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Probing the interaction energy of two 85Rb atoms in an optical tweezer
via spin-motion coupling
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The inherent polarization gradients in tight optical tweezers can be used to couple the atomic spins to the two-
body motion under the action of a microwave spin-flip transition, so that such a spin-motion coupling offers an
important control knob on the motional states of optically trapped two colliding atoms. Here, after preparing two
elastically scattering 85Rb atoms in the three-dimensional ground-state in the optical tweezer, we employed this
control in order to probe the colliding energies of elastic and inelastic channels. The combination of microwave
spectra and corresponding s-wave pseudopotential model allows us to infer the effect of the state-dependent
trapping potentials on the elastic colliding energies, as well as to reveal how the presence of inelastic interactions
affects elastic part of the relative potential. Our work shows that the spin-motion coupling in a tight optical
tweezer expand the experimental toolbox for fundamental studies of ultracold collisions in the two body systems
with reactive collisions, and potentially for that of more complex interactions, such as optically trapped atom-
molecule and molecule-molecule interactions.
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I. INTRODUCTION

Since the successful loading of single atoms from a
cold atomic ensemble into a microscopic optical dipole
trap—namely optical tweezer [1], this approach has pro-
gressed to having a profound impact on many research areas
through bottom-up scaling with an unprecedented level of pro-
grammability and scalability [2–10], ranging from quantum
simulations of many-body physics [11,12], quantum comput-
ing [13–18], metrology [19–22], ultracold collisional physics
[23], and association of single molecules [24,25] and arrays
of single molecules [26,27].

In particular, the high-level internal states’ control and
single-particle level detection allow one to build an extremely
clean platform for the study of ultracold collisions [28–34].
Beyond these advances, the individual pairs of atoms in opti-
cal tweezers have been transferred to weakly bound molecules
via Raman transitions [35,36] and magnetoassociation [37].
Interestingly, the optical tweezer itself has been proved to
offer new manners to molecular association without using
Fano-Feshbach resonances so as to allow a wider range of
molecular species. For example, we can use methods of
coupling two atoms’ relative motion and spins [25] and of
merging optical tweezers [38].

To provide a sufficiently strong trapping potential for
atomic trapping, the beam waists of the optical tweezers
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used in current experiments are typically comparable to the
laser wavelength. Therefore, a large longitudinal electric field
around the focus emerges naturally, which gives rise to a
spatially varying elliptical polarization, even for linearly po-
larized input fields [39]. For tweezer-trapped atoms with
different spin projections mF of hyperfine state F , this in-
herent elliptical polarization gradient functions as fictitious
magnetic-field gradients, leading to trapping potentials for
different Zeeman states being displaced relative to each other
by the distance da in an optical tweezer. Consequently, the
wave-function overlap |〈n|n′〉| (n �= n′) between different mo-
tional states can become noticeable if the da is comparable to
the harmonic-oscillator length, where n′ and n are vibrational
quantum numbers in two spin states, namely spin-motion cou-
pling (SMC), conceptually similar to the SMC of trapped ions
via using a static magnetic-field gradient [40]. The SMC intro-
duced by the inherent elliptical polarization gradient has been
found to be detrimental to Raman sideband cooling (RSC)
of a single atom in an optical tweezer and has been usually
mitigated by applying an appropriate bias magnetic field to get
efficient ground-state RSC [41–44]. However, in the optical
lattice experiments, the SMC effects have been intentionally
introduced via controlling the polarization angles of the lattice
so that the cold atoms could be subsequently cooled to its
one-dimensional (1D) [45] and three-dimensional (3D) [46]
ground states via the microwave photons. Besides, the cold
atoms trapped in a nanofiber-based optical dipole trap, where
a spatially varying elliptical polarization occurs naturally,
were also brought close to their 1D and 3D ground states by
performing SMC-mediated microwave sideband cooling [47]
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and degenerate Raman cooling [48], respectively. Recently,
starting from the motional ground state, the single 87Rb atoms
in an optical tweezer can be precisely control through the
combination of SMC and microwave pulse with a fidelity of
larger than 0.99 [49].

