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Universal energy functionals for trapped Fermi gases in low dimensions
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We study a system of trapped two-component Fermi gases with a zero-range interaction in two dimensions
or one dimension. We calculate the one-particle density matrices of these systems at small displacements, from
which we show that the N-body energies are linear functionals of the occupation probabilities of single-particle
energy eigenstates. A universal energy functional was first derived in 2011 [S. Tan, Phys. Rev. Lett. 107, 145302
(2011)] for trapped zero-range interacting two-component Fermi gases in three dimensions. We also calculate
the asymptotic behaviors of the occupation probabilities of single-particle energy eigenstates at high energies.
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I. INTRODUCTION

Zero-range interacting systems are good models for many
physical systems, such as ultracold Bose gases [1–5], ultra-
cold Fermi gases [6–9], and few-nucleon systems [10–13]. If
the mean interparticle distance d and the thermal de Brogile
wavelength λ are both much larger than the range re of the
interaction between the particles, the system may be approxi-
mated as a zero-range interacting system, and it has universal
properties that do not depend on the details of the interaction.
These universal properties depend on the interaction potential
through the s-wave scattering length a, which characterizes
the low-energy scattering properties. This universality ex-
ists in Bose systems [14–19], Fermi systems [20–23], and
mixtures [24–27].

For three-dimensional (3D) two-component Fermi systems
with s-wave contact interactions, it was found that there exists
a universal parameter I3D, called a contact, characterizing
the tail of the momentum distribution at large k, where h̄k
is the single-particle momentum, and h̄ is Planck’s constant
over 2π , and that this tail is related to many other physical
properties of the system through some exact relations [28–31].
The name contact comes from the fact that it is a measure
of the number of pairs of fermions in two different internal
states with small separations. These exact relations [28–31]
have been generalized to 1D two-component Fermi systems
[32], 2D two-component Fermi systems [33–36], spin-orbit-
coupled Fermi systems [37,38], Bose systems [39,40], and
mixtures [34,40].

As a zero-range interacting system, the 3D two-component
Fermi gas trapped in a smooth potential has an elegant prop-
erty: Its energy can be expressed as a linear functional of the
occupation probabilities of single-particle energy eigenstates,
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i.e. [41],

E = h̄2I3D

4πma
+ lim

εM→∞

⎛
⎝ ∑

εν<εM

ενnν − h̄I3D

π2

√
εM

2m

⎞
⎠, (1)

where m is the mass of each fermion, εν is the single-particle
energy of the νth single-particle level in the specified smooth
external potential, nν = nν↑ + nν↓, and nν↑ (nν↓) is the oc-
cupation probability of the spin-up (spin-down) state in the
νth level. This general functional can be regarded as a gen-
eralization of the energy of trapped noninteracting Fermi
gases,

E =
∑
νσ

ενnνσ . (2)

Since the zero-range interaction model is valid for lower
spatial dimensions, a straightforward idea is to generalize
the energy functional Eq. (1) to lower dimensions. The 1D
and 2D two-component Fermi gases have been studied for
many years. Experimentally, one can realize them by confin-
ing the particles in some transverse directions and allowing
the particles to move freely in the remaining dimensions
[42–44].

In this paper, we follow the method used in Ref. [41]. We
first study the one-particle density matrices of the 2D and 1D
trapped two-component Fermi gases with contact interactions.
We then generalize the linear energy functional Eq. (1) to 2D
and 1D.

