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Energy-dependent dynamical quantum phase transitions in quasicrystals
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Recently the role of the mobility edge in localization transitions has been extensively studied for one-
dimensional tight-binding quasiperiodic models. In this work we study the mobility edge in a family of
quasiperiodic systems evolving far from equilibrium, such as quench dynamics. We report numerical simulations
of the Loschmidt echo based on a polynomial expansion-based technique with a moderate computational
cost. Remarkably, we obtain an identical energy dependence on the equilibrium and dynamical quantum
phase transitions of quasiperiodic models. The self-dual energy-independent localization model under quench
dynamics exhibits energy-independent dynamical quantum phase transitions. On the other hand, self-dual
energy-dependent localization models undergo energy-dependent dynamical quantum phase transitions. The
results provide insights into energy-dependent dynamical localization transitions in quasiperiodic systems
relevant to experiments.
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I. INTRODUCTION

The concept of mobility edges refers to critical energy
values that demarcate localized states from extended states
in quantum systems [1–8]. Understanding quantum transport
near the mobility edge is crucial in various fields, such as
condensed matter physics and materials science [7–13]. It
is a well-established fact that all eigenstates in 1D and 2D
disordered systems are localized, in which the disorder is
represented by a random amplitude of the on-site energies
[14–19]. In the 3D Anderson model, however, there is a mo-
bility edge that separates extended states from localized states
[20,21]. The mobility edge depends on the characteristics of
disordered systems, such as the nature and strength of the
disorder [3,21]. In comparison with random disorder systems,
the standard 1D Aubry-André (AA) model [22] manifests a
self-duality relation for the transformation between position
and momentum spaces at the critical quasiperiodic poten-
tial, leading to an energy-independent localization transition
[22–24]. Most essentially, the quasiperiodic potential period-
icity of the diagonal potential is incommensurate with the
lattice periodicity; it lies between the completely periodic and
the random potentials regime [25]. Interestingly, a quasiperi-
odic potential entails Bloch states for periodic and induces an
energy-independent localization transition for random poten-
tials regime. However, the self-dual generalized Aubry-André
model [3,8] and non-Hermitian [26] manifest an energy-
dependent localization transition that depends on the strength
of the incommensurate modulation potential. In addition, an
energy-dependent localization transition has been encoun-
tered in a 1D quasiperiodic mosaic lattice [5]. Furthermore,
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exact mobility edges that distinguish localized states from
critical states have been observed in a quasiperiodic mosaic
lattice [8]. Moreover, an interaction-induced mobility edge
localization transition has been experimentally observed in the
atomic Aubry-André model [7]. Most recently, multimobility
edges have been experimentally realized in quasiperiodic mo-
saic lattices [27]. Importantly, the existence of mobility edges
can significantly affect the electronic, optical, and transport
properties of quantum systems [28].

A quantum quench process is the simplest paradigm of
nonequilibrium dynamics where rapidly changing the param-
eters of a quantum system takes an initial stationary state
into a complicated time-evolved state [29–47]. Traditionally,
quench refers to an immediate response—a fast time depen-
dence compared to all scales of the problem—of the system
to a sudden change in parameters. Quantum quench processes
offer a rich playground for studying the dynamical behavior
of quantum systems. They provide information on fundamen-
tal quantum phenomena, such as dynamical quantum phase
transitions (DQPTs) [29,30] and the emergence of new phases
of matter [47], and have practical implications for quantum
technology and information processing [48–50]. Remarkably,
DQPTs are a fascinating concept in quantum physics that
extends the understanding of phase transitions to the realm
of nonequilibrium dynamics, characterized by the zero of the
Loschmidt echo (LE) at certain critical times of quenched sys-
tems [31,37]. From an experimental point of view, quantum
quench processes have been observed in various physical sys-
tems, including interacting transverse field Ising models [51],
ultracold atomic optical lattices [52], superconducting quan-
tum simulators [35], and 2D Bose gas of rubidium atoms [47].

The phenomenon of DQPTs has opened up a new avenue
toward a better understanding of nonequilibrium transport
in 1D quasiperiodic systems. Most of the up-to-date re-
search is devoted to DQPTs in self-dual energy-independent
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localization models. However, the role of mobility edges on
the DQPTs in quenched quasicrystals has not been explored.
In this work, we uncover the phenomenon of dynamical quan-
tum transports in a family of noninteracting 1D quasiperiodic
lattices that undergo localization transitions with or without
mobility edges. Moreover, quench dynamics is induced by an
abrupt change in the diagonal incommensurate potential, and
the initial plane wave is quenched into a time-evolved state
of the system Hamiltonian. We take advantage of the kernel
polynomial method for the numerical treatments of the LE,
which enables us to explore large-scale numerical simulations
of quantum quenched systems. Interestingly, we obtain sim-
ilar energy dependence on the phenomenon of equilibrium
and nonequilibrium localization transitions in quasicrystals.
More specifically, energy-dependent localization transition
models under quench dynamics manifest energy-dependent
DQPTs. On the other hand, we encounter energy-independent
DQPTs in self-dual quasiperiodic systems with energy-
independent localization. Further, we find no energy de-
pendence of the DQPTs in the infinite limit of the onsite
potential.

