
Bose-Einstein condensation. In particular, we apply this for-
malism to study a system of N quantum particles in an
asymmetric double-well potential at finite temperatures. For
this purpose we first construct an effective density matrix,
which allows us to calculate the expectation values of one-
particle operators. For this density matrix, we derive the
generalized Josephson equations as the central part of our
theory. These equations define the evolution of the popula-
tion imbalance, the phase difference, and a newly introduced
mixing parameter, which together provide a full description of
the bosonic system on the level of one-particle operators. The
mixing parameter allows us to investigate the many-particle
bosonic system, that does not necessarily have to be in the
BEC phase.

The generalization of Josephson equations leads to addi-
tional physical effects. To analyze these effects we introduce
an additional parameter f � 1 with 1 − f having the mean-
ing of the degree of fragmentation. The ultimate case f = 1
corresponds to the pure state of the system described by the
standard Josephson equations, as they are derived in litera-
ture [7,20–23].

The approach presented in this paper does not require any
restrictions on the initial many-particle density matrix, up
to its defining properties, implying f ∈ [0, 1]. Hence, it is
suitable to describe a wide range of physical scenarios beyond
the pure state case. In thermal equilibrium of finite tempera-
ture T > 0 the approach yields a static solution with constant
population imbalance and zero phase difference between the
wells. In this regime the parameter f = δN01/N equals the
fractional population imbalance between the ground and ex-
cited energy eigenstates and, hence, has the meaning of the
degree of condensation.

To discuss the nonequilibrium regime we considered an
initially thermalized Bose gas in an asymmetric double-well
potential. Then, in the modeled experimental scenario [42],
the potential step between the wells is instantly lowered. This
leads to an oscillatory dynamic in a double-well potential
system. We found that the oscillation amplitude depends on
temperature T , total number of particles N , energy difference
	E , as well as the initial and final potential steps V i

0 and
V f

0 . In experiment one can access the values of V i
0 , V f

0 , 	E ,
and N , implying that the knowledge of the amplitude of the
Josephson oscillations may allow one to determine the tem-
perature of the system. This opens up an intriguing possibility
of quantum thermometry.

We found that for a fixed double-well potential geometry
the amplitude is limited by the f parameter, which coincides
with the initial degree of condensation δNi

01/N of the sys-
tem before the potential step was lowered. This restriction
becomes recognizable for cold (but not ultracold) Bose gases
at temperatures T � 10−6 K and vanishes in the BEC regime
of T ∝ 10−8 K. This analysis highlights that the Josephson
effect as a quantum interference phenomenon is more pro-
nounced for ultracold Bose gases [3]. However, the presented
results complement this well-known statement by a quantita-
tive discussion of the suppression of Josephson oscillations
in the finite temperature regime. While this conclusion fits
the intuition about the Josephson effect, which is expected to
vanish at higher temperatures, we want to point out that these

results sensitively depend on the experimental setup, i.e., on
how nonequilibrium is obtained.

The subject of this paper is the generalization of the
Josephson equations based on the statistical properties of the
quantum system, which allows one to go beyond the BEC
regime. However, the applicability of our model is limited by
the assumption that the interactions between the bosons are
negligibly small, which leads to a long time of thermaliza-
tion in comparison to oscillation time scales. Moreover, we
assumed that the trapped Bose is strongly confined in all but
one direction, the total number of bosons remains constant,
and the system is closed, i.e., does not interact with the en-
vironment. For instance, by including interaction between the
bosons, one will have an additional energy scale in the model,
while implying higher-order correlation between the bosons
and allowing for thermalization in a three-dimensional (3D)
analysis. These may lead to a significant modification of the
model defining the possible directions in which the present
paper could be extended.
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APPENDIX A: THERMALIZATION IN A BOSONIC GAS

In this Appendix we briefly address the constraints on our
model under which the Bose gas can be assumed to be an
effective 1D system of noninteracting particles. We address
how such a system can reach thermal equilibrium and state
the conditions under which thermalization processes can be
neglected on the time scales of Josephson oscillations.

