
PHYSICAL REVIEW A 109, 043317 (2024)

Splitting instability of a doubly quantized vortex in superfluid Fermi gases
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The splitting instability of a doubly quantized vortex in the BEC-BCS crossover of a superfluid Fermi gas is
investigated by means of a low-energy effective field theory. Our linear stability analysis and nonequilibrium
numerical simulations reveal that the character of the instability drastically changes across the crossover. In the
BEC limit, the splitting of the vortex into two singly quantized vortices occurs through the emission of phonons,
while such an emission is completely absent in the BCS limit. In the crossover regime, the instability and phonon
emission are enhanced and the lifetime of a doubly quantized vortex becomes minimal. The emitted phonon
can be observed as a spiraling pattern amplified due to the rotational superradiance, known as a mechanism
to carry away energy and angular momentum from a spinning black hole. We also investigate the influence of
temperature, population imbalance, and three-dimensional effects.
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I. INTRODUCTION

An understanding of the dynamics of quantized vortices
is essential to understand the behavior of superfluids [1–4]
such as superfluid helium, superconductors, quantum gases, or
nucleonic superfluids. Vortices with two or more circulation
quanta are known to be energetically unstable with respect
to splitting into singly quantized vortices [3]. Vortex decay
via splitting is a nontrivial process which has thus far been
observed dynamically only in superfluid quantum gases [5]
due to the high level of control and tunability of these sys-
tems. Theoretically, the splitting of doubly quantized vortices
(DQVs) in Bose-Einstein condensates (BECs) at zero temper-
ature has mainly been investigated by solving the Bogoliubov
equations [6–16]. While this splitting instability exhibits a
complicated finite-size effect by coupling to collective exci-
tations [6,9,11–13,16], its experimental evidence in uniform
superfluids is still lacking, partly because the instability is
quite weak in uniform systems [16–18]. Superfluid Fermi
gases have a much richer phenomenology of elementary and
collective excitations than their bosonic counterparts, and this
should be reflected in the vortex decay dynamics. Multiply
quantized vortices have been also studied in superconductors
[19,20] and fermionic superfluids in the weak-pairing BCS
regime [21]. Nevertheless, vortex decay in superfluid Fermi
gases remains largely unexplored, mainly due to the fact that
hydrodynamic models for these Fermi superfluids are still
under development [22–25].

In this paper we study the splitting instability of a DQV
in the entire BEC-BCS crossover of a superfluid Fermi gas
based on a recently developed low-energy effective field the-
ory (EFT) [26–28]. The lifetime of the DQV and the dynamics
of the instability are investigated for a uniform, cylindrically
trapped Fermi superfluid [29]. We show that the instability
is enhanced in the crossover regime and can be observed

experimentally through a spiraling phonon pattern amplified
due to the rotational superradiance known to occur in spin-
ning black holes, detected very recently [30]. Finally, we also
analyze the effects of temperature and population imbalance
on the instability.

II. THEORETICAL MODEL

The system under consideration is an ultracold Fermi gas
in which particles of mass m and opposite pseudospin interact
via a contact potential with s-wave scattering length as. In the
context of the EFT, this system can be described in terms of a
superfluid order parameter �(r, t ), representing the bosonic
field of Cooper pairs. Under the assumption that this field
varies slowly around the bulk value in both space and time,
a gradient expansion of the Euclidean-time action functional
of the fermionic system can be performed, resulting in the
following three-dimensional equation of motion:

iD̃(|�|2)
∂�

∂t
= −C∇2

r � + Q
∂2�

∂t2

+
(
A(|�|2) + 2E∇2

r |�|2 − 2R
∂2|�|2

∂t2

)
�.

(1)

This equation is a type of nonlinear Schrödinger equa-
tion which is closely related to both the Gross-Pitaevskii equa-
tion for Bose-Einstein condensates [27] and the Ginzburg-
Landau equation for BCS superfluids [22]. We use the natural
units of h̄ = 1, 2m = 1, and EF = 1. A detailed overview of
the model can be found in Ref. [26] or in the Appendixes,1

1See Appendix A for overview of the EFT, Appendix B for
variational derivation of the healing length, Appendix C for
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together with the analytical expressions for A, C, D̃, E , Q,
and R in terms of the inverse temperature β, the average
chemical potential μ, the imbalance chemical potential ζ ,2

and the bulk amplitude |�∞|, i.e., the superfluid gap �. All
our results depend on (kF as)−1 (with kF the Fermi wave
number) only through μ/�. The relation between μ/� and
(kF as)−1 changes depending on which equation of state (EOS)
is chosen. Here we choose the EOS based on the mean-field
approximation.3 The coefficients D̃ and A depend fully upon
the local amplitude |�(r, t )| [35]. We assign to |�∞| and
μ the mean-field values that are obtained by simultaneously
solving the saddle-point gap and number equations [36].

The stationary solution for a doubly quantized vortex can
be represented in polar coordinates (r, φ, z) as

�s(r, φ) = f (r)eilφ, (2)

where the amplitude f (r) only depends on the radial co-
ordinate and l = 2. Such a vortex state is feasible, as was
demonstrated convincingly by manipulating vortices in Fermi
superfluids in box-shaped toroidal traps [37]. By substituting
(2) into (1), one can find a numerical solution for f (r). It is
convenient to express the length scale in units of the healing
length ξ , which is a measure for the width of the vortex. An
analytic expression for ξ can be derived through a variational
ansatz for the stationary vortex solution and a minimization of
the EFT free energy [38] (see Appendix A). For a typical ex-
perimental setup kF ∼ 0.5 µm, this yields ξ ≈ 1 µm, 800 nm,
and 10 µm for (kF as)−1 = 2, 0, and −2, respectively.