Of interest is the application of SMC to the control of
interaction of individual pairs of atoms in optical tweezers.
The coupling between the spins of the two atoms and their
relative or center-of-mass (c.m.) motions can be straightfor-
wardly achieved. This is because the spatial displacement
di of a given atom with mass mi and position �ri (i = 1 or
2) is straightforwardly transferred to the c.m. and relative
coordinates, �R = (m1�r1 + m2�r2)/(m1 + m2) and �r = �r1 − �r2.
In our prior work [25], with two 85Rb - 87Rb atoms in the
3D ground state of an optical tweezer, we have demonstrated
that a microwave spin-flip transition of the 85Rb atom in the
presence of SMC enables us to observe the coherent driving
of the two-atom quantized motion and even to realize coherent
formation of a single 85Rb 87Rb molecule via SMC enhance-
ment of atom-molecule overlaps. The scattering length of
85Rb - 87Rb is positive, resulting in a repulsive potential for
their interaction. It would be interesting to apply the SMC
method to study the ultracold collisions of atoms with negative
scattering length. The corresponding interaction in an optical
tweezer becomes attractive, giving rise to a bound state with a
ground-state energy lower than the zero point energy of a har-
monic oscillator [50]. Specifically, the 85Rb atoms have large
negative background scattering lengths and large difference in
scattering lengths between singlet and triplet electronic states,
which leads to large hyperfine-exchange collision rates [51].
Therefore, two ultracold 85Rb atoms in an optical tweezer
lends itself well to testing a contact pseudopotential model
with complex scattering lengths [52].

In this work, we utilize the SMC to study the scattering
properties of individual pairs of 85Rb atoms prepared in the
3D ground state of an optical tweezer. From the resulting
MW spectra, that are resonant transitions in the motional
state manifold under the action of a MW spin-flip transition,
the collision energies of elastic channel {|F, mF 〉 = |3,−3〉 +
|2,−2〉} (abbreviated as {3,−3; 2,−2}) and inelastic channel
{3,−3; 3,−1} are deduced, respectively. Given the known
values of scattering length, the pseudopotential model cal-
culations enable us to confirm that the attractive interaction
energies of the {3,−3; 2,−2} channel is lifted up due to the
state-dependent trapping potentials. However, for the inelas-
tic {3,−3; 3,−1} channel, the deduced interaction energy
is found to be obviously smaller than the calculated ones
according to the pseudopotential model calculations with
given complex scattering length for the reactive collision. This
discrepancy reveals that the pseudopotential model may be
inapplicable to the prediction of atom-atom interaction en-
ergies in the presence of inelastic decay and so that a more
realistic atom-atom interaction calculation is needed. This
study highlights the importance of the SMC approach for the
fundamental study of ultracold collisions.

This paper is organized as follows. In Sec. II, we de-
scribe the associated experimental setup. In Sec. III, we detail
the preparation of two 85Rb atoms in the three-dimensional
ground state in an optical tweezer. In Sec. IV, we present
that the two-atom quantum motion resolved the MW spectra

and the extraction of collision energies and the analysis in the
framework of the s-wave pseudopotential model. In Sec. V,
we present conclusions and outlook on the promising applica-
tions of the SMC scheme.

II. EXPERIMENTAL APPARATUS FOR TWO-ATOMS SMC

Figure 1(a) is the schematic diagram of experiment setup.
The experimental arrangement employed in this study is
similar to our prior works [25,43]. In brief, to attain inde-
pendent control over two ultracold 85Rb atoms, we engineer
two distinct collimated 852 nm trapping beams, each with an
approximate diameter of 3 mm. These beams are denoted as
static trap (S trap) and movable trap (M trap), respectively.
The two laser beams are combined via a polarization-
independent beam splitter (BS), then expanded eight times
by a beam expander group (lens with f = −50 mm and f =
400 mm), and lastly focused via a 0.6 numerical-aperture
(NA) objective. The resulting two focused waists are about
0.75 µm with a spacing of 4 µm. To ensure precise control over
the polarization of the optical tweezers on demand, a pair of
liquid crystal retarders (LCRs, LCC1111T-B from Thorlabs)
are separately employed to dynamically adjust the polariza-
tions of the S trap and M trap. A piezoelectric transducer
(PZT) is used to adjust the pointing of the M trap to precisely
merge and split two atoms.