This paper is organized as follows. In Sec. II, we introduce
the normalized N-body energy eigenstate and the 2D Bethe-
Peierls boundary condition. Using the boundary condition, we
expand the one-particle density matrix at small displacements.
In Sec. III, we combine the one-particle density matrix with
the single-particle imaginary-time propagator to find the uni-
versal energy functional in 2D,

E = lim
εM→∞

⎛
⎝ ∑

εν<εM

ενnν − h̄2I2D

4πm
ln

e2γ ma2
2DεM

2h̄2

⎞
⎠, (3)
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where γ = 0.5772 . . . is Euler’s constant, e = 2.718 . . . is the
base of natural logarithm, I2D is the 2D contact, a2D is the
2D scattering length between two fermions in different spin
states, nν = ∑

σ nνσ , σ =↑,↓, and nνσ is the occupation prob-
ability of the spin-σ state of the νth single-particle level. If the
external potential is zero, the single-particle levels reduce to
plane-wave states and Eq. (3) reduces to the energy theorem
in Refs. [33–36]. One can extract the contact I2D from the
asymptotic behavior of ρ(ε) at large ε, where

ρ(ε) ≡
∑
νσ

nνσ δ(ε − εν ), (4)

and the coarse-grained version of ρ(ε) has the following
asymptotic expansion at large ε:

ρ(ε)|cg = h̄2I2D

4πm
ε−2 + O(ε−3). (5)

We also derived the occupation probabilities of high energy
states; see Eq. (50). In Secs. IV and V, we do analogous
calculations for the 1D two-component Fermi system and find
that

E = − h̄2a1DI1D

2m
+

∑
σν

ενnνσ , (6)

ρ(ε)|cg = h̄3I1D

2
√

2πm3/2
ε−5/2 + O(ε−7/2), (7)

where a1D is the 1D scattering length between two fermions
in different spin states, and I1D is the 1D contact. If the
external potential is zero, the single-particle levels reduce to
plane-wave states and Eq. (6) reduces to the energy theorem
in Ref. [32]. We also derived the occupation probabilities of
high-energy states in 1D; see Eq. (72). In Sec. VI, we summa-
rize our results and discuss the utilities and generalizations of
our energy functionals.

II. ONE-PARTICLE DENSITY MATRIX IN 2D

We consider a trapped two-component Fermi system in 2D,
with N↑ spin-up fermions and N↓ spin-down fermions. The
total number is N = N↓ + N↑. Here, the trapping potential
V (r) is assumed to be smooth. First, we calculate the one-
particle density matrix. Consider a normalized N-body energy
eigenstate

|
〉 = (N↑!N↓!)−1/2
∫

D↑
1 D↓

1 
(r1, . . . , rN↑ , s1, . . . , sN↓ )

×ψ
†
↑(r1), . . . , ψ†

↑(rN↑ )ψ†
↓(s1), . . . , ψ†

↓(sN↓ )|0〉, (8)

where r1, . . . , rN↑ are the position vectors of the spin-up
fermions, s1, . . . , sN↓ are the position vectors of the spin-down
fermions, ψ

†
↑(r) is the creation operator for a spin-up fermion

at position r, ψ
†
↓(s) is the creation operator for a spin-down

fermion at position s, D↑
i ≡ ∏N↑

μ=i d2rμ, D↓
i ≡ ∏N↓

μ=i d2sμ,
and 
(r1, . . . , rN↑ , s1, . . . , sN↓ ) is the N-body wave function
which is antisymmetric under the interchange of the positions
of any two spin-up (spin-down) fermions. When r1 and s1

are close, the wave function satisfies the 2D Bethe-Peierls

boundary condition


 = A

(
r1 + s1

2
; r2, . . . , rN↑ , s2, . . . , sN↓

)

× 1

2π
ln

a2D

|r1 − s1| + O(|r1 − s1|), (9)

where a2D is the two-dimensional s-wave scattering length,
and A is a function of (N − 1) position vectors. The one-
particle density matrix for the spin-σ fermions is defined as

pσ (r, r + b) = 〈
|ψ†
σ (r)ψσ (r + b)|
〉. (10)

In particular, by substituting Eq. (8) into the above definition,
we find that

p↑(r, r + b) = N↑
∫

D↑
2 D↓

1 
∗(r, r2, . . . , rN↑ , s1, . . . , sN↓ )

×
(r + b, r2, . . . , rN↑ , s1, . . . , sN↓ ). (11)