The main assumption of the EFT model is that the order pa-
rameter �(r, t ) varies slowly in both space and time [26]. This
corresponds to the conditions that the pair field should vary
over a spatial region larger than the pair correlation length and
that the energy of the fluctuations should remain below the
pair-breaking threshold (2� in the BCS regime, 2

√
�2 + μ2

in the BEC regime). A detailed study of the validity of the
model reveals that the theory is less reliable for describing
dark solitons in the BCS regime at low temperatures [39],
where � becomes small and the ratio of the pair correlation
length ξpair to the healing length is close to unity. This is also
the case with a singly quantized vortex (l = 1). On the other
hand, in our case of a doubly quantized vortex (l = 2), we
have typically the condition ξ > ξpair since the healing length
for l = 2 is at least twice that for l = 1 (see Appendix B).

The dynamic stability of a DQV in a Fermi superfluid can
be studied by adding a small complex perturbation to the
stationary vortex solution

�(r, t ) = [ f (r) + 	(r, t )]eilφ. (3)

linearization of the equation of motion, Appendix D for discretiza-
tion and evolution of the equation of motion, and Appendix E for the
three-dimensional effect.

2Here μ and ζ are defined in terms of the chemical potentials of
the spin-up and spin-down populations as μ = (μ↑ + μ↓)/2 and ζ =
(μ↑ − μ↓)/2.

3The results found by using another EOS, e.g., quantum Monte
Carlo [31,32] or the experiment [33], would be reproduced after
rescaling of (kF as )−1 [34].

Small excitations of the system can be described by a fluctua-
tion field of the form [10]

	(r, t ) = φ1(r)ei(mφ+kzz−ωt ) + φ∗
2 (r)e−i(mφ+kzz−ω∗t ), (4)

where m is an angular momentum quantum number and kz is
the wave number along the z axis. The equation of motion
(1) can then be linearized with respect to the perturbation
amplitudes φ1 and φ2, which leads to differential equations of
the following form:

α1(r)
∂2φ1

∂r2
+ α2(r)

∂φ1

∂r
+ [ω2α3(r) + ωα4(r) + α5,+(r)]φ1

+ α6(r)
∂2φ2

∂r2
+ α7(r)

∂φ2

∂r
+ [ω2α8(r) + α9(r)]φ2 = 0,

(5)

α1(r)
∂2φ2

∂r2
+ α2(r)

∂φ2

∂r
+ [ω2α3(r) − ωα4(r) + α5,−(r)]φ2

+ α6(r)
∂2φ1

∂r2
+ α7(r)

∂φ1

∂r
+ [ω2α8(r) + α9(r)]φ1 = 0.

(6)

The expressions for the position-dependent coefficients αi(r)
are given in Appendix C. Because of the centrifugal term
[proportional to (l ± m)2/r2] in the expressions for α5,±, φ1

and φ2 are only allowed to be finite at the core center (r = 0)
for m = −l and l , respectively. In all other cases, φ1 and φ2

must vanish at the center. As is the case for a DQV in BECs,
the splitting instability is induced by the so-called core mode,
a collective mode which is localized around the vortex core
[13]. We thus restrict our analysis to the case of m = ±2.

III. LINEAR STABILITY ANALYSIS

We will first study the splitting instability at T ≈ 0 (β =
103 × E−1

F ) without imbalance by assuming that the fluid and
possible excitations are homogeneous in the z direction, which
comes down to setting kz = 0 and ζ = 0.4 Figure 1(a) shows
the numerical result for the imaginary part of the complex
eigenvalues Im(ω)/� as a function of the radial system size
R for (kF as)−1 = 2 (BEC regime). Here we impose the Neu-
mann boundary condition at r = R. Whenever Im(ω) 	= 0, the
DQV is unstable with respect to splitting into two SQVs.
The DQV’s lifetime is then related to the inverse of Im(ω).
The graph demonstrates that the instability only occurs within
certain intervals of values for R. This periodic change in
the stability of the vortex as a function of R has also been
predicted in the case of bosonic superfluids [16] and can be
explained by considering the real part Re(ω) in Fig. 1(d).
Eigenvalues corresponding to radially propagating phonon
modes are colored black, while eigenvalues corresponding
to core modes are colored green for stable core modes (no
imaginary part) and red for unstable core modes. One can
observe that, in order for the DQV to decay, the core mode
must come into resonance with a phonon mode that can carry
away energy and angular momentum from the vortex. Since

4The three-dimensional deformation of the vortex line can be im-
portant when the system size along the z axis is larger than 2π/kz,c ≈
20ξ, 8ξ, 4ξ for (kF as )−1 = −2, 0, 2, respectively (see Appendix E).
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FIG. 1. (a)–(c) Imaginary and (d)–(f) real parts of the eigenfrequencies ω/� of the excitation modes of a doubly quantized vortex
as a function of the system size R/ξ for (a) and (d) (kF as )−1 = 2, (b) and (e) (kF as )−1 = 0, and (c) and (f) (kF as )−1 = −2. Eigenvalues
corresponding to nonlocalized modes are colored black, eigenvalues corresponding to stable core modes are colored green, and eigenvalues
corresponding to unstable core modes are colored red.

the radial momentum of the phonons is quantized in the finite
system, the DQV’s lifetime is expected to strongly depend
on the system size. As R increases, the spectrum of phonon
levels becomes more dense, reducing the regions of stability,
until eventually, in the limit R → ∞, the phonon spectrum be-
comes a continuum and the imaginary eigenvalue is expected
to take on a constant (nonzero) value [16].

Figures 1(b) and 1(e) show the eigenvalues for (kF as)−1 =
0 (unitarity). One can observe in Fig. 1(e) that the ratio of
the core mode energy to the gap has increased with respect to
the BEC regime. As a consequence, the core mode encounters
a much denser spectrum of phonon modes to couple with
and the oscillations of the imaginary part of the complex
eigenvalue as a function of R quickly disappear. Hence, at
unitarity, the finite-size effect of the vortex instability vanishes
for much smaller system sizes than in the BEC limit.