The effective 1D model, considered in this paper, holds
for Bose gases which are strongly confined in the other two
directions [33]. This confinement translates into large energies
h̄ωz = h̄ωy = h̄ω⊥ � 	E , needed to excite a perpendicular
state. In order to suppress this excitations in a system of
finite temperature T , the inequality h̄ω⊥ > kBT must hold. In
this case, the wave function can be decoupled into a product
of a transverse ground state and a 1D state ψ (x, t ) we are
interested in.

For establishment of thermal equilibrium one would need
to have a redistribution of energy leading to thermalization.
However, in a 1D collision of two identical bosons no energy
exchange and therefore no thermalization would happen. This
redistribution can be achieved only by including 3D interpar-
ticle collisions, which would populate the transverse excited
states, and which are neglected in the Hamiltonian (19). These
collisional interactions can be present but negligible, as long
as the linear particle density n1D and the scattering length as

of the bosons satisfy n1Das � 1 [33]. In this case the time
scale of thermalization 	tth is much larger than the period
h/	E of Josephson oscillations. This is in agreement with
the analysis in Secs. III and IV. In particular, within this

043321-9



KATERYNA KORSHYNSKA AND SEBASTIAN ULBRICHT PHYSICAL REVIEW A 109, 043321 (2024)

approximation, we neglect damping due to reestablishment of
thermal equilibrium in Sec. IV C.

For a detailed study on the thermalization process, see
Ref. [33].

APPENDIX B: STANDARD JOSEPHSON SOLUTIONS

In this Appendix the technical details of solving the pure
state Josephson equations (17) and (18) are discussed. To
simplify the problem, we divide these equations following
the rule dZ

dt ( dθ
dt )−1 = dZ

dt
dt
dθ

= dZ
dθ

to obtain a differential equa-
tion for the Z (θ ) function. Then we introduce new functions
x = cos θ and Z = sin y, in terms of which the differential
equation reads

dx

dy
= x tan y − EL − ER

2K
.

In the following we will denote the dimensionless ratio in
this equation as δ = (EL − ER)/(2K ). In the case of the
asymmetric double-well potential (15) we find δ = −V0/	E .

The general solution is x(y) =
√

1−	ρ2
s

cos y + c2δ
cos y − δ tan y, so

cos θ =
√

1−	ρ2
s +c2δ√

1−Z (t )2
− δ Z√

1−Z2 . Substituting this result into

the first equation (18), one gets

dZ√
1 + βZ − γ Z2

= αdt,

where the following notations are introduced: β =
2δ(

√
1−	ρ2

s +c2δ)

	ρ2
s −2c2δ

√
1−	ρ2

s −c2
2δ

2
, γ = 1+δ2

	ρ2
s −2c2δ

√
1−	ρ2

s −c2
2δ

2
, and α = 2K

h̄√
	ρ2

s − 2c2δ
√

1 − 	ρ2
s − c2

2δ
2. Performing the shift

Z̃ = Z − β

2γ
one obtains the solution for Z (t ) and θ (t ):

Z (t ) = δ
(
c2δ + √

1 − 	ρ2
s

)
1 + δ2

+
√

	ρ2
s + δ

(
δ − c2

2δ − 2c2

√
1 − 	ρ2

s

))
1 + δ2

sin

(
2K (a)

h̄

√
1 + δ2t + φ0s + δα

)
,

θ (t ) = arccos

(√
1 − 	ρ2

s + c2δ√
1 − Z (t )2

− δ
Z (t )√

1 − Z (t )2

)
.