The quantum quench protocols are in general the nonequi-
librium dynamics between the time-independent extended
(localized), |�i〉, and time-evolved localized (extended), |� f 〉,
states, where the prequench and postquench Hamiltonians
(Hi and H f ) of the systems are noncommutable, [Hi,H f ] �=
0. However, at time τ = 0, the Hamiltonian operators are
commuting and share a common eigenstate, resulting in
|〈�i|� f 〉| = 1. Moreover, the system does not display any
signatures of DQPTs for quench dynamics between states in
the same regime, where the overlap between states lies in
the range 0 < |〈�i|� f 〉| � 1. The main focus is to study the
quench dynamics of quasiperiodic systems between the ex-
tended and time-dependent localized phases. In this case, the
initial ground state is energy dependent, which is quenched
into a localized regime. Subsequently, depending on the
nature of the quasiperiodic model, one can trace out the emer-
gence of the DQPTs with mobility edges. On the other hand,
the AA model undergoes DQPTs when an initial localized
state, |�m〉 = ∑N

n=1 δn,mĉ†
n|0〉, is quenched into an extended

regime, as reported in the literature [31,45,53].
The structure of our paper is as follows. Section II

discusses tight-binding models of 1D noninteracting spin-
less fermions in a diagonal incommensurate potential. We
also briefly review the established nonequilibrium transport
formalism based on the LE. Section III focuses on the im-
plementation of polynomial expansions for LE of quenched
tight-binding models with diagonal quasiperiodic incommen-
surate potential. Section IV explores the DQPTs of electrons
in a family of quasiperiodic chains that undergo localization
transitions with or without mobility edges. The last sec-
tion summarizes our conclusions.

II. MODEL AND QUENCH DYNAMICS

This section is devoted to a comprehensive study of
1D electronic systems with different local potentials and
discusses the transport properties of the systems in an equilib-
rium setting. We emphasize the localized or extended nature
of the controlling parameters of quantum systems. We also

briefly discuss the quench dynamics of the system as probed
by the LE.

A. Theoretical models

We first consider the paradigmatic AA model [22] intro-
duced by Aubry and André in the 1980s. This model can be
described as a chain of a single particle of noninteracting spin-
less electrons with nearest-neighbor hopping in a 1D lattice
subjected to onsite incommensurate potential. The Hamilto-
nian of the system has the general form [22]

H = −t
N∑

n=1

(ĉ†
nĉn+1 + ĉ†

n+1ĉn) +
N∑

n=1

εnĉ†
nĉn, (1)

where ĉ†
n and ĉn are the free fermionic rising and lowering

operators at site n, respectively. The parameter εn denotes the
energy of an electron at the nth site, N is the lattice size, and t
is the hopping integral between the nearest-neighboring sites.
We measure all energy scales in units of t , which hereafter is
set to unity. For the AA model, the lattice site energy is the
quasiperiodic potential given by [22]

εn = λ cos (2παn + φ), (2)

where λ is the strength of the incommensurate diagonal en-
ergy with α = (

√
5 − 1)/2, which is an irrational number, and

φ is the phase parameter, which is set to zero without loss of
any generality. This model is known to exhibit metal-insulator
transitions at λ = 2t . The states of the system are extended for
λ < 2t and localized for λ > 2t as shown in the Appendix.

The second model we consider is the generalized
Aubry-André (GAA), subjected to a different on-site
quasiperiodic potential. The GAA model is an extension
of the AA model with a diagonal potential given by [3,4]

εn = λ
cos (2παn + φ)

1 − β cos (2παn + φ)
, (3)

where β is the tuning parameter defined on the interval
β ∈ (−1, 1), and controls the distribution of site energies.
The GAA potential is a smooth function of the β and has
singularities at ±1. In the limit of β = 0, one may recover the
standard AA model, leading to a localization transition at the
self-dual point λ = 2t without a mobility edge. However, for
β �= 0, the GAA model exhibits a metal-insulator transition
with an exact mobility edge Ec, verified by the following
analytical expression [3]:

βEc = 2t − λ. (4)

Indeed, for β = 0 the GAA model is reduced to a familiar
self-dual energy-independent localization AA model with a
λ = 2t critical point. For various β, the GAA model hosts
localization transitions with exact mobility edges separating
the localized and extended states, as given by the analytical
expression (4) [3].