Figure 1(b) presents a schematic representation of the en-
ergy level transitions of the 85Rb atom. The hyperfine states
of |F, mF 〉 = |3,−3〉 and |2,−2〉 are relevant to Raman side-
band cooling (RSC) and state-dependent transfer. The MW
pulses emitted by a horn are used to drive the transition
of |2,−2〉 → |3,−1〉 for MW spectra. Figure 1(c) shows
the schematic diagram of the temporal control sequence of
the external magnetic-field vector and the MW pulses. In
our setup, the tweezer laser is linearly polarized along the
x axis so that the resulting fictitious magnetic field points
in the y direction and varies along the x direction. In the
focal plane (z = 0), the fictitious magnetic field reads �Bfict =
−2�uyx|E0|2αυF λ e−2(x2+y2 )/w2

0 /(8πgF μBFw2
0 ) [47], where gF

is the hyperfine Landé factor, μB the Bohr magneton, and
αυF the vector polarizabilities. For carrying out efficient RSC,
the external magnetic field is correspondingly set along the x
direction (Bx) to suppress the spatially varying �Bfict, whereas
the external magnetic field is needed to be oriented along the
y direction (By) to take advantage of �Bfict for the realization of
two-atom SMC. In the state-dependent merging and splitting
process, the magnetic field is set in the z direction (Bz) in order
to implement species-dependent transport.

III. PREPARATION OF A PAIR OF ULTRACOLD 85Rb
ATOMS

To achieve the preparation of a pair of 85Rb ultracold
ground-state atoms, the first step is to achieve RSC cooling in
the 3D ground state. In the RSC process, the Raman transition
carrier frequencies of the two atoms need to be calibrated.
To reduce the vector light shift (VLS) of the two atoms, we
finely adjust the polarization of both traps to horizontal linear
polarization using a polarization analyzer (SK010PA-NIR).
However, there is still a frequency difference of about 8 kHz
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FIG. 1. Schematic diagram of experimental setup, energy levels, and time sequence. (a) Schematic of apparatus. The movable (M) and
static (S) optical traps are both from 852 nm laser and are linearly polarized along x direction. These two beams are combined by a beam
splitter (BS), then expanded eight times by a beam-expander group (lens with f = −50 mm and f = 400 mm), then strongly focused by a
0.6 numerical-aperture (NA) microscopic objective. The pointing of M trap is controlled by a mirror actuated by piezoelectric transducers
(PZTs) to merge and split two atoms. The liquid crystal retarders are employed to dynamically adjust the polarizations of optical tweezers. The
microwave (MW) horn is used to emit the MW pulse for MW spectra. (b) Level scheme for 85Rb Raman sideband cooling (RSC) and MW
spectra. The Raman beam R1 is paired with {R2,R3} beams, respectively, so as to address the orthogonal radial directions. And the axial axis
is addressed by a pair of R1 and R4. The optical pumping (OP) and repumping (RP) beams are used to efficiently pump the single atoms back
to the initial spin state for RSC. (c) Schematic illustration of time sequence. The 3D magnetic-field vector {Bx, By, Bz} are temporally ramped
up to chosen values for the implementation of specific experimental phases, including RSC, merging two atoms, and spin-motion coupling
(SMC), splitting two atoms and fluorescence detection. See the text for details.

between the carrier transitions of the two atoms. In the RSC
process, the axial sideband cooling is the most challenging
step due to the relatively small trapping frequency (2π ×
25 kHz) in the axial direction. The axial Rabi frequency is
sensitive to separating the carrier peak and sideband peaks of
the Raman transition because of the small trapping frequency.
A large Rabi frequency can cause heating due to off-resonant
transitions, while a too small Rabi frequency can lead to
diminished transition efficiency and decelerated cooling rates
[41,43]. Therefore, in order to reach a trade-off between the
cooling rate and low level of off-resonant transitions, the
axial Rabi frequency is typically set to around 6 kHz and
the Rabi frequency of the �n = −1 sideband is only about
2 kHz. Consequently, in the RSC process, the carrier transition
frequencies of the two atoms in the S trap and M trap need to
be as consistent as possible. Figure 2(a) shows the influence
of the transition carrier frequency shift on the axial sideband
cooling for a single 85Rb atom. When the carrier frequency
shift is greater than 4.4 kHz, the average axial quantum num-
ber increases to above 0.7(3) and the preparation probability
of the axial ground state decreases to below 0.6(2).

To precisely adjust the consistency of the transition fre-
quencies of the atoms, the relationship between the transition
carrier frequency of the atom in the M trap and the control
voltage of the LCR is measured as shown in Fig. 2(b). We
can accurately set the control voltage of the LCR to make the

carrier transition frequencies of the two atoms consistent.
After calibrating the Raman transition carrier frequencies,
we successfully achieve Raman sideband cooling of the
two atoms and obtain a pair of |3,−3〉 atoms in the 3D
ground state. After cooling, the average quantum num-
bers {nx, ny, nz} for atoms in the S trap and M trap are
{0.03(5), 0.02(3), 0.04(4)} and {0.02(4), 0.04(4), 0.03(3)},
respectively. The final probability of the 3D ground state is
determined to be 0.91(6) and 0.90(6) for the atom in the S
trap and M trap, respectively.