Finally, Figs. 1(c) and 1(f) show the imaginary and real
parts of the eigenmodes as a function of R for (kF as)−1 = −2
(BCS regime). In contrast to the BEC and crossover regimes,
the core mode is observed to be permanently unstable with a
constant nonzero imaginary part, indicating that the lifetime
of the DQV is insensitive to the system size on the BCS
side. The fact that the core mode does not seem to interact
with the phonon modes at all implies that some other kind
of mechanism induces the instability here. Analytically, we
find that, in the deep BCS regime, where the coefficients Q
and R become large and the coefficient D̃ can be neglected
[40], the linear equations (5) and (6) can be reduced to a
Schrödinger-like equation with eigenvalue ω2. The core mode
then plays the role of a bound state of the potential created by

the vortex profile and the instability is induced solely by the
core mode with ω2 < 0.

A possible microscopic explanation beyond the EFT for the
behavior of the instability in the BCS regime is that, instead
of the collective excitations, the core mode now couples to
the single-particle excitations of the system, i.e., unpaired
fermions, which play a more significant role on this side of the
interaction domain. The presence of these unpaired particles
is taken into account through the local value of the single-
particle excitation spectrum Eq(r) =

√
f 2(r) + (q2 − μ) in

the EFT coefficients D̃s, A, and ∂sAs (where q represents
the wave vector of the fermionic modes). Close to the vortex
core, the amplitude f (r) of the stationary vortex solution goes
to zero, meaning Eq(r) will decrease as well. Consequently,
the core mode, which is exactly localized around this re-
gion, might be able to couple to the single-particle excitation
modes to induce the decay through, e.g., the pair-breaking
process. This sort of coupling with single-particle excitations
is important to understand the dissipative mechanism in the
inelastic collisions of dark solitons [41], which is qualitatively
described in our EFT description [42].

IV. POPULATION IMBALANCE
AND FINITE TEMPERATURES

By tuning the parameters β and ζ , the EFT analysis allows
us to investigate the effects of temperature and imbalance
on the unstable mode and the DQV’s lifetime. Since both
of these parameters tend to have only small effects on the
BEC side of the interaction domain [42,43], we focus on their
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FIG. 2. Imaginary part of the complex eigenfrequency of a
doubly quantized vortex as a function of the imbalance chemi-
cal potential ζ/ζc, for several values of the temperature T/Tc, for
R = 250ξ , and for (a) (kF as )−1 = 0 and (b) (kF as )−1 = −2.

impact in the crossover and BCS regimes. Figure 2 shows
the imaginary part Im(ω)/�0 as a function of the imbalance
parameter ζ/ζc for several values of T/Tc and for several
values of the interaction parameter. Here �0 is the superfluid
gap for T = ζ = 0, while ζc and Tc indicate the critical values
of the imbalance parameter and the temperature for the phase
transition to the normal state, respectively. It is clear that
increasing the population imbalance typically makes the value
Im(ω) decrease, which in turn means that the lifetime of the
DQV will increase. Hence, imbalanced fermionic superfluids
could allow us to control the splitting stability. Increasing the
temperature of the system appears to have the same result,
except very close to the critical value of the imbalance pa-
rameter.5 In earlier work, similar effects were observed for
the dynamic instability of dark solitons in superfluid Fermi
gases [43]. In that case, it was argued that the stabilization is
due to the unpaired particles that fill up the core of the soli-
tary excitation as the imbalance or temperature are increased.
The same kind of reasoning can be applied to the vortex
core.

V. NONEQUILIBRIUM DYNAMICS

To study the full nonequilibrium dynamics of the split-
ting instability beyond the linear regime, we used the EFT’s
nonlinear equation of motion (1) to perform numerical sim-
ulations of the zero-temperature decay of the DQV in a
Fermi superfluid in a cylindrical trap with a hard wall at
r = R. The time evolution is carried out by discretizing the
space-time grid and applying a finite-difference fourth-order
Runge-Kutta (RK4) algorithm [40] (see Appendix D). For the
present calculations, the spatial and the temporal resolution
are taken to be 5% of ξ and 2% of tF = ω−1

F = (EF /h̄)−1,
respectively. A small amount of random noise with a fixed

5The present work considers the impact of temperature only on
the dynamic instability of a DQV. The dissipative dynamics due to
thermal excitations is an important subject for future work. Some
Gross-Pitaevskii models at finite temperatures include such a dis-
sipative effect by replacing the real coefficient of the first-order
differentiation of time with a complex one, which corresponds to D̃
in our model. The coefficient D̃ is real, but instead the EFT includes
the effect of dissipation through all the coefficients in Eq. (1).
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FIG. 3. Comparison of the numerical result for the lifetime of a
DQV in a cylindrical box (blue dots) to the scaled values 1/Im(ω)
predicted by the linear stability analysis (red line). Every result of
the numerical simulations is obtained as the average of five runs,
with a standard deviation depicted by the error bars. The insets shows
snapshots of the relative pair density |�|2/|�∞|2 during the decay for
(kF as )−1 = 0 at t = 230tF (top row) and (kF as )−1 = −2 at t = 140tF

(bottom row).

amplitude (0.01 × |�∞|) is added to the initial vortex state in
order to trigger the instability. The DQV’s lifetime can then be
defined as the moment at which two separate SQV cores can
be resolved at a distance ξ from each other, similar to how it
was characterized in the experiment in Ref. [5].

The blue dots in Fig. 3 show the result for the lifetime
of the DQV as a function of (kF as)−1. The lifetime of the
vortex starts to increase very steeply towards the BEC side,
making it more difficult to detect and study the dynamics of
the splitting instability in the deep BEC limit [18]. In the
crossover regime, on the other hand, the instability seems
to be strongly enhanced as the lifetime reaches its minimal
value. The results of the numerical simulations can also be
compared to the predictions of the linear stability analysis,
estimating the lifetime as proportional to 1/Im(ω) (since the
vortex-vortex distance grows exponentially as proportional to
eIm(ω)t ). After scaling with a constant factor A ≈ 6.94, the
graphs of A/Im(ω) and the lifetime are found to be in very
good agreement.