To obtain the solution in the case of a symmetric double-well potential, one needs to set δ = 0 in the expressions above. The
latter solution contains the two integration constants 	ρs and φ0s, while in the asymmetric case the two additional constants c2

and δα appear.
To linear order in δ = −V0/	E , i.e., for a small asymmetry of the double-well potential, we have

Z (t ) = − V0

	E

√
1 − 	ρ2

s +
(

	ρs + c2
V0

	E

√
1 − 	ρ2

s

	ρs

)
sin ψt − V0

	E
α	ρs cos ψt,

θ (t ) = arccos

⎛
⎜⎝

√
1 − 	ρ2

s√
1 − 	ρ2

s sin2 ψt

⎞
⎟⎠ − V0

	E

	ρ3
s sin ψt cos ψt − c2 cos ψt − α	ρ2

s

√
1 − 	ρ2

s sin ψt

	ρs
(
1 − 	ρ2

s sin2 ψt
) ,

where we introduced the notation ψt = φ0s − 	Et/h̄.

APPENDIX C: INTERPRETATION OF THE EFFECTIVE
DENSITY MATRIX

In this Appendix we will establish the interpretation of
the effective density matrix ρ̂e, which determines expectation
values of one-particle operators [see Eq. (23)]. Such operators
project the Hilbert space of the many-particle states |�N1〉 to
a two-dimensional space of single-particle states |ψ0/1〉. Now
we will prove that such projection corresponds to reducing
the original density matrix ρ̂ = ∑

N1Ñ1
pN1,Ñ1

|�N1〉〈�Ñ1
| to a

reduced single-particle density matrix ρ̂1, as used, e.g., in
Ref. [36].

The system, which is the whole N-particle ensemble,
is now divided into two subsystems Ĥ = Ĥ1 ⊕ 1 + 1 ⊕ ĤB,
which are a single first particle and a bath of all other N − 1
particles. The whole ensemble is described by the |�N1〉 states
from Eq. (21), while the energy eigenbasis of the bath reads

|�n1〉 = 1√
(N − 1)!(N − 1 − n1)!n1!

∫
dx2 . . . dxN

×
∑
j(n1 )

ψσ
n1
j (2)(x2) . . . ψσ

n1
j (N )(xN )|x2, . . . , xN 〉,

in a complete analogy with the notations in Eq. (21).
In order to extract the important information about the state

of a first particle, one needs to trace the total density matrix ρ̂

over the bath states |�n1〉:

ρ̂1 = trBρ̂ =
N−1∑
n1=0

N∑
N1=0

N∑
Ñ1=0

pN1Ñ1
(t )〈�n1 |�N1〉B〈�Ñ1

|�n1〉B,

where 〈�n1 |�N1〉B is a scalar product in the bath Hilbert space
only. Hence, it is an element of the single-particle Hilbert
space in the |ψ0/1〉 basis. Due to the orthogonality of the
one-particle states, the scalar product 〈�n1 |�N1〉B does not
vanish only for values of n1 = N1 − 1, N1. The scalar product
〈�Ñ1

|�n1〉B is nonzero only for n1 = Ñ1 − 1, Ñ1. Then the
expression above can be simplified to just one summation
over N1 with four terms, which can be calculated by using
the explicit expressions of |�N1〉 and |�n1〉. For instance, the
product with n1 = N1 reads

〈�N1 |�N1〉B = 1√
N (N −N1)

N−N1∑
i=1

|ψ0(xi )〉=
√

N−N1

N
|ψ0(x)〉.
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The last equality in the expression above holds only effec-
tively, i.e., for the calculation of one-particle observables Ô,
introduced in Sec. III A. Without referring to the particular
type of observables, this approximation can be treated as the
mean-field approach with one averaged coordinate x instead
of many-particle coordinates {xi}. The same can be done for
the other term

〈�N1−1|�N1〉 = 1√
NN1

N1∑
i=1

|ψ1(xi )〉 =
√

N1

N
|ψ1(x)〉.

This simplification yields the reduced single-particle den-
sity matrix

ρ̂1 = 1

N
(α00|ψ0〉〈ψ0| + α01|ψ1〉〈ψ0|

+ α10|ψ0〉〈ψ1| + α11|ψ1〉〈ψ1|),
where the αi j coefficients are the same as defined in Sec. III A.
So we conclude that ρ̂e = N ρ̂1.