The third model under consideration is the quasiperiodic
mosaic Aubry-André (MAA) [5,8,27], where the argument of
the cosine function in the standard AA model is modified by
an integer, given by [5]

εn =
{
λ cos (2παn + φ), n = mκ,

0, otherwise,
(5)

043319-2



ENERGY-DEPENDENT DYNAMICAL QUANTUM PHASE … PHYSICAL REVIEW A 109, 043319 (2024)

where κ is an integer determining the mosaic modulation pe-
riod of the diagonal potential. We set φ = 0 for convenience.
It is straightforward to show that the quasiperiodic mosaic
lattice reduces to a pure AA model in the limit κ = 1, as
reported in the literature [22]. Introducing the mosaic parame-
ter κ �= 1 in the quasiperiodic potential breaks the self-duality
symmetry of the models, leading to the existence of mobility
edges separating localized states from extended states. The
quasiperiodic mosaic lattice with κ = 2 and κ = 3 at the same
modulation strength contains two and four mobility edges Ec,
respectively. The analytical expressions are given by [5]

Ec =
⎧⎨
⎩

± 1
λ
, κ = 2,

±
√

1 ± 1
λ
, κ = 3.

(6)

Importantly, one can obtain 2(κ − 1) mobility edges for an in-
teger value of κ . For κ = 2, the mosaic lattice always exhibits
extended states at the band center, irrespective of the potential
strength. Moreover, the localization transition starts from the
band edges and moves toward the center of the spectrum
with increasing potential strength with mobility edges ±1/λ.
In the infinite potential limit (λ → ∞), the mobility edges
merge to a point. Remarkably, all eigenstates of the MAA
are localized for |E | > 1/λ and extended for |E | < 1/λ. For
κ = 3, the model always exhibits an extended state near the
band edges and in the limit λ < 2 with four mobility edges. In
the limit of λ → ∞, all mobility edges converge to |E | = ±1,
and the system displays insulating behavior with localized
eigenstates.

The fourth model of our interest is the Aubry-André-
Fibonacci (AAF) model [24,54,55]. The onsite potential of
the AAF is governed by smooth modulation,

εn = λ
tanh {γ [cos (2παn + φ) − cos(πα)]}

tanh(γ )
, (7)

where γ is a tunable parameter interpolating between AA
modulation and Fibonacci modulation. In the limit of γ → 0,
the AAF model reduces to the AA model with a constant
energy shift, cos(πα). In this limit, the system displays a
localization transition for all eigenmodes at the critical point
λ = 2t . In the opposite limit (γ → ∞), the potential ap-
proaches the Fibonacci modulation, which corresponds to
a square wave switching between ±1. In this case, all the
eigenstates of the Fibonacci model are critical for any finite
λ/t > 0 [56,57]. The critical line that separates extended from
localized states is obtained by self-duality mapping, written as

λ = 2t

1 − γ 2

6 cos(2πα)
. (8)

This expression shows that the AAF model exhibits a metal-
insulator transition without a mobility edge. Furthermore, the
AAF model reduces to the AA model for γ = 0 and Fi-
bonacci model in the limit of γ → ∞. In the Fibonacci limit
(γ → ∞), all the eigenstates of the system are always critical.
The AAF model in weak γ limit displays metal-insulator
transition, demarcated by the analytical expression (Eq. (8)).
However, the states are always critical in the large γ limit.

B. Loschmidt echo

A LE (measured in units of lattice spacing) is defined as the
measure of the overlap between the initial wavefunction and
the time-evolved eigenstate of the Hamiltonian. It is applied
to quantify the sensitivity of the quench dynamics of quan-
tum systems. Quantum quench dynamics describe a sudden
change or perturbation in the parameters of a system. This
abrupt change typically involves altering the Hamiltonian of
the system, which represents its energy and dynamics. The
most common scenario for a quantum quench process in-
volves a well-defined initial state |�(y)〉 (ground state) of a
system Hamiltonian H(y) at time τ = 0, where y is a quench
parameter, such as the strength of onsite potential or interac-
tion strength. Then, suddenly changing a quench parameter at
certain times, τ > 0, governs the time evolution of the system
as it evolves under the Hamiltonian H(z), where z denotes the
postquench parameter. The time-evolved state is [31,33,35]

|�(y, z, τ )〉 = e−iτH(z)|�(y)〉. (9)

From the initial ground and time-evolved state, one can calcu-
late the Loschmidt amplitude, G(y, z, τ ), defined as

G(y, z, τ ) = 〈�(y)|�(y, z, τ )〉. (10)

A LE, L(y, z, τ ), is measured as the absolute square of the
complex quantity G(y, z, τ ) and corresponds to the dynamical
analog of the return probability (ground-state fidelity), defined
as [31,33,35]

L(y, z, τ ) ≡ |G(y, z, τ )|2 = |〈�(y)|�(y, z, τ )〉|2. (11)

Typically, the LE for the AA model oscillates at the same
frequency and decays to zero periodically when an initial
plane wave is quenched to a strongly localized time-evolved
state [31]. The occurrence of the zeros of LE signals DQPTs.
It is well established that the emergence of mobility edges
is a fundamental characteristic of Anderson localization. The
main focus of this study is to uncover similar phenomenology
for the nonequilibrium scenario in a family of quasiperiodic
systems under quench dynamics.