The insets of Fig. 3 show snapshots of the pair field density
during the DQV’s decay in the crossover regime (top images)
and BCS regime (bottom images). The left images show the
pair density between zero and the bulk value |�∞|, while
the right images only show values of the density in a close
range around the bulk value, in order to make the phonons in
the system more apparent. In the crossover regime, one can
clearly observe that the splitting of the DQV is accompanied
by the emission of spiraling phonons. This is in accordance
with the predictions of the linear analysis that, in the BEC
and crossover regimes, the instability is induced by a cou-
pling of the core mode to radially propagating phonon modes
with positive angular momentum.6 In the BCS regime, on

6See also Fig. 3(a) of Ref. [16] for a schematic of the phonon
emission in BEC systems.
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the other hand, no phonons are found to be emitted during
the decay process, which again agrees with the earlier result
that the instability is induced solely by the core mode for
(kF as)−1 = −2.

The spiral pattern is amplified over time by rotational
superradiance [44], as was discussed in the context of the
splitting instability [16,45,46]. The superradiance is a possible
mechanism to extract energy from a spinning body or black
hole by spontaneous emission and amplification of electro-
magnetic waves (see also [47,48]), similarly to the Penrose
process [49]. According to Unruh’s theory of the acoustic
metric [50], the superradiance of phonons can happen in
superfluids [51–55]. In our system, the phonon is emitted
spontaneously and amplified in the splitting instability by
extracting the energy and angular momentum outward. While
the superradiance has been observed in a classical system
[56], our system is an appealing candidate to simulate the
black hole physics in quantum systems.

VI. CONCLUSION

In this work, the splitting instability of a DQV in a uni-
form superfluid Fermi gas was investigated by means of a
low-energy effective field theory. Our linear stability analysis
revealed that, on the BEC side of the crossover, a DQV is
unstable against splitting into two SQVs when the core mode
of the vortex couples to phonon modes. As a result, the vortex
lifetime depends strongly on the size of the system. In the BCS
regime, on the other hand, the lifetime becomes insensitive
to this finite-size effect. Full numerical simulations of the
decay of a DQV in a uniformly trapped Fermi superfluid
confirmed these predictions and demonstrated that the lifetime
is minimal in the crossover regime. A study of the effect
of temperature and population imbalance on the splitting in-
stability revealed that tuning the values of these parameters
allows one to adjust the strength of the instability, providing
experimentalists with more control over the timing and course
of the decay process. The lifetime of a DQV at unitarity,
approximately 10 ms for a typical experimental setup k−1

F ∼
0.5 µm, is short enough to observe the splitting instability
and the rotational superradiance as a spiraling phonon. Such
experimental observation will be valuable for developing the
nonequilibrium dynamics of fermionic superfluids and simu-
lating black hole physics in a quantum system.
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APPENDIX A: OVERVIEW OF THE EFT

In this Appendix we provide a brief overview of the EFT
model and the expressions for the EFT expansion coefficients.
More detailed derivations and explanations can be found in
Refs. [26,36,57].

The system of interest is an ultracold dilute Fermi gas, in
which particles of opposite pseudospin interact via an s-wave
contact potential. The Euclidian-time action functional of this
system can be written down in terms of the fermionic (Grass-
mann) fields ψσ (x, τ ) and ψ̄σ (x, τ ),

S[ψ] =
∫ β

0
dτ

∫
dx

[ ∑
σ∈{↑,↓}

ψ̄σ (x, τ )

(
∂

∂τ
− ∇2

x − μσ

)

× ψσ (x, τ ) + gψ̄↑(x, τ )ψ̄↓(x, τ )ψ↓(x, τ )ψ↑(x, τ )

]
,

(A1)

where g is the strength of the contact interaction and the label
σ denotes the spin degree of freedom. The quartic interac-
tion term can be decoupled through the Hubbard-Stratonovich
(HS) transformation, which introduces the bosonic pair field
�(x, τ ) (the HS field is often also denoted by �, but here
we use � to emphasize its interpretation as a position- and
time-dependent order parameter for the system) [36]. The
fermionic degrees of freedom can then be integrated out.
If we assume that the pair field �(x, τ ) only varies slowly
around its constant background value �∞, we can perform
a gradient expansion around �∞ up to second order in the
spatial and temporal derivatives of �(x, τ ) [26]. This results
in the following Euclidian-time effective action functional for
the bosonic pair field:

SEFT[�] =
∫ β

0
dτ

∫
dr

[
D

2

(
�̄

∂�

∂τ
− ∂�̄

∂τ
�

)
+ �s

+ C(∇r�̄ · ∇r�) − E (∇r|�|2)2

+ Q
∂�̄

∂τ

∂�

∂τ
− R

(
∂|�|2
∂τ

)2
]
. (A2)

This effective action functional forms the starting point for
our study of the snake instability in the main work. The
thermodynamic potential �s is given by

�s = − 1

8πkF as
|�|2 −

∫
dk

(2π )3

(
1

β
ln[2 cosh(βEk )

+ 2 cosh(βζ )] − ξk − |�|2
2k2

)
, (A3)

while the gradient expansion coefficients D, C, E , Q, and R
are defined as

D =
∫

dk
(2π )3

ξk

|�|2 [ f1(β, ξk, ζ ) − f1(β, Ek, ζ )], (A4)

C =
∫

dk
(2π )3

k2

3m
f2(β, Ek, ζ ), (A5)

E = 2
∫

dk
(2π )3

k2

3m
ξ 2

k f4(β, Ek, ζ ), (A6)
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Q = 1

2|�|2
∫

dk
(2π )3

[ f1(β, Ek, ζ ) − (
E2

k + ξ 2
k

)
f2(β, Ek, ζ )],

(A7)

R = 1

2|�|2
∫

dk
(2π )3

(
f1(β, Ek, ζ ) + (

E2
k − 3ξ 2

k

)
f2(β, Ek, ζ )

3|�|2

+ 4
(
ξ 2

k − 2E2
k

)
3

f3(β, Ek, ζ ) + 2E2
k |�|2 f4(β, Ek, ζ )

)
.