APPENDIX D: DEGREE OF FRAGMENTATION

In this Appendix we will show how to obtain the general-
ized Josephson equations in the form

h̄Ż = 2K
√

f 2 − Z2 sin θ, (D1)

h̄θ̇ = EL − ER − 2KZ cos θ√
f 2 − Z2

, (D2)

analogous to the standard Josephson equations except for
f 
= 1. The latter equations look simpler than their original
form with the mixing parameter A(t ) (27)–(29), however this
way the meaning of the f parameter is hidden. To define f one
would need to trace back to the original generalized Josephson
equations and apply the initial conditions for the effective
density matrix Z (t = 0), θ (t = 0), and A(t = 0). Now we will
show how the f parameter can be expressed via the integration
constants, introduced in Appendix E, while in the general case
it reads f 2 = Z (t )2 + (2A(t )/N )2 and represents the pure state
condition if f = 1.

As shown in Appendix E, the general solution for the sym-
metric double-well potential reads Z (t ) = 	ρs sin[	Et/h̄ +
φ0s] and θ (t ) = − arctan[ Ne−Bs 	ρs

2 cos(	Et/h̄ + φ0s)] which
leads to

cos θ =
[

1 +
(

Ne−Bs

2

)2(
	ρ2

s − Z2
)]−1/2

.

We substitute this expression in A(t ) = eBs/ cos θ (t ) and then
plug it in the first two Josephson equations (27) and (28),
which yields

h̄Ż = −	E
√

( f (s) )2 − Z2 sin θ,

h̄θ̇ = 	E
Z cos θ√

( f (s) )2 − Z2
,

where ( f (s) )2 = (2eBs/N )2 + 	ρ2
s . This immediately recovers

the pure state condition by taking f (s) = 1.
In the slightly asymmetric double-well potential we make

an educated guess that Eqs. (27)–(29) can be written in

the form of Eqs. (D1) and (D2). Thus, Eq. (D1) yields the
condition

( f (a) )2 = Z2 +
(

h̄

	E

)2 Ż2

sin2 θ
= const.

Substituting the general solution in Eqs. (E1) and (E3) into the
expression above, we find that indeed f (a) = const and equals

( f (a) )2 = ( f (s) )2 + V0

	E

e−Bs

N
[2c1e2Bs	ρs sin δφ0

+ N ( f (s) )2(δBeBs − N	ρs sin φ0s)].

In the same way one can prove that Eq. (D2) holds for the
solutions of the generalized Josephson equations.

The f =
√

Z (t )2 + [2A(t )/N]2 parameter also appears
when we diagonalize the effective density matrix ρ̂eLR from
Eq. (25) to obtain

ˆ̃ρe = N

2

[
1 + f 0

0 1 − f

]

= N

2
[(1 + f )|y1〉〈y1| + (1 − f )|y2〉〈y2|] (D3)

in the orthonormal basis of its eigenvectors

|y1〉 =
[

1 +
(

N

2A(t )
[Z (t ) − f ]

)2
]−1/2

×
[
|ψL〉 − Ne−iθ (t )

2A(t )
[Z (t ) − f ]|ψR〉

]
, (D4)

|y2〉 =
[

1 +
(

N

2A(t )
[Z (t ) + f ]

)2
]−1/2

×
[
|ψL〉 − Ne−iθ (t )

2A(t )
[Z (t ) + f ]|ψR〉

]
, (D5)

which are now time dependent. In the case of thermal equilib-
rium, the eigenstates |y1/2〉 reduce to the ground and excited
states |ψ0/1〉 of the double-well potential.

We recall that in Appendix C it has been shown that the
effective density matrix ρ̂e is connected with the reduced den-
sity matrix of an average boson ρ̂1 in a bath of all other N − 1
bosons via the relation ρ̂e = N ρ̂1. Thus, the effective density
matrix has to obey the physical requirements for the density
matrices; in particular, it has to be positive semidefinite, i.e.,
all its eigenvalues have to be positive. This implies | f | � 1.
The f parameter, therefore, can be interpreted as the pure state
fraction in the many-particle bosonic system.