The second step is to implement nonheating merging of the
two atoms, which relies on using state-dependent potentials
via utilizing the vector light shifts (VLSs) [43]. To do so, we
first switch the magnetic field to Bz and adjust the linearly
polarized S trap (M trap) to a σ+ (σ−) one by dynamically
controlling LCRs. As a result, influenced by the VLS, the
difference in the frequency of |3,−3〉 → |2,−2〉 transition
between the atom in the S trap and the one in the M trap is
high up to the level of MHz. Such a frequency gap allows us
to use a MW pulse to selectively drive the |3,−3〉 → |2,−2〉
transition for the atom in the M trap with extremely low
cross talk. The atom in the M trap is then moved into the S
trap by PZT, achieving nonheating merging without changing
the quantum numbers of the two atoms’ motion. Finally, the
dipole light of the M trap is turned off adiabatically and a
pair of 85Rb ultracold atoms in a 3D ground state, each in
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FIG. 2. Effect of Raman transition carrier frequency shift on
axial cooling and the relationship between the carrier frequency
shift and control voltage of LCR. (a) The relationship between RSC
carrier frequency shift and the average quantum number and the
ground-state preparation probability of axial direction. When the car-
rier frequency shift is greater than 4.4 kHz, the average axial quantum
number increases to above 0.7(3) and the ground-state preparation
probability decreases to below 0.6(2). (b) The relationship between
the carrier frequency shift and control voltage of LCR.

a different hyperfine magnetic sublevel (|3,−3〉 and |2,−2〉)
and with completely controllable internal and external states,
is prepared in an optical tweezer; such a spin combination is
stable against hyperfine changing spin collisions.

IV. TWO-ATOM MOTION RESOLVED-MICROWAVE
SPECTRA AND ANALYSIS

Having prepared a pair of ultracold 85Rb atoms in an
optical tweezer, we now describe the study of two-atom
MW spectra in the presence of SMC. Figure 3(a) depicts
the vibrational transition diagram of |2,−2〉 → |3,−1〉
with and without the atom in |3,−3〉. For the harmonic
trapping potential, the c.m. and relative motion of two col-
liding homonuclear atoms are decoupled, thereby rendering
the two-atom transition equivalent to |ψs〉|ϕNx=0〉 → |ψ ′

s〉|ϕ′
Nx

〉
(|ψs〉 and |ϕr〉 represent the relative and c.m. motional states,

FIG. 3. Schematic diagram of the transition and the MW spectra
via SMC. (a) Schematic diagram of the vibrational transition of
85Rb atom. (b) MW spectra for spin flipping of |3,−3〉|2, −2〉 →
|3, −3〉|3, −1〉 (red filled circles) and |2, −2〉 → |3,−1〉 (black
filled squares). The spectra set the single atom transition carrier fre-
quency [3028.0050(8) MHz] as the reference and the solid curves are
Gaussian fits of the data. The detuning frequency of the single-atom
carrier peak is c f0 = 0.0(8) kHz, while the detuning frequency of
the diatomic carrier peak is c f1 = −10.0(9) kHz. Furthermore, the
detuning frequency of the single-atom sideband peak is measured to
be s f0 = 163.2(5) kHz. For a two-atom system, around the s f0 two
distinct peaks show up: s f1 = 153.0(5) kHz and s f2 = 182.8(3) kHz.
See the text for details.

respectively; {Nx = 0, 1, …} denotes the quantum number of
the c.m. motion in the x direction); the subscript (s) de-
notes the ground state of relative motion. In the ultracold
two-atom regime, the scattering is purely of s-wave character
and so the exact interatomic potential is conventionally repre-
sented by the well-known δ-function pseudopotential model.
When the atoms are in the relative motion states with odd
quantum numbers they do not feel the interaction because
the relative wave function is zero at the δ function center
[50,53], meaning that the corresponding wave functions are
just harmonic-oscillator ones. For example, when the atoms
occupy the first excited state of the relative motion |ψ ′

1〉 in
the x direction, the relative motion energy is equal to the first
excited motional state of single atoms. Due to the attractive
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interactions predetermined by negative scattering lengths, the
energy level |ψs〉|ϕNx=0〉 is consequently shifted lower. Here,
we use ε0 and ε1 to denote the interaction energy of channels
of {3,−3; 2,−2} and {3,−3; 3,−1} in the ground states of
relative motion, respectively. For the single atom, there exists
only one �nx = 1 sideband transition s f0. However, those
interaction potentials will induce a splitting of the two-atom
sideband transition into c.m. motional transition (s f1) and
relative motional transition (s f2). Thus the difference between
s f0 and s f2 is equal to the interaction energy of the channel
{3,−3; 2,−2} (i.e., ε0 = s f2 − s f0) and the spacing between
s f1 and s f2 is equal to the interaction energy of {3,−3; 3,−1}
(i.e., ε1 = s f2 − s f1).