We will expand p↑(r, r + b) through order O(b3) at small
distance b. Since 
 is singular when two fermions in different
spin states are close, we divide the 2(N − 1)-dimensional in-
tegration domain into two regions: Cη and Dη. Dη is the region
in which every spin-down fermion lies outside of the circle of
radius η centered at r, that is, |sμ − r| > η for μ = 1, . . . , N↓,
which is shown in Fig. 1(a). Cη is the complement of Dη.
We set η small but η > b. In Cη the cases that two or more
spin-down fermions come inside the small circle of radius η

centered at r are possible, but the contributions from these
cases are suppressed by Fermi statistics and are of higher
order than b4 [see Fig. 1(c)]. Next, we calculate the integrals
in these two regions and add them up, then the dependencies
on η will be canceled.

In Dη, we expand 
 in powers of b as


(r + b, R) = 
(r, R) + ∇r
(r, R) · b

+ 1

2

2∑
i, j=1

∂2

∂ri∂r j

(r, R)bib j + Tb + O(b4),

(12)

where R ≡ (r2, . . . , rN↑s1, . . . , sN↓ ) and Tb ≡ 1
3!

∑2
i, j,k=1

∂3

∂ri∂r j∂rk

(r, R)bib jbk . Let ID be the integral evaluated in Dη,

and IC be the integral evaluated in Cη. We find

ID = nD
↑ (r) + u↑(r) · b + 1

2

2∑
i, j=1

v↑,i j (r)bib j + T ′
b + O(b4),

(13)

where

nD
↑ (r) = N↑ lim

η→0

∫
Dη

D↑
2 D↓

1 |
(r, R)|2, (14)

u↑(r) = N↑ lim
η→0

∫
Dη

D↑
2 D↓

1 
∗(r, R)∇r
(r, R), (15)

v↑,i j (r) = N↑ lim
η→0

∫
Dη

D↑
2 D↓

1 
∗(r, R)
∂2

∂ri∂r j

(r, R), (16)

T ′
b = N↑ lim

η→0

∫
Dη

D↑
2 D↓

1 
∗(r, R)Tb. (17)
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(a) Dη (b) The 1st subregion of Cη (c) 2 or more spin-down fermions inside
the circle of radius η centered at r

FIG. 1. The configuration of N fermions. (a) shows the region Dη, where no spin-down fermion comes inside the circle centered at r with
radius η. (b) shows that a spin-down fermion at position s is within the circle of radius η centered at r. (c) shows that two or more spin-down
fermions come inside the small circle, and the probability amplitudes of these situations are suppressed by Fermi statistics.

To calculate the contributions from the region Cη, we use the
Bethe-Peierls boundary condition (9). The region Cη can be
approximately partitioned into N↓ subregions, and in the μth
subregion (μ = 1, . . . , N↓) sμ is within the circle of radius η

centered at r. The contributions to IC from these subregions
are equal due to Fermi statistics. In the first subregion [shown
in Fig. 1(b)] we have


(r, R′) = A

(
r + s

2
; R′

)
× 1

2π
ln

a2D

|r − s| + O(|r − s|),
(18)


(r + b, R′) = A

(
r + s + b

2
; R′

)
× 1

2π
ln

a2D

|r + b − s|
+O(|r + b − s|), (19)

where s ≡ s1 and R′ ≡ (r2, . . . , rN↑s2, . . . , sN↓ ). We then do
the following expansions,

A

(
r + s

2
; R′

)
= A(r; R′) − q

2
· ∇rA + O(q2), (20)

A

(
r + s + b

2
; R′

)
= A(r; R′) +

(
b
2

− q
2

)
· ∇rA

+ O(|b − q|2), (21)

where q = r − s. So we have

IC = N↑N↓
∫

D↑
2 D↓

2

∫
q<η

d2qFb + O(b4), (22)

where

Fb = 1

4π2
ln

a2D

q
ln

a2D

|q + b|
(

A∗ − ∇rA∗ · q
2

)