Notice that the term “pure state,” so far used to describe
an average boson in a pure single-particle state, implies the
many-particle Fock state [3]

|�〉 = 1√
N!2N

(â† + ei�b̂†)N |vac〉 (D6)

with â† and b̂† being the creation operators relative to the
single-particle states ψ0/1, acting on vacuum |vac〉. In our
framework this state is characterized by a degree of frag-
mentation 1 − f = 0. However, it was shown [39,40] that the
state (D6) can allow for a nonzero degree of fragmentation
due to quantum fluctuations in strongly interacting BECs. A
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discussion of this regime requires one to determine the degree
of fragmentation differently, and is not the subject of our
paper. In particular, the definition used in Refs. [39,40] should
not be confused with the one presented in this paper.

APPENDIX E: GENERALIZED JOSEPHSON SOLUTIONS

Here, we discuss how to obtain the solutions of the gener-
alized Josephson equations (27)–(29).

First, we present the key steps towards the solution for a
symmetric double-well potential. In this case Eq. (29) can be
integrated directly and yields A(t ) = eBs/ cos θ (t ), where Bs is
an integration constant. Substituting this result into the other
two equations, we obtain

2eBs	E

N
tan θ (t ) = −h̄Ż (t ),

e−Bs	EN

2
Z (t ) cos2 θ (t ) = h̄θ̇ (t ).

Taking the time derivative of the first equation and substituting
θ̇ (t ) from the second equation, one obtains an oscillatory
equation for the population imbalance Z (t ):

Z̈ (t ) +
(

	E

h̄

)2

Z (t ) = 0.

Its general solution is Z (t ) = 	ρs sin[	Et/h̄ + φ0s] with
the integration constants 	ρs and φ0s. This gives θ (t ) =
− arctan[ Ne−Bs 	ρs

2 cos(	Et/h̄ + φ0s)], which with A(t ) =
eBs/ cos θ (t ) defines the most general solution of the system
of the differential equations (27)–(29) with three integration
constants Bs, 	ρs, and φ0s.

Second, we discuss the case of an asymmetric double-well
potential. The integration of Eq. (29) in this case gives A(t ) =

1
cos θ (t ) e

B+ ER−EL
h̄

∫ t
0 dt ′ tan θ (t ′ ), where B is an integration constant.

Substituting this result into the other two equations, we obtain

h̄Ż (t ) = 4K

N
tan θ (t )eB+ ER−EL

h̄

∫ t
0 dt ′ tan θ (t ′ ),

KNZ (t )e−B− ER−EL
h̄

∫ t
0 dt ′ tan θ (t ′ ) cos2 θ (t )

= −h̄θ̇ (t ) − (ER − EL ).

Taking the time derivative of the first equation and sub-
stituting θ̇ (t ) from the second equation, one obtains an
oscillatory equation for the population imbalance Z (t ):

Z̈ (t ) +
(

2K

h̄

)2

Z (t ) = −4K (ER − EL )

Nh̄2 eB+ ER−EL
h̄

∫ t
0 dt ′ tan θ (t ′ ).

We see that the Josephson oscillations are governed by
two frequencies 2K/h̄ = −	E sin 2ξ/h̄ and (ER − EL )/h̄ =
	E cos 2ξ/h̄ (see Sec. II B). The θ (t ) function can be found
by taking the time derivative of the second equation and equat-
ing the Ż (t ) from the two equations. This way we obtain

θ̈ +
(

θ̇ + ER − EL

h̄

)(
2θ̇ + ER − EL

h̄

)
tan θ

+ 2K2

h̄2 sin 2θ = 0.

One can simplify this equation by change of variables y(t ) =
tan θ (t ). This gives a nonlinear equation:

ÿ +
(

2K

h̄

)2

y + 3
ER − EL

h̄
yẏ +

(
ER − EL

h̄

)2

(1 + y2)y = 0.