III. KERNEL POLYNOMIAL METHOD

The kernel polynomial method (KPM) [58–67] is a numer-
ical technique used in condensed matter physics and quantum
mechanics to compute various properties of quantum systems.
It is particularly useful for studying disordered or strongly
correlated systems, where numerical methods are computa-
tionally expensive and limited to small system sizes [33,68].
KPM is a polynomial expansion-based method often used
to compute static thermodynamic quantities, high-resolution
spectral densities, nonequilibrium dynamics [53], and zero-
temperature dynamical correlations [58,59]. It can efficiently
handle large system sizes, making it suitable for studying real-
istic condensed matter systems [58,59]. It can be applied to a
variety of problems, including the study of electronic structure
in disordered materials [58], the analysis of QPTs [69], and
the calculation of transport properties in condensed matter
systems [63,64]. The typical choice for the basis functions in
KPM is a set of orthogonal Chebyshev polynomials. These
polynomials are well suited for the method because of their
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good numerical properties [70]. As Chebyshev polynomials
are defined only in the specified domain [−1, 1], one needs
to rescale the system Hamiltonian and all energy scales in
the corresponding range. This can be done by dividing the
Hamiltonian by 2Dt + A, where D is the system’s dimension
and A is a number that imposes the spectrum to be in the
interval [−1, 1]. The first type of Chebyshev polynomials of
mth degree, Tm(z) are defined on the [−1, 1] by

Tm(z) = cos[m arccos(z)], m ∈ N. (12)

Moreover, the Tm(z) obeys the recurrence relation,

Tm(z) = 2zTm−1(z) − Tm−2(z), m > 1, (13)

starting with T0(z) = 1 and T1(z) = z. The Chebyshev poly-
nomial also satisfies the following orthogonality relation:

〈Tm(z)|Tn(z)〉 = 1

π

∫ 1

−1

Tm(z)Tn(z)√
1 − z2

dz,

= 1

2
δm,n(δm,0 + 1).

The KPM expansion of the Loschmidt amplitude truncated at
order M has the form [53]

G̃(y, z, τ ) =
M−1∑
m=0

2i−m

1 + δm,0
Jm(τ )〈Tm[H̃(z)]〉, (14)

where

〈Tm[H̃(z)]〉 = 〈�i|Tm[H̃(z)]|�i〉 (15)

is the expectation value of the Chebyshev polynomials in
the Hamiltonian and

|�i〉 = 1√
N

N∑
n=1

exp (ikn)ĉ†
n|0〉 (16)

is the initial plane wave of wave vector k defined over interval
k ∈ (−π/a , π/a] with a lattice spacing a and eigenenergy
E = −2t cos(ka). In expression (14), J0(z) is the zero-order
Bessel function of the first kind, and H̃ = H/ is the rescaled
Hamiltonian of the system, where  is a positive energy scale
that normalizes the Hamiltonian and its spectrum to the stan-
dard Chebyshev polynomial interval [−1 , 1]. It is important
to mention that the LE is a differentiable function; hence, the
accuracy and numerical convergence of the KPM approxi-
mates of the LE can be controlled only by the polynomial
moments. The expectation value of Chebyshev polynomials
in the Hamiltonian [see Eq. (15)] can be evaluated very ef-
ficiently by using matrix-vector multiplication. Starting from
the initial plane wave |�i〉, one can iteratively calculate the
expectation value of Tm[H̃(z)] as follows:

〈T0[H̃(z)]〉 = 〈�i|T0[H̃(z)]|�i〉 = 1, (17)

〈T1[H̃(z)]〉 = 〈�i|H̃(z)|�i〉 = 〈H̃(z)〉, (18)

and for m > 1, we use the following recursion relation:

〈Tm[H̃(z)]〉 = 2〈H̃(z)〉〈Tm−1[H̃(z)]〉 − 〈Tm−2[H̃(z)]〉. (19)

In general, the LE has been evaluated by the exact diagonal-
ization method, which has an O(N2) numerical complexity

for a sparse Hamiltonian matrix of single-particle systems. In
comparison, the overall computational cost of the KPM pro-
cedure is O(MN ) for the sparse matrix Hamiltonian. Because
of matrix-vector multiplication, the most time-consuming part
of this procedure is the iterative evaluation of the expectation
value 〈Tm(H̃(z))〉, costing O(N ) numerical complexity. The
O(M ) comes from the summing over the Chebyshev series
in Eq. (14). Interestingly, the KPM technique can estimate
very accurate numerical data for sufficiently large Chebyshev
series. Hence, the numerical accuracy, convergence, and res-
olution of the LE simulations are strongly controlled by the
number of Chebyshev series. Nevertheless, the Chebychev-
expansion approach doesn’t work for an initial state with
λi > 0 since the system’s initial state won’t be a plane wave
[Eq. (16)] and Bloch wave functions are not applicable in
quasicrystals.