×
[

A + ∇rA ·
(

b
2

− q
2

)]
. (23)

Carrying out the integral IC and adding it to ID, we get

p↑(r, r + b) = IC + ID

= n↑(r) + u↑(r) · b + 1

8π
C2D(r)b2 ln

b

a2De

+ 1

2

2∑
i, j=1

v↑,i j (r)bib j

+ 1

16π
b2

(
1

2
ln

b

a2D
− 3

8

)
w∗ · b

+ 1

16π
b2

(
3

2
ln

b

a2D
− 11

8

)
w · b

+ T ′
b + O(b4), (24)

where

n↑(r) = N↑
∫

D↑
2 D↓

1 |
(r, R)|2, (25)

C2D(r) ≡ N↑N↓
∫

D↑
2 D↓

2 |A(r; R′)|2, (26)

w(r) ≡ N↑N↓
∫

D↑
2 D↓

2 A∗(r; R′)∇rA(r; R′). (27)

n↑(r) is the spatial density of spin-up fermions at r, C2D(r)
is the 2D contact density, and w(r) is related to the
center-of-mass motion of small-distance pairs of fermions in
different spin states. We can also find a similar expansion for
p↓(r, r + b).

III. UNIVERSAL ENERGY FUNCTIONAL IN 2D

We define an absolutely convergent series

Jσ (β ) ≡
∑

ν

nνσ e−βεν =
∑

ν

〈
|c†
νσ cνσ |
〉e−βεν , (28)

where β satisfies Re β � 0, |
〉 is an N-body energy eigen-
state,

nνσ = 〈
|c†
νσ cνσ |
〉 (29)

is the occupation probability of the spin-σ state of the νth
single-particle level,

cνσ =
∫

d2rφ∗
ν (r)ψσ (r) (30)
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is the fermion annihilation operator of such a single-particle
state, and φν (r) is the wave function of the νth single-particle
level in the trapping potential V (r) and satisfies the single-
particle Schrödinger equation[

− h̄2

2m
∇2 + V (r)

]
φν (r) = ενφν (r), (31)

and the normalization condition∫
|φν (r)|2d2r = 1. (32)

We rewrite Jσ (β ) as

Jσ (β ) =
∫

d2rd2r′Uβ (r, r′)pσ (r, r′), (33)

where Uβ (r, r′) = ∑
ν e−βεν φν (r)φ∗

ν (r′) is the propagator of
a single particle moving in the potential V (r) within a time
−ih̄β. For a small positive β, at |r − r′| 
 h̄

√
β/m the propa-

gator is exponentially suppressed, while at |r − r′| ∼ h̄
√

β/m
we have a short imaginary-time expansion

Uβ (r, r′) = m

2π h̄2β

[
1 − V (r) + V (r′)

2
β

]

× exp

[
−m(r − r′)2

2h̄2β

]
+ O(β ). (34)

Recall that when |r − r′| is small, we also have an expansion
of pσ (r, r′). Defining Gσ = Uβ (r, r′)pσ (r, r′), we have

Gσ = m

2π h̄2β

[
1 − V (r) + V (r′)

2
β

]
exp

[
− mb2

2h̄2β

]

×
[

n↑(r) + u↑(r) · b +
2∑

i, j=1

v↑,i j (r)
bib j

2

+b2C2D(r)

8π
ln

b

a2De
+ b2w · b

16π

(
3

2
ln

b

a2D
− 11

8

)

+b2w∗ · b
16π

(
1

2
ln

b

a2D
− 3

8

)]
+ O(β ), (35)

where b = r′ − r. Substituting the above result into Eq. (33),
we find

Jσ (β ) = Nσ − β

∫
d2rV (r)nσ (r)

− h̄2I2Dβ

8πm

(
1 + γ + ln

ma2
2D

2h̄2β

)

+ h̄2β

2m

∫
d2r

2∑
i=1

vσ,ii(r) + O(β2), (36)

where

Nσ =
∫

d2rnσ (r), (37)