Let us look at the regime of small EL − ER, so the double-
well potential is close to a symmetric one. Then we have 2K ≈
−	E , ER − EL = −V0 (for the latter equality see Sec. II B),
and y ≈ ysym + u, where ysym is a solution in the symmetric
case. To linear order in u and V0/	E we obtain

ÿsym + ü +
(

	E

h̄

)2

ysym +
(

	E

h̄

)2

u − 3V0

h̄
ysymẏsym = 0.

In the zeroth order of V0/	E and small deviation u one
gets the same oscillatory solution ysym(t ) as in the symmetric
case, discussed above. In the first order of V0/	E and small
deviation u we obtain

ü +
(

	E

h̄

)2

u

= 3V0

2	E

(
Ne−Bs	ρs

2

	E

h̄

)2

sin

[
−2

	Et

h̄
+ 2φ0s

]
.

The solution of the last equation is

u(t ) = −
(

Ne−Bs	ρs

2

)2 V0

2	E
sin

[
−2	Et

h̄
+ 2φ0s

]

+ c1
V0

2	E
sin

[
−	Et

h̄
+ φ0a

]
and for θ (t ) one gets

θ (t ) = arctan

(
Ne−Bs	ρs

2
cos ψt

)

+ 1

ζ 2(t )

V0

2	E
c1 sin [ψt + δφ0]

− 1

ζ 2(t )

V0

2	E

(
Ne−Bs	ρs

2

)2

sin [2ψt]. (E1)

This solution depends on the integration constants Bs, 	ρs

and φ0s of the symmetric double-well potential problem (our
zeroth order in V0/	E solution) and on the two new integra-
tion constants φ0a and c1. Taking into account that the other
integration constant B should only slightly differ from the
analogous constant of the symmetric double-well potential
problem B = Bs + V0/(2	E )δB we obtain the solution for
A(t ):

A(t ) = eBsζ (t ) + V0

2	E
N	ρsζ (t )(sin ψt − sin φ0s)

− V0

2	E

e−2Bs

ζ (t )

(
	ρsN

2

)3

cos ψt sin (2ψt )

+ V0

2	E
c1

	ρsN

2ζ (t )
cos ψt sin (δφ0 + ψt )

+ V0

2	E
eBsζ (t )δB. (E2)

The constants φ0a, δB, and c1 can be fixed by the initial con-
dition for the effective density matrix, which for the slightly
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asymmetric double-well potential is as well a linear function
of a small parameter V0/	E . Thus, for fractional imbalance
we have

Z (t ) =
[
	ρs − V0

2	E

e−Bs

N
[(	ρsN )2 sin φ0s

− 2c1e2Bs sin δφ0 − eBsδB	ρsN]

]
sin ψt

− 2
V0

	E

eBs

N
− V0

	E

eBs

N
c1 cos δφ0 cos ψt, (E3)

where the denotation
√

1 + ( Ne−Bs 	ρs

2 )2 cos2 ψt = ζ (t ) was
used.

The generalized solution reduces to the standard one, when
the pure state condition A(t ) = N

√
1 − Z (t )2/2 is satisfied. It

holds for all times t when the integration constants in the case
of the symmetric double-well potential obey the relation 1 −
	ρ2

s = (2/N )2e2Bs . For the asymmetric double-well potential,

in the first order of V0/	E , the pure state condition for the
parameters of the generalized solution reads

2c1e2Bs	ρs sin δφ + N f (s)(δBeBs − N	ρs sin φ0s) = 0.

In the first order of V0/	E the generalized and the pure
state solutions are perfectly consistent for the following
choice of constants of the generalized solution:

δB = 2(	ρs sin φ0s − c2)√
1 − 	ρ2

s

,

c1 = 2α	ρs

1 − 	ρ2
s

√
1 − 	ρ2

s + c2
2

α2	ρ4
s

,

δφ0 = arctan

[
c2

α	ρ2
s

√
1 − 	ρ2

s

]
.
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