To record the two-atom MW spectra, the polarization of
optical tweezer laser and the magnetic field are respectively
changed to x and y direction so as to turn on the two
atom SMC. We subsequently record two-atom MW spectra
by applying rectangular pulses to drive the hyperfine transi-
tion |2,−2〉 → |3,−1〉. The outcome two atoms, |3,−1〉 and
|3,−3〉, have vector light shifts of the same sign and move
together during the species-dependent transport, leading to
the disappearance of the atomic fluorescent signals. The re-
sulting spectra with three interaction-shifted peaks are shown
in Fig. 3(b), in which the carrier and the sideband transitions
for the single atoms are also plot for comparison. From left
to right, the two atom peaks are label by {c f1, s f1, s f2}, re-
spectively. Compared with single atom spectra, the contrast
of the two-atom ones are obviously lower. Several effects
are prone to reduce the contrast, including the limited bi-
atomic detection efficiency, three-dimensional ground-state
probabilities of two atoms, dephasing effects caused by the
inelastic collisions, and ambient magnetic noises. For these
measurements, the depth of the dipole trap in the experiment
is approximately 1.6 mK and the oscillation frequency of
trapped atoms are about 164 kHz and 25 kHz in the radial and
axial directions, respectively. The magnetic-field intensity is
approximately 5.52 G.

The peak c f1 is of the resonant transitions between the
motional ground states together with the spin-flip transition
|2,−2〉 → |3,−1〉. The shift with respective to the carrier
of single atoms gives the difference of interaction ener-
gies between the {3,−3; 2,−2} channel and {3,−3; 3,−1}
channel. The peak c f1 is similar to the one presented in
the previous work of Raman spectroscopy of two atoms
(Na-Cs) in an optical tweezer [33]. The spacing between
the peaks c f1 and s f1 is equal to the radial trapping fre-
quency (s f1 − c f1 = s f0 − c f0), so that it is identified as
the spin-flip transition together with the motional tran-
sition Nx = 0 → Nx = 1 in the c.m. motion. The peak
s f2 corresponds to the transition |ψs〉|ϕNx=0〉 → |ψ ′

1〉|ϕ′
0〉,

where |ψ ′
1〉 denotes the first excited state of the relative

motion.
After the spectral identification, the extraction of interac-

tion energy of a specific channel is straightforward. The mea-
sured interaction energies of elastic channel {3,−3; 2,−2}
are plotted in Fig. 4 as a function of axial trapping frequencies.
To understand the experimental results, we adopt the analyt-
ical results for the pseudopotential model in a cylindrically
symmetric harmonic trap [53]. Briefly, the eigenenergies are
calculated by the roots of the following equation with given
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state (|2, −2〉|3,−3〉|ψs〉|ϕ0〉) and the axial trapping frequency of the
optical tweezer. The black squares represent the measured values.
The accompanying error bars are statistic standard deviation for the
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the theoretical calculation of Eq. (1) values with and without the
correction for the perturbation of dx, respectively. The inset shows
the measured ratios as a function of the square root of the trap
frequencies ωx .

parameters [53]:

dz

as
= 2(x)


(
x − 1

2

) −
(x)

η−1∑

m=1
2F 1

(
1, x; x + 1

2 ; e
i2πm

η

)


(
x + 1

2

) . (1)