(A8)

The functions f j (β, ε, ζ ) in the above expressions are
defined by

f j (β, ε, ζ ) = 1

β

∑
n

1

[(ωn − iζ )2 + ε2] j
, (A9)

with the fermionic Matsubara frequencies ωn = (2n + 1)π/β.
In this treatment, the chemical potentials of the two pseu-
dospin species μ↑ and μ↓ are combined into the average
chemical potential μ = (μ↑ + μ↓)/2 and the imbalance
chemical potential ζ = (μ↑ − μ↓)/2, the latter determining
the difference between the number of particles in each spin
population. The quantity ξk = k2

2m − μ is the dispersion re-
lation for a free fermion, Ek = (ξ 2

k + |�x,τ |2)1/2 is the local
Bogoliubov excitation energy, and as is the s-wave scattering
length that determines the strength and the sign of the contact
interaction. In the absence of spatial and temporal variations,
the thermodynamic potential �s determines the value of the
pair-breaking gap |�∞| for the uniform system through the
saddle-point gap equation

∂�s

∂|�|2 � = 0. (A10)

This equation is solved self-consistently together with the
number equation to obtain the correct values of |�∞| and μ

for a given set of system parameters.
In principle, all expansion coefficients (A3)–(A8) fully

depend upon the order parameter �(x, τ ), but in practice we
assume that the coefficients associated with the second-order
derivatives of the pair field can be kept constant and equal to
their bulk value, since retaining their full space-time depen-
dence would lead us beyond the second-order approximation
of the gradient expansion. This means that in expressions
(A5), (A6), (A7) and (A8) for the coefficients C, E , Q,
and R, we set |�(x, τ )|2 → |�∞|2 and Ek → Ek,∞ = (ξ 2

k +
|�∞|2)1/2. For the thermodynamic potential �s and the coef-
ficient D, on the other hand, the full space-time dependence
of the order parameter is preserved.

From the Euclidian-time action functional (A2), the EFT
equation of motion for the pair field �(r, t ) is found to be

iD̃(|�|2)
∂�

∂t
= −C∇2

r � + Q
∂2�

∂t2

+
(
A(|�|2) + 2E∇2

r |�|2 − 2R
∂2|�|2

∂t2

)
�,

(A11)

where the coefficients D̃ and A are defined as

D̃ = ∂ (|�|2D)

∂ (|�|2)
, A = ∂�s

∂ (|�|2)
. (A12)

The first term on the right-hand side of the equation can be
identified as a kinetic energy term, while the nonlinear term
represents a system-inherent potential for the field. The ratio
D̃/C can be interpreted as a renormalization factor for the
mass of the fermion pairs [27] and the coefficient A deter-
mines the uniform background value of the system, since
A(�)� = 0 is nothing but the aforementioned gap equa-
tion (A10). It has been verified that in the deep BEC limit
(1/kF aS  1), the equation correctly tends to the Gross-
Pitaevskii equation for bosons with a mass M = 2m and an
s-wave boson-boson scattering length aB = 2as [57].

APPENDIX B: VARIATIONAL DERIVATION
OF THE HEALING LENGTH

We can derive an analytic expression for the healing length
ξ associated with the width of a stationary vortex in a Fermi
superfluid by considering a variational ansatz for the wave
function and minimizing the free energy of the system. A
popular model to describe the pair field of the stationary
vortex state is the hyperbolic tangent function

�(r, φ) = |�∞| tanh

(
r√
2ξ

)
eilφ. (B1)

The EFT free-energy functional F in terms of the polar coor-
dinates r and φ is given by

F [�] =
∫

dφ

∫ ∞

0
rdr

[
X (|�|2) + C̃

(
∂r�̄∂r� + 1

r2
∂φ�̄∂φ�

)

− Ẽ

2

(
(∂r |�|2)2 + 1

r2
(∂φ|�|2)2

)]
, (B2)

with

X (|�|2) = �s(|�|2) − �s(|�∞|2). (B3)

The subtraction of the term �s(|�∞|2) indicates that the en-
ergy is measured with respect to the energy of the uniform
system. By substituting the ansatz (B1) for the pair field into
the free energy and making a change of integration variable
u = x/

√
2ξ , we obtain

F = 4π

∫ ∞

0
u du

(
ξ 2X (u) + C̃|�∞|2

2
sech4(u)

+ C̃|�∞|2l2

2u2
tanh2(u) − Ẽ |�∞|4sech4(u) tanh2(u)

)
.

(B4)

The integral over the term with X (u) converges, but has to be
calculated numerically. The second and fourth integrals also
converge and can be calculated exactly. The integral of the
third term, on the other hand, yields a logarithmic divergence.
However, the main quantity of interest for the variational
treatment is the derivative of the free energy with respect to ξ ,
which, in contrast to the free energy itself, does not diverge.
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FIG. 4. Variational estimate of the vortex width ξ as a function
of the interaction parameter for winding numbers l = 1 and 2.

One then obtains [58]

dF

dξ
= 8πξ

∫ ∞

0
uX (u)du − 4πC̃|�∞|2l2

ξ

×
∫ ∞

0
tanh(u)sech2(u)du (B5)

= 8πξv

∫ ∞

0
uX (u)du − 2πC̃|�∞|2l2

ξ
. (B6)

By setting the above equation equal to zero, we find the
variational expression for the vortex width

ξ = 1

2

√
C̃|�∞|2l2

B
, (B7)

with

B =
∫ ∞

−∞
X (u)u du. (B8)

Figure 4 shows the behavior of this quantity as a function of
the interaction parameter (kF as)−1 for l = 1 and 2. A more
extensive study on the healing length of a fermionic superfluid
across the BEC-BCS crossover can be found in Ref. [59].