I2D =
∫

d2rC2D(r). (38)

Outside of the tiny range of two-body interactions, the N-body
Schrödinger equation is simplified as

E
 =
N↑∑

μ=1

[
− h̄2

2m
∇2

rμ
+ V (rμ)

]



+
N↓∑

μ′=1

[
− h̄2

2m
∇2

sμ′ + V (sμ′ )

]

, (39)

where rμ �= sμ′ for all μ,μ′. Multiplying both sides of
Eq. (39) by 
∗, integrating them over r1, . . . , rN↑ , s1, . . . , sN↓
for rμ �= sμ′ for all μ,μ′, we get

∑
σ

∫
d2r

[
V (r)nσ (r) − h̄2

2m

2∑
i=1

vσ,ii(r)

]
= E . (40)

Summing Eq. (36) over σ , we find∑
σ

Jσ (β ) =
∑
νσ

nνσ e−βεν

= N − h̄2I2Dβ

8πm

(
1 + γ + ln

ma2
2D

2h̄2β

)

− β
∑

σ

∫
d2r

[
V (r)nσ − h̄2

2m

2∑
i=1

vσ,ii

]

+ O(β2)

= N − Eβ − h̄2I2Dβ

4πm

(
1 + γ + ln

ma2
2D

2h̄2β

)

+ O(β2). (41)

Let

ρ(ε) ≡
∑

σ

ρσ (ε) =
∑
νσ

nνσ δ(ε − εν ). (42)

Equation (41) can be rewritten as∫ +∞

−∞
ρ(ε)e−βεdε = N − h̄2I2Dβ

4πm

(
1 + γ + ln

ma2
2D

2h̄2β

)

− Eβ + O(β2). (43)

Setting β = η + is where η is a positive infinitesimal and s
is real, we see that the above equation shows the Fourier
transform of ρ(ε) at small s, and this Fourier transform has
a singular term proportional to s ln s. This singular term is
caused by a power-law tail of the coarse-grained version of
ρ(ε) at ε → ∞. Taking the inverse Fourier transform of this
singular term, we find the power-law tail shown in Eq. (5).

Applying d
dβ

to both sides of Eq. (43), we find

E =
∫ ∞

−∞
ρ(ε)εe−βεdε − h̄2I2D

4πm

(
γ + ln

a2
2Dm

2h̄2β

)
+ O(β ).

(44)

We divide the domain of integration over ε into two regions:
One is (−∞, εM) and the other is (εM,∞), where εM is
an energy scale such that εM is very large but εMβ � 1. In
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(−∞, εM) we have∫ εM

−∞
ρ(ε)εe−βεdε ≈

∫ εM

−∞
ρ(ε)εdε, (45)

while in (εM,∞) we use Eq. (5) to do the integral:∫ ∞

εM

ρ(ε)εe−βεdε = h̄2I2D

4πm

∫ ∞

εM

ε−1e−βεdε

= h̄2I2D

4πm
�(0, εMβ )

= h̄2I2D

4πm
[−γ − ln (εMβ )] + O(εMβ ).

(46)

Thus, taking β → 0, we get

E = lim
εM→∞

[∫ εM

−∞
ρ(ε)εdε − h̄2I2D

4πm
ln

e2γ ma2
2DεM

2h̄2

]

= lim
εM→∞

⎛
⎝ ∑

εν<εM

ενnν − h̄2I2D

4πm
ln

e2γ ma2
2DεM

2h̄2

⎞
⎠, (47)

which is Eq. (3).
According to Eqs. (10), (29), and (30), we have

nνσ =
∫

d2r
∫

d2bφν (r)φ∗
ν (r + b)pσ (r, r + b). (48)

When εν is large, the integrand as a function of b oscillates
rapidly, which implies that the only important contribution
is from the singular term in the expansion of pσ (r, r + b)
at b → 0 [41], and this singular term is 1

8π
C2D(r)b2 ln b

a2De .
Since φν (r) satisfies the single-particle Schrödinger equation,
Eq. (31), we have

φ∗
ν (r + b) ≈ (h̄2/2mεν )2∇4

bφ∗
ν (r + b), (49)

with a relative error ∼O(ε−1
ν ) at b ∼

√
h̄2/2mεν . Substituting

Eq. (49) into Eq. (48) and carrying out the integral over b, we
find

nνσ = 1

k4
ν

∫
d2rC2D(r)|φν (r)|2 + O

(
ε−5/2
ν

)
, (50)

where kν = √
2mεν/h̄.