IV. QUENCH DYNAMICS

In this section we uncover the quench dynamics of a family
of 1D lattice models with incommensurate onsite potential,
leading to a qualitative understanding of the electronic trans-
port of quantum systems in a nonequilibrium scenario. It is
important to mention that in all cases the quench dynamics are
induced by an abrupt change in the strength of the incommen-
surate potential, where an initial plane wave (the ground state
of the system Hamiltonian) is quenched in a time-evolved
state. Moreover, we implement the kernel polynomial tech-
nique for the calculations of the LE of quasiperiodic models.
All numerical calculations are carried out for the system’s
size N = 131 072 and M = 1024 Chebyshev moments with
periodic boundary conditions.

Figure 1 shows phase diagram of the standard AA model
under quench dynamics. The phase diagram [Figs. 1(a)–1(c)]
is obtained by calculating the LE of the quenched system,
where the initial state of the Hamiltonian with (a) λi = 0, (b)
λi = 0.1, (c) λi = 0.2 is quenched into a time-evolved state
with λ f = 104. More precisely, we initially prepare a ground
state of the system that corresponds to any particular energy
eigenstate and quench it into a time-dependent state of the
system with a strong quasiperiodic potential, as given by

|� f 〉 = |�(λi, λ f , τ )〉 = e−iτH(λ f )|�i〉, (20)

where the |� f 〉 time-dependent quantum state corresponds
to any particular energy eigenstate, relating the state at time
τ = 0 with the state at time τ . It contains simultaneously
all information involved in the system. As illustrated from
Figs. 1(a)–1(c), for λi < 2 (extended regime), the system
displays DQPTs without mobility edges, as characterized by
singularities of the LE at certain critical times. Moreover, for
an initially prepared pure system, the LE decays oscillato-
rily with time as |J0(λ f τ )|2 and supports singular behavior
at certain critical times, τ ∗ = xm/λ f , with m set of positive
roots. Although the initial and time-evolved states are energy
dependent, the LE turned out to be energy-independent. It
turns out that there is a strong connection between the equi-
librium and the dynamical phase transition in this model, as
the AA model undergoes a quantum phase transition at crit-
ical quasiperiodic potential strength without a mobility edge.
More specifically, the AA model exhibits energy-independent
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FIG. 1. Phase diagrams of the AA lattice in the energy-potential plane. Phase diagrams are obtained by calculating the LE when an initial
ground state with (a) λi = 0, (b) λi = 0.1, and (c) λi = 0.2 is quenched into a time-evolved state with λ f = 104 and when an initial localized
state with λi = 104 is quenched into a time-dependent state with (c) λ f = 0, (d) λ f = 0.1, and (f) λ f = 0.2. Numerical calculations are carried
out for the system of size L = 1024 with period boundary conditions using an exact diagonalization method.

equilibrium and dynamical phase transitions. Moreover, we
obtain blank spaces around E ≈ ±0.69 in phase diagrams
for λi > 0, which corresponds to the absence of the eigen-
spectra of the system Hamiltonian as clearly shown in the
Appendix. On the other hand, Figures 1(d)–1(f) demonstrate
the quench dynamics of the system when an initial localized
state is quenched into an extended regime. As expected, the
system displays DQPTs without mobility edges, where the LE
oscillatory decays to zero in time scale.

Our main goal is to investigate the role of energy on
the quench dynamics in quantum systems. Now we consider
the GAA model, which exhibits energy-dependent metal-
insulator transitions. After performing an abrupt change in the
GAA onsite incommensurate potential, the Loschmidt ampli-
tude [Eq. (10)] becomes

G(E , λ f , β, τ ) = 〈�i|e−iτH(λ f ,β )|�i〉. (21)

Figures 2(a)–2(c) demonstrate the phase diagram of the
GAA model for tuning parameters β = 0.5, where an initial
state of the system Hamiltonian in the extended regime is
quenched into a time-evolved state with λ f = 2. It can be
straightforwardly proved that the GAA reduces to the AA
model at β = 0, leading to energy-independent DQPTs as
shown in Fig. 1. However, for finite β, the GAA under quench
dynamics for both cases undergoes an energy-dependent
nonequilibrium phase transition, indicated by the zeros of the