APPENDIX C: LINEARIZATION
OF THE EQUATION OF MOTION

To describe small fluctuations of the pair field, we add a
perturbation field 	(r, t ) to the stable vortex solution �s(r):

�(r, φ, z, t ) = [ f (r) + 	(r, φ, z, t )]eilφ. (C1)

This perturbed solution can be substituted into the EFT equa-
tion of motion (A11), which can then be linearized with
respect to the perturbation field. This requires the coefficients
D̃ and A (which depend on the local value of the order

parameter) to be expanded around the stationary solution:

D̃(|�|2) = D̃s + f (r)[	(x, y, t ) + 	∗(x, y, t )]∂sD̃s + · · · ,

(C2)

A(|�|2) = As + f (r)[	(x, y, t ) + 	∗(x, y, t )]∂sAs + · · · .

(C3)

Here we have used the notation

fs = f (|�s(x)|2), ∂s fs = ∂ f

∂|�|2
∣∣∣∣
|�s|2

. (C4)

Small excitations of the system can be described by assuming
a plane-wave solution for the fluctuation field of the form [10]

	(r, φ, z, t ) = φ1(r)ei(mφ+kzz−ωt ) + φ∗
2 (r)e−i(mφ+kzz−ω∗t ),

(C5)

where m is an angular momentum quantum number (relative
to the quantum number l of the condensate) and kz is the
wave number along the symmetry axis of the stationary vortex
solution. After substituting this ansatz into the equation of
motion, terms of equal order in the perturbation amplitudes
can be collected. The first-order terms result in two coupled
linear differential equations for the perturbation amplitudes
φ1(r) and φ2(r),

α1(r)
∂2φ1

∂r2
+ α2(r)

∂φ1

∂r
+ [ω2α3(r) + ωα4(r) + α5,+(r)]φ1

+ α6(r)
∂2φ2

∂x2
+ α7(r)

∂φ2

∂r
+ [ω2α8(r) + α9(r)]φ2 = 0,

(C6)

α1(r)
∂2φ2

∂r2
+ α2(r)

∂φ2

∂r
+ [ω2α3(r) − ωα4(r) + α5,−(r)]φ2

+ α6(r)
∂2φ1

∂r2
+ α7(r)

∂φ1

∂r
+ [ω2α8(r) + α9(r)]φ1 = 0,

(C7)

where the coefficients α j (r) are given by

α1(r) = C̃ − Ẽ f 2(r), (C8)

α2(r) = C̃

r
− Ẽ f (r)

f (r) + 2r f ′(r)

r
, (C9)

α3(r) = Q − R̃ f (r)2, (C10)

α4(r) = D̃s, (C11)

α5,±(r) = −C̃(l ± m)2

r2
+ Ẽ f (r)

m2 f (r) − 3r f ′(r)

r2

− [C̃ − Ẽ f 2(r)]k2
z − As(r) − ∂sAs(r) f 2(r)

+ Ẽ{2[ f ′(r)]2 − 3 f (r) f ′′(r)}, (C12)

α6(r) = −Ẽ f 2(r), (C13)

α7(r) = −Ẽ f (r)
f (r) + 2r f ′(r)

r
, (C14)

α8(r) = −R̃ f 2(r), (C15)
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α9(r) = Ẽ f 2(r)k2
z − ∂sAs(r) f 2(r) + Ẽ f (r)

m2 f (r) − r f ′(r)

r2

− Ẽ f (r) f ′′(r). (C16)

APPENDIX D: DISCRETIZATION AND EVOLUTION
OF THE EQUATION OF MOTION

In this Appendix we elaborate on how the EFT equation of
motion (A11) is discretized and solved numerically using the
explicit RK4 algorithm. We introduce a field φ(r, t ) such that

φ = ∂�

∂t
(D1)

and

φ̄ = ∂�

∂t
= ∂�̄

∂t
. (D2)

Substituting this into the equation of motion and making use
of the fact that

∂2|�|2
∂t2

= �̄
∂2�

∂t2
+ 2

∂�̄

∂t

∂�

∂t
+ �

∂2�̄

∂t2
, (D3)

we have

iD̃(|�|2)φ = −C̃∇2
r � + Q

∂φ

∂t
+

[
A(|�|2) + Ẽ∇2

r |�|2

− R̃

(
�̄

∂φ

∂t
+ 2|φ|2 + �

∂φ̄

∂t

)]
�. (D4)

In order to get an equation of the form ∂tφ = · · · , we take the
complex conjugate of (D4), find an expression for ∂t φ̄ as a
function of ∂tφ, and substitute this back into (D4), yielding

∂	

∂t
= 1

Q(Q − 2R̃|�|2)

{ − Q
(
A + Ẽ∇2

r |�|2 − 2R̃|φ|2)�
+ iD̃[Qφ − R̃�(φ̄� + φ�̄ )]

+ C̃
[
�2R̃∇2

r �̄ + ∇2
r �(Q − R̃|�|2)

]}
. (D5)

Equations (D1) and (D5) form a system of two coupled partial
differential equations of the form

∂�

∂t
= f (φ), (D6)

∂φ

∂t
= g(�,φ), (D7)

where f (φ) = φ and g(�,φ) is given by (D5). In the case
of a two-dimensional system, we use finite mesh widths �x
and �y and a finite time step �t to discretize space-time
into a grid of L × M × N points by writing xl = l�x with
l = 1, . . . , L, ym = m�y with m = 1, . . . , M, and tn = n�t
with n = 1, . . . , N . This allows us to approximate the spatial
derivatives by central finite-difference formulas

∂2�(x, y, t )

∂x2
= �l+1,m,n − 2�l,m,n + �l−1,m,n

�x2
, (D8)

∂2�(x, y, t )

∂y2
= �l,m+1,n − 2�l,m,n + �l,m−1,n

�y2
, (D9)

where we use the notation �l,m,n = �(xl , ym, tn). A hard-wall
potential, equal to 0 for r =