IV. ONE-PARTICLE DENSITY MATRIX IN 1D

The calculation procedure in 1D is similar to the one in 2D.
We define a normalized N-body energy eigenstate |
〉 in 1D,

|
〉 =(N↑!N↓!)−1/2
∫

D̃↑
1 D̃↓

1 
(x1, . . . , xN↑ , y1, . . . , yN↓ )

× ψ
†
↑(x1), . . . , ψ†

↑(xN↑ )ψ†
↓(y1), . . . , ψ†

↓(yN↓ )|0〉, (51)

where N = N↑ + N↓, N↑ is the number of spin-up fermions,
N↓ is the number of spin-down fermions, x1, . . . , xN↑ are the
coordinates of the spin-up fermions, y1, . . . , yN↓ are the co-
ordinates of the spin-down fermions, ψ

†
↑(x) is the creation

operator for a spin-up fermion at position x, ψ
†
↓(y) is the

creation operator for a spin-down fermion at position y, D̃↑
i ≡∏N↑

μ=i dxμ, D̃↓
i ≡ ∏N↓

μ=i dyμ, and 
(x1, . . . , xN↑ , y1, . . . , yN↓ )

is the N-body wave function which is antisymmetric under the
interchange of any two spin-up (spin-down) fermions. The 1D
Bethe-Peierls boundary condition is

|
〉 = A

(
x1 + y1

2
; x2, . . . , xN↑ , y2, . . . , yN↓

)

×
(

1 − |x1 − y1|
a1D

)
+ O(|x1 − y1|2), (52)

which is satisfied by the wave function when x1 and y1 are
close. The one-particle density matrix for spin-σ fermions in
1D is defined as

pσ (x, x + b) = 〈
|ψ†
σ (x)ψσ (x + b)|
〉. (53)

For spin-up fermions, we substitute Eq. (51) into the above
definition and find

p↑(x, x + b) = N↑
∫

D̃↑
2 D̃↓

1 
∗(x, x2, . . . , xN↑ , y1, . . . , yN↓ )

× 
(x + b, x2, . . . , xN↑ , y1, . . . , yN↓ ). (54)

After finishing calculations analogous to those for the 2D one-
particle density matrix, we find

p↑(x, x + b) =n↑(x) + u↑(x)b + 1

2
v↑(x)b2

+ C1D(x)

(
−b2a1D

4
+ |b|3

12

)

+ w(x)
2b3

3a1D
+ w∗(x)

b3

6a1D
+ T ′

b + O(b4),

(55)

where

n↑(x) = N↑
∫

D̃↑
2 D̃↓

1 |
(x, X)|2, (56)

u↑(x) = N↑ lim
η→0

∫
Dη

D̃↑
2 D̃↓

1 
∗(x, X)
∂

∂x

(x, X), (57)

v↑(x) = N↑ lim
η→0

∫
Dη

D̃↑
2 D̃↓

1 
∗(x, X)
∂2

∂x2

(x, X), (58)

T ′
b = N↑b3

3!
lim
η→0

∫
Dη

D̃↑
2 D̃↓

1 
∗(x, X)
∂3

∂x3

(x, X), (59)

C1D(x) ≡ 4N↑N↓
a2

1D

∫
D̃↑

2 D̃↓
2 |A(x; X′)|2, (60)

w(x) ≡ N↑N↓
∫

D̃↑
2 D̃↓

2 A∗(x; X′)
∂A(x; X′)

∂x
, (61)

and X ≡ (x2, . . . , xN↑ , y1, . . . , yN↓ ), X′ ≡
(x2, . . . , xN↑ , y2, . . . , yN↓ ). n↑(x) is the spatial density of
spin-up fermions at position x, C1D(x) is the 1D contact
density, and w(x) is related to the center-of-mass motion of
small-distance pairs of fermions in different spin states. We
can also find a similar expansion for p↓(x, x + b).