LE. It is shown that the LE tends to zero at critical times
for energy E � −1, signaling the emergence of the DQPTs
at this limit. In contrast, the system displays no DQPTs for
energy E < −1, where the LE remains finite. It is because the
time-evolved states of the system are in the extended regime
for E < −1 but the localized regime for E � −1 at λ f = 2, as
clearly demonstrated in Fig. 8 below. In other words, the ini-
tial and time-dependent states are orthogonal (nonorthogonal)
for E � −1 (E < −1) at critical times, reflecting the emer-
gence (disappearance) of the DQPTs. Moreover, for λi > 0,
we obtain blank spaces around E ≈ ±0.69 in phase diagrams,
which corresponds to the absence of the eigenspectra of the
system Hamiltonian as clearly shown in the Appendix. On the
other hand, Figs. 2(d)–2(f) demonstrate the quench dynamics
of the system when an initial state with λi = 2 is quenched
into time-dependent extended state. As expected, the system
displays DQPTs for energy E � −1, where the LE decays to
zero in timescale. However, the LE remains finite for E � −1,
signaling the disappearance of the DQPTs. Furthermore, we
observed gaps in the phase diagram of the quench dynamics,
reflecting the absence of eigenenergy of the model, as shown
in the Appendix.

The origin of the occurrence of the DQPTs is the overlap
between the initial plane wave and the time-evolved state of
the system Hamiltonian in the localized regime. The over-
lap between the initial plane wave and its time-evolved state
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FIG. 2. Phase diagrams of the GAA lattice with β = 0.5 in the energy-potential plane. Phase diagrams are obtained by calculating the LE
when an initial ground state with (a) λi = 0, (b) λi = 0.1, and (c) λi = 0.2 is quenched into a time-evolved state with λ f = 2 and when an
initial eigenstate with λi = 2 is quenched into a time-dependent state with (c) λ f = 0, (d) λ f = 0.1, and (f) λ f = 0.2. Numerical calculations
are carried out for the system of size L = 512 with period boundary conditions using an exact diagonalization method.

of the system Hamiltonian in the extended regime results
in a finite LE at a certain time interval. Moreover, the LE
turns out to be asymmetric with respect to E = 0 for β �=
0, i.e., L(E , λ f , β, τ ) �= L(−E , λ f , β, τ ). Furthermore, when
the initial state is quenched into a strongly disordered regime,
then all the eigenstates |�m〉 of the quenched system are
localized with spectrum Em, given by

Em = λ f
cos (2παm)

1 − β cos (2παm)
. (22)

In this case, the G(E , λ f , β, τ ) [see Eq. (21)] turns out to be

G(E , λ f , β, τ ) = 1

N

N∑
m=1

〈�i|e−iτH(λ f ,β )|�m〉〈�m|�i〉,

= 1

N

N∑
m=1

〈�i|�m〉〈�m|�i〉e−iτEm ,

= 1

N

N∑
m=1

|〈�m|�i〉|2e−iτλ f
cos (2παm)

1−β cos (2παm) ,

= 1

N

N∑
m=1

|〈�m|�i〉|2e−iτλ f
cos (θ )

1−β cos (θ ) , (23)

where θ = 2παm is the phase, which is randomly dis-
tributed between −π and π for an irrational number α in the

thermodynamic limit. Moreover, the overlap amplitude of the
plane wave |�i〉 and the localized state |�m〉 (localized at a
single site m) becomes

|〈�m|�i〉|2 ≈ 1. (24)

In this limit, the Loschmidt amplitude (23) becomes

G(E , λ f → ∞, β, τ ) = 1

2π

∫ π

−π

dθe−iτλ f
cos (θ )

1−β cos (θ ) . (25)

This expression [Eq. (25)] can be solved numerically for the
calculations of the Loschmidt amplitude. The corresponding
LEs for various β are shown in Fig. 3. The LE can be
straightforwardly reduced to |J0(λ f τ )|2 at the limit of β = 0,
indicating DQPTs at critical times. One can clearly see that
the parameter β increases the frequency of the oscillations
and destroys the DQPTs within a short time limit. However,
the LE decays to zero periodically in the infinite time limit, as
depicted in Fig. 3 (inset). The tail of the LE is very well fitted
to a line (magenta dashed line) in log-log scale. This shows
that the LE approaches zero in the infinitely evolving time
limit. More importantly, the DQPTs turned out to be energy-
dependent analogously to equilibrium phase transitions in the
model.