√
x2 + y2 < R and V0 = 104 ×

EF for r � R, was implemented for the field �. If we now
know the values �l,m,n and φl,m,n at a certain time step tn for
all positions xl and ym, the explicit RK4 method allows us to
calculate for every position the values �l,m,n+1 and φl,m,n+1 of
the next time step by using the following algorithm [60]:

p1l,m,n = f (φl,m,n), (D10)

p2l,m,n = g(�l,m,n, φl,m,n), (D11)

q1l,m,n = f
(
φl,m,n + p2l,m,n/2

)
, (D12)

q2l,m,n = g
(
�l,m,n + p1l,m,n/2, φl,m,n + p2l,m,n/2

)
, (D13)

r1l,m,n = f
(
φl,m,n + q2l,m,n/2

)
, (D14)

r2l,m,n = g
(
�l,m,n + q1l,m,n/2, φl,m,n + q2l,m,n/2

)
, (D15)

s1l,m,n = f
(
φl,m,n + r2l,m,n

)
, (D16)

s2l,m,n = g
(
�l,m,n + r1l,m,n , φl,m,n + r2l,m,n

)
, (D17)

�l,m,n+1 = �l,m,n + �t

6

(
p1l,m,n + 2q1l,m,n + 2r1l,m,n + s1l,m,n

)
,

(D18)

φl,m,n+1 = φl,m,n + �t

6

(
p2l,m,n + 2q2l,m,n + 2r2l,m,n + s2l,m,n

)
.

(D19)

This scheme can be repeated until the solution has been
evolved up to the desired point in time.

APPENDIX E: THREE-DIMENSIONAL EFFECT

We briefly consider the splitting instability in three
dimensions. It has been demonstrated for the case of three-
dimensional BECs that, in the early stages of the decay, there
might arise a periodic structure of alternating split and non-
split regions in the z direction of the vortex line, a so-called
chain structure [61,62]. This uneven splitting can make it
difficult to compare experimental observations and theoretical
predictions. In the context of the linear stability analysis, the
presence of a third dimension is described by the wave number
kz, as introduced in the expression (4). We have observed in
our calculations that there is a critical value kz,c for this wave
number above which no more unstable modes exist. Since the
chain structure can only be induced if an unstable mode with
a finite value of kz fits into the system, no three-dimensional
deformations will occur if the system size along the vortex
axis is smaller than 2π/kz,c. In order to observe our predic-
tions for the splitting instability with kz = 0, the thickness of
the atomic clouds along the vortex line must be smaller than
2π/kz,c ≈ 20ξ, 8ξ, 4ξ for (kF as)−1 = −2, 0, 2, respectively,
according to our numerical analysis. In the BEC and crossover
regimes, the value of kz,c will slightly depend on the radial
system size R.
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vortex phase diagram for a rotating trapped two-band Fermi
gas in the BCS-BEC crossover, New J. Phys. 20, 025010
(2018).

[29] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah,
J. Struck, and M. W. Zwierlein, Homogeneous atomic Fermi
gases, Phys. Rev. Lett. 118, 123401 (2017).

[30] Y. Cui, K. Hada, T. Kawashima, M. Kino, W. Lin, Y. Mizuno,
H. Ro, M. Honma, K. Yi, J. Yu et al., Precessing jet nozzle
connecting to a spinning black hole in M87, Nature (London)
621, 711 (2023).

[31] G. E. Astrakharchik, J. Boronat, J. Casulleras, Giorgini, and S,
Equation of state of a Fermi gas in the BEC-BCS crossover:
A quantum monte carlo study, Phys. Rev. Lett. 93, 200404
(2004).

[32] J. E. Drut, T. A. Lähde, G. Wlazłowski, and P. Magierski,
Equation of state of the unitary Fermi gas: An update on lattice
calculations, Phys. Rev. A 85, 051601(R) (2012).

[33] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and C.
Salomon, Exploring the thermodynamics of a universal Fermi
gas, Nature (London) 463, 1057 (2010).

[34] S. N. Klimin, J. Tempere, and H. Kurkjian, Phononic collective
excitations in superfluid Fermi gases at nonzero temperatures,
Phys. Rev. A 100, 063634 (2019).

[35] S. N. Klimin, J. Tempere, and J. T. Devreese, Finite-temperature
effective field theory for dark solitons in superfluid Fermi gases,
Phys. Rev. A 90, 053613 (2014).

[36] J. Tempere and J. P. A. Devreese, Path-Integral Description of
Cooper Pairing (Intech, New York, 2012).

[37] G. Del Pace, K. Xhani, A. Muzi Falconi, M. Fedrizzi, N. Grani,
D. Hernandez Rajkov, M. Inguscio, F. Scazza, W. J. Kwon, and
G. Roati, Imprinting persistent currents in tunable fermionic
rings, Phys. Rev. X 12, 041037 (2022).

[38] W. van Alphen, N. Verhelst, G. Lombardi, S. Klimin, and J.
Tempere, in Superfluids and Superconductors, edited by R.
Zivieri (IntechOpen, Rijeka, 2018), Chap. 2.

043317-9

https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/PhysRevLett.93.160406
https://doi.org/10.1103/PhysRevA.59.1533
https://doi.org/10.1103/PhysRevA.63.013602
https://doi.org/10.1103/PhysRevA.65.033614
https://doi.org/10.1103/PhysRevA.68.023611
https://doi.org/10.1103/PhysRevA.65.043604
https://doi.org/10.1103/PhysRevA.70.043610
https://doi.org/10.1103/PhysRevA.74.063619
https://doi.org/10.1103/PhysRevA.74.063620
https://doi.org/10.1103/PhysRevA.76.043608
https://doi.org/10.1103/PhysRevA.77.013604
https://doi.org/10.7566/JPSJ.87.023601
https://doi.org/10.1063/1.3629473
https://doi.org/10.1103/PhysRevB.53.75
https://doi.org/10.1103/PhysRevLett.81.2783
https://doi.org/10.1103/PhysRevLett.85.1528
https://doi.org/10.1103/PhysRevLett.119.067003
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevB.89.054511
https://doi.org/10.1103/PhysRevA.70.033612
https://doi.org/10.1103/PhysRevA.71.033625
https://doi.org/10.1140/epjb/e2015-60213-4
https://doi.org/10.1103/PhysRevA.94.023620
https://doi.org/10.1088/1367-2630/aaaceb
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1038/s41586-023-06479-6
https://doi.org/10.1103/PhysRevLett.93.200404
https://doi.org/10.1103/PhysRevA.85.051601
https://doi.org/10.1038/nature08814
https://doi.org/10.1103/PhysRevA.100.063634
https://doi.org/10.1103/PhysRevA.90.053613
https://doi.org/10.1103/PhysRevX.12.041037


W. VAN ALPHEN, H. TAKEUCHI, AND J. TEMPERE PHYSICAL REVIEW A 109, 043317 (2024)

[39] G. Lombardi, W. van Alphen, S. N. Klimin, and J. Tempere,
Soliton-core filling in superfluid Fermi gases with spin imbal-
ance, Phys. Rev. A 93, 013614 (2016).