Here, x ≡ −ε/2, as is the s-wave scattering length, m the
angular quantum number, ε the interaction energy, and η =
ω⊥/ωz the ratio of the radial harmonic frequency to the axial
harmonic frequency, ( j) the gamma function, 2F1(a, b; c; z)
the hypergeometric function, dz = √

h̄/(μωz ) (ωz the axial
harmonic frequency), and μ = m85/2 the reduced mass of two
85Rb atoms. By employing the coupled channel theory [54],
we can calculate the scattering length of the {3,−3; 2,−2}
channel as ai = −391a0 (a0 is the Bohr radius). In our sys-
tem, we need to take into account the effect of the separate
external trapping potentials seen by the constituent |3,−3〉
and |2,−2〉 atoms, which induces a small variation in the
interaction energy, denoted as ε′; see Ref. [55] for details. Its
magnitude is approximately ε′ ≈ μ(dx)2(ηωz )2/(2h̄), where
dx is the trap spacing between |3,−3〉 and |2,−2〉 atoms.
For a definite mF Zeeman state, the corresponding trapping
potential minimum is displaced by a distance of dF,mF =
αυF mF λ/(4παsF F ), where αsF and αvF are respectively the
scalar and vector polarizabilities depending on the atomic
energy levels and the specific wavelength of the tweezer [47].
For the 85Rb atom in an 852 nm optical tweezer, the calculated
ratios αvF /αsF are about 0.111 and −0.167 for the ground
states F = 2 and F = 3, respectively [56]. Thus the relative
displacement between the trapping potentials for the |2,−2〉
and |3,−3〉 state is estimated to be 18.82 nm. The actual
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value of dx = |d3,−3 − d2,−2| can be measured via the method
demonstrated in our prior work [49]. In brief, starting from a
single atom in the ground state, then we measure the ratio of
Rabi frequencies of sideband transitions to that of the carrier
transitions �〈1′ |0〉/�〈0′ |0〉 for different trap depths, as shown in
the inset of Fig. 4. The relationship between ratio and value of
dx is �〈1′|0〉/�〈0′ |0〉 = dx

√
mωx/

√
2h̄. From this relationship,

the extracted trap spacing between the |2,−2〉 and |3,−3〉
state is dx = 18.6(5) nm. Having this measured value, the
results of calculation are plotted in Fig. 4, in which the black
solid line and blue dashed one represent the theoretical calcu-
lation values with and without correction for the perturbation
ε′, respectively. Notably, the experimental values match well
with the theoretical calculation results after incorporating the
perturbation of ε′.

In the end, we will discuss the behavior of interaction
energies of the inelastic channel {3,−3; 3,−1} in an opti-
cal tweezer. For this channel, inelastic hyperfine changing
collision occurs and the atomic interaction can be modeled
with complex scattering length ainelastic = α − iβ, where the
imaginary part β is responsible for inelastic spin relaxation
from the entrance channel [57]. Recently, by applying the
contact pseudopotential with complex scattering length to a
system of two ultracold particles confined in a spherically
symmetric harmonic trap, the properties of eigenenergies and
eigenfunctions as a function of the real and imaginary parts
of the scattering length has been theoretically investigated
[52]. Here, we follow this work to calculate the interaction

energies with replacing the scattering length with the complex
scattering length in Eq. (1). The real roots of Eq. (1) are
of interaction energies. Specifically, the values of α and β

are −596a0 and −43a0, respectively, that are also calculated
from the coupled-channel calculation program [54]. As for
the determination of perturbation ε′ for this channel, the as-
sociated trap spacing is about 7.5 nm, which is deduced from
the aforementioned value of dx. The predictions of interaction
energies are plotted as a function of axial trapping frequencies
in Fig. 5; see the dashed curve. Compared with measured
data, the theoretical energies are obviously larger than the
experimentally measured ones. This discrepancy suggests that
the contact pseudopotential with complex scattering length is
too simplified to capture the inelastic collision of two ultracold
atoms confined in an optical trap and also qualitatively reveals
how the presence of inelastic interactions affect the elastic part
of the relative potential.

V. CONCLUSIONS

In conclusion, we have successfully prepared a pair of
85Rb atoms in the three-dimensional ground state through
sequentially implementing RSC and species-dependent trans-
port techniques and then recorded the relative and c.m. motion
of resolved MW spectra by taking advantage of SMC in an op-
tical tweezer. After combining the resulting MW spectra and
corresponding s-wave pseudopotential model, we have eval-
uated the effect of the external confinement on the collision
energy of the elastic channel. Furthermore, we have found out
that the measured collision energy of the inelastic channel
is smaller than the one determined by the real part of the
complex scattering length, confirming the need for further in-
vestigation of the relevant theory for calculating the collision
energy for the inelastic channel. The SMC method can also be
applied to the atom-molecule and molecule-molecule systems
in optical tweezers [58,59]. The realization of the ultracold
two 85Rb atoms reservoir is also an important step towards
making a single molecule and studying coherent spin-mixing
dynamics.
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