Turning to the case when an initial plane wave is quenched
into a time-evolved state of the system Hamiltonian with
onsite mosaic quasiperiodic potential, Fig. 4 demonstrates the
nonequilibrium dynamics of the mosaic quasiperiodic lattice
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FIG. 3. LE of the GAA lattice when a plane wave is quenched
into the time-evolved state with strong potential modulation λ f →
∞ in the thermodynamic limit. Inset: LE as a function of rescaled
evolving time for β = 0.9 in log-log scale. The oscillatory decay
of LE is very well fitted with a line, y = ax, where a is a fitting
parameter.

with system size N = 131 072 for κ = 2 (upper panel) and
κ = 3 (lower panel) at postquench potential λ f = 3. We ob-
serve that the LE is symmetric with respect to E = 0 for
various κ , that is,

L(E , λ f , κ, τ ) = L(−E , λ f , κ, τ ). (26)

For κ = 2, the system displays DQPTs in different manners
as compared to the AA model, where the LE decays to zero
periodically with different amplitudes. Moreover, the MAA
undergoes an energy-dependent DQPT, as shown in Fig. 4(a).
The LE decays to zero around band edges E = ±2, where
all the energy eigenstates of the postquench Hamiltonian are
localized as presented in [5]. However, LE remains finite at the
band center E = 0, where the postquench system is extended
in nature. On the other hand, the DQPTs turned out to be
energy dependent for κ = 3, where the dynamical localization
transitions happen at the band center and band edges. It is
the consequences of the localized nature of the postquench
system at E = 0 and E = ±2, as reported in [5]. At E = ±1,
the system is extended in nature, and hence, its overlap with
the plane wave turned out to be a nonvanishing finite value.
Interestingly, the LE decays oscillatory to zeros at E = 0 both
for κ = 2 and 3, reflecting the phenomenon of nonequilibrium
phase transitions in the system. In the strong potential limit
(λ f → ∞), the LE turns out to be κ− and energy indepen-
dent, as given by

L(E , λ f , κ, τ ) = |J0(λ f τ )|2 (27)

in the thermodynamic limit. Here J0(xs) is the zero-order
Bessel function of the first kind and has a series of zeros xs

with s ∈ N set of positive roots. In this limit, the time-evolved
state of the system Hamiltonian is in the strongly localized
regime. Hence, the overlap between the initial plane wave and
strongly localized time-evolved state approaches zero peri-
odically at the timescale, resulting in DQPTs in the system.
In addition, the system undergoes identical energy-dependent

FIG. 4. Phase diagram of the MAA model in the E − λ f τ plane
for (a) κ = 2, and (b) κ = 3 with λ f = 3. The phase diagram is
obtained by computing the KPM estimates of the LE of the system
of size N = 131 072 with M = 1024 Chebyshev moments.

equilibrium and the nonequilibrium phase transition in this
model.

We now focus on the quench dynamics of the AAF
lattice system, where the tunable parameter γ interpolates
between the AA and Fibonacci lattice systems. Similar to
previous cases, the initial plane wave is quenched into a
time-evolved state of the system Hamiltonian with different
γ and postquench potentials. Again, the quench dynamics
is characterized by an abrupt change in the incommensurate
potential. In the limit of AA model (γ = 0), the LE oscillatory
decays to zero with evolving time for strong potential modula-
tion (λ f → ∞), reflecting the phenomenon of nonequilibrium
phase transitions, as shown in Fig. 1(a). The quench dynamics
under the AAF model for various γ and λ f is illustrated in
Fig. 5. In the approximately AA model limit (γ = 1) with
λ f = 2, the LE of the AAF goes to zero within the energy
range (−2 < E < 1), whereas it remains finite at the band
edges E > 1, as shown in Fig. 5(a). However, for the strong
γ � 1 limit, the LE approaches zero within the energy range
(−2 < E < 2), whereas it remains finite at the band edges
E ± 2, as shown in Figs. 5(b) and 5(c). As a consequence, the
system exhibits DQPTs in the energy range (−2 < E < 2),
as indicated by the vanishing values of the LE. On the other
hand, in the strong potential limit (λ f → ∞), the LE is in-
dependent of energy and always decays to zero periodically,
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FIG. 5. Phase diagrams of the AAF lattice in the E -λ f τ plane. Phase diagrams are obtained by computing the KPM estimates of the
LE when an initial ground state (λi = 0) is quenched into a time-evolved state for (a) γ = 1, (b) γ = 5, and (c) γ → ∞ with λ f = 2 and
(d) γ = 1, (e) γ = 5, and (f) γ → ∞ with λ f = ∞.

as shown in Figs. 5(d)–5(f). It is noted that the amplitude
of the LE increases with increasing γ . In the limit of the
Fibonacci modulation (γ → ∞), the LE shows an interesting
periodic oscillatory behavior with amplitude varying between
one and zero, as explicitly depicted in Fig. 6. In the limit of
the AA model (γ → 0), the LE turns out to be |J0(λ f τ )|2.
It is worth mentioning that the tuning parameter γ speeds up

FIG. 6. LE of the AAF model when a plane wave quenched into
the time-evolved state of the Hamiltonian with a strongly potential
modulation λ f → ∞ in the thermodynamic limit.

the appearance of the DQPTs, where the LE approaches zero
faster compared to the quench dynamics in the AA model.
Remarkably, the LE varies as cos2(λ f τ ) in the Fibonacci limit,
γ → ∞. In this limit, the LE oscillates between one and zero
with a constant frequency on the timescale. Moreover, the
zeros of LE occur at critical time, τ ∗ = (2m + 1)π

4 , with m ∈
Z, reflecting the existence of the DQPTs.