[40] W. van Alphen, H. Takeuchi, and J. Tempere, Crossover
between snake instability and Josephson instability of dark
solitons in superfluid Fermi gases, Phys. Rev. A 100, 023628
(2019).

[41] R. G. Scott, F. Dalfovo, L. P. Pitaevskii, S. Stringari, O. Fialko,
R. Liao, and J. Brand, The decay and collisions of dark solitons
in superfluid Fermi gases, New J. Phys. 14, 023044 (2012).

[42] W. van Alphen, G. Lombardi, S. N. Klimin, and J. Tempere,
Dark soliton collisions in superfluid Fermi gases, New J. Phys.
20, 053052 (2018).

[43] G. Lombardi, W. van Alphen, S. N. Klimin, and J. Tempere,
Snake instability of dark solitons across the BEC-BCS
crossover: An effective field theory perspective, Phys. Rev. A
96, 033609 (2017).

[44] J. D. Bekenstein and M. Schiffer, The many faces of superradi-
ance, Phys. Rev. D 58, 064014 (1998).

[45] L. Giacomelli and I. Carusotto, Ergoregion instabilities in rotat-
ing two-dimensional Bose-Einstein condensates: Perspectives
on the stability of quantized vortices, Phys. Rev. Res. 2, 033139
(2020).

[46] S. Patrick, A. Geelmuyden, S. Erne, C. F. Barenghi, and S.
Weinfurtner, Quantum vortex instability and black hole super-
radiance, Phys. Rev. Res. 4, 033117 (2022).

[47] Y. B. Zel’dovich, Generation of waves by a rotating body,
JETP Lett. 14, 180 (1971).

[48] A. A. Starobinskii, Amplification of waves during reflection
from a rotating “black hole”, Sov Phys. JETP 37, 28 (1973).

[49] R. Penrose and R. M. Floyd, Extraction of rotational energy
from a black hole, Nat. Phys. Sci. 229, 177 (1971).

[50] W. G. Unruh, Experimental black-hole evaporation? Phys. Rev.
Lett. 46, 1351 (1981).

[51] A. Calogeracos and G. E. Volovik, Rotational quantum friction
in superfluids: Radiation from object rotating in superfluid vac-
uum, J. Exp. Theor. Phys. Lett. 69, 281 (1999).

[52] G. E. Volovik, The Universe in a Helium Droplet (Oxford
University Press, Oxford, 2003).

[53] T. R. Slatyer and C. M. Savage, Superradiant scattering
from a hydrodynamic vortex, Class. Quantum Grav. 22, 3833
(2005).

[54] F. Federici, C. Cherubini, S. Succi, and M. P. Tosi, Su-
perradiance from hydrodynamic vortices: A numerical study,
Phys. Rev. A 73, 033604 (2006).

[55] H. Takeuchi, M. Tsubota, and G. E. Volovik, Zel’dovich-
Starobinsky effect in atomic Bose-Einstein condensates: Anal-
ogy to Kerr black hole, J. Low Temp. Phys. 150, 624 (2008).

[56] T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W. Tedford,
and S. Weinfurtner, Rotational superradiant scattering in a vor-
tex flow, Nat. Phys. 13, 833 (2017).

[57] G. Lombardi, Effective field theory for superfluid Fermi gases,
PhD. thesis, Universiteit Antwerpen, 2017.

[58] N. Verhelst, S. N. Klimin, and J. Tempere, Verification of an
analytic fit for the vortex core profile in superfluid Fermi gases,
Physica C 533, 96 (2017).

[59] F. Palestini and G. C. Strinati, Temperature dependence of the
pair coherence and healing lengths for a fermionic superfluid
throughout the BCS-BEC crossover, Phys. Rev. B 89, 224508
(2014).

[60] E. Süli and D. F. Mayers, An Introduction to Numerical Analysis
(Cambridge University Press, Cambridge, 2003).

[61] J. A. M. Huhtamäki, M. Möttönen, T. Isoshima, V. Pietilä,
and S. M. M. Virtanen, Splitting times of doubly quantized
vortices in dilute Bose-Einstein condensates, Phys. Rev. Lett.
97, 110406 (2006).

[62] T. Isoshima, Vortex chain structure in Bose-Einstein conden-
sates, J. Phys. Soc. Jpn. 77, 094001 (2008).

043317-10

https://doi.org/10.1103/PhysRevA.93.013614
https://doi.org/10.1103/PhysRevA.100.023628
https://doi.org/10.1088/1367-2630/14/2/023044
https://doi.org/10.1088/1367-2630/aac2a9
https://doi.org/10.1103/PhysRevA.96.033609
https://doi.org/10.1103/PhysRevD.58.064014
https://doi.org/10.1103/PhysRevResearch.2.033139
https://doi.org/10.1103/PhysRevResearch.4.033117
https://doi.org/10.1038/physci229177a0
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1134/1.568024
https://doi.org/10.1088/0264-9381/22/19/002
https://doi.org/10.1103/PhysRevA.73.033604
https://doi.org/10.1007/s10909-007-9592-6
https://doi.org/10.1038/nphys4151
https://doi.org/10.1016/j.physc.2016.06.020
https://doi.org/10.1103/PhysRevB.89.224508
https://doi.org/10.1103/PhysRevLett.97.110406
https://doi.org/10.1143/JPSJ.77.094001