V. UNIVERSAL ENERGY FUNCTIONAL IN 1D

We define Jσ (β ) in 1D,

Jσ (β ) ≡
∑

ν

nνσ e−βεν =
∑

ν

〈
|c†
νσ cνσ |
〉e−βεν , (62)
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where

cνσ =
∫ ∞

−∞
φ∗

ν (x)ψσ (x)dx, (63)

and φν (x) is the wave function of the νth single-particle level
in the trapping potential V (x) and satisfies the single-particle
Schrödinger equation[

− h̄2

2m

d2

dx2
+ V (x)

]
φν (x) = ενφν (x), (64)

and the normalization condition∫ ∞

−∞
|φν (x)|2dx = 1. (65)

We can rewrite Jσ (β ) as

Jσ (β ) =
∫ ∞

−∞
dx

∫ ∞

−∞
dx′Uβ (x, x′)pσ (x, x′), (66)

where Uβ (x, x′) = ∑
ν e−βεν φν (x)φ∗

ν (x′) is the propagator of
a single particle moving in the potential V (x) within a time
−ih̄β. We find

Jσ (β ) = Nσ − β

∫
dxV (x)nσ (x) − h̄2a1DI1Dβ

4m

+ h̄2β

2m

∫
dxvσ (x) + h̄3I1Dβ3/2

3
√

2πm3
+ O(β2), (67)

where

Nσ =
∫ ∞

−∞
dx nσ (x), (68)

I1D =
∫ ∞

−∞
dx C1D(x). (69)

With the help of the N-body Schrödinger equation, we find∑
σ

Jσ (β ) =
∑
νσ

nνσ e−βεν

= N − β
∑

σ

∫
dx

[
V (x)nσ (x) − h̄2

2m
vσ (x)

]

− h̄2a1DI1Dβ

2m
+ 2h̄3β3/2I1D

3
√

2πm3

= N − Eβ − h̄2a1DI1Dβ

2m

+2h̄3I1Dβ3/2

3
√

2πm3
+ O(β2). (70)

Applying d
dβ

to the above expansion and taking β → 0, we
get the energy functional shown in Eq. (6). Clearly, the energy
functional only gains an extra finite shift, − h̄2a1DI1D

2m , due to the
interaction. In 1D, the energy theorem is [32]

E =
∑

σ

∫
dk

2π

h̄2k2

2m
nσ (k) − h̄2a1DI1D

2m
+ 〈V 〉. (71)

If there is no external potential, namely if V ≡ 0, the energy
functional in Eq. (6) reduces to this energy theorem.

We also calculate the asymptotics of ρ(ε) and nνσ in 1D,
and the results are Eq. (7) and

nνσ = 1

k4
ν

∫
dx C1D(x)|φν (x)|2 + O(ε−5/2

ν ), (72)

where kν = √
2mεν/h̄.

VI. SUMMARY AND DISCUSSION

In this work, we have generalized the universal energy
functional for trapped two-component Fermi gases from 3D
to lower spatial dimensions. We have shown that in lower
dimensions the total energy of two-component fermions with
zero-range interaction trapped in any smooth potential can be
expressed as linear functionals of the occupation probabilities
of one-particle energy eigenstates, just as in 3D. We first
calculated the one-particle density matrix of two-component
fermions by using the Bethe-Peierls boundary conditions. We
have also calculated the asymptotic formulas of the occupa-
tion probabilities of single-particle levels at high energy.

The energy functional [Eq. (3) in 2D, or Eq. (6) in 1D] is a