Our main concern is to explore the role of energy on
the DQPTs in 1D, noninteracting Hermitian quasicrystals.
However, a fascinating road map of research is to study
quench dynamics under non-Hermitian quasiperiodic lattices
and induce topological phase transitions due to the interplay
between non-Hermiticity and disorder. The quantum quench
dynamics provides new scientific insights into the dynami-
cal quantum transport in the topological regime of quantum
systems.

V. CONCLUSION

We explored the phenomenon of nonequilibrium phase
transition in a family of quasiperiodic chains restricted
to nearest-neighbor interactions. A linear-scale simulation
method—the kernel polynomial method—is employed for
the numerical calculations of the LE, which has O(N )
numerical complexity. We pointed out a strong connec-
tion between equilibrium and the nonequilibrium DQPTs
regarding energy dependence. Importantly, systems that un-
dergo an energy-dependent localization transition turned
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FIG. 7. Phase diagram of the AA model in the E -λ plane. The
diagram is obtained by computing the IPR of the system of size L =
1024. The red, blue, and magenta dashed lines at λ = 0, λ = 0.1,
and λ = 0.2 correspond to the data presented in Fig. 1 for the quench
dynamics. In insets we enlarge the region around E ≈ ±0.69 to show
that the system displays no eigenenergy for λ > 0.

out to exhibit an energy-dependent dynamical phase tran-
sition under the quenching process. Analogously, energy-
independent localization lattice models undergo energy-
independent nonequilibrium transitions. For instance, self-
dual energy-independent localization models are found to
display energy-independent DQPTs, whereas quasicrystals
with mobility edges undergo energy-dependent DQPTs under
the quenching process. However, in the strong quasiperi-
odic potential limit, all systems displayed energy-independent
equilibrium or nonequilibrium localization transitions. More-
over, Loschmidt echo is found to have symmetric behavior
with respect to energy, for both the standard and mosaic AA
models, and asymmetric for the generalized AA model. How-
ever, the Aubry-André-Fibonacci model has a rather complex
dependence on energy and turned out to be symmetric in
the AA or Fibonacci modulation limit with infinite onsite
potential and asymmetric in the finite potential limit. Our
work uncovers a variety of quasiperiodic models with mobil-
ity edges and opens up an avenue for exploring the dynamical
quantum transport of quantum systems with experimental
feasibility.
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FIG. 8. Phase diagram of the GAA model in the E -λ plane. The
diagram is obtained by computing the IPR of the system of size
L = 1024. The red, blue, and magenta dashed lines at λ = 0, λ =
0.1, and λ = 0.2 correspond to the data presented in Fig. 2 for the
quench dynamics. The green dashed line represents the mobility edge
separating extended and localized regimes. In insets we show that the
system displays no eigenenergy for λ > 0 around E ≈ ±0.69.

APPENDIX

To explicitly verify the phenomenon of the localization
transition, we numerically calculate the inverse participation
ratio (IPR),

IPRi =
∑

j |ψi( j)|4(∑
j |ψi( j)|2)2 , (A1)

which is the most reliable theoretical tool to characterize the
Anderson transition. In general, the IPR is a dimensionless
quantity, proportional to 1/N for an extended state, whereas it
tends toward unity in a strongly localized state of the system.
Importantly, the AA model exhibits an energy-independent
localization transition at critical potential strength λ = 2t , as
depicted in Fig. 7. The vertical dashed lines at λ = 0, 0.1, and
0.2 correspond to the data presented in Figs. 1(a)–1(c). Most
importantly, for λ > 0, the system yields no eigenenergy as
clearly shown by zooming in the data around E ≈ ±0.69. As
a consequence, we obtain a blank space in the phase diagram
of the quench dynamics.

Figure 8 demonstrates the phase diagram of the GAA
model in the energy-potential plane. The data are computed
for a system of size 1024 with periodic boundary conditions. It
is pointed out that the model undergoes a metal-insulator tran-
sition with a mobility edge of βEc = 2t − λ [3]. Furthermore,
the insets demonstrate that the system yields no eigenenergy
around E ≈ ±0.69, leaving gaps in the phase diagram of the
quench dynamics.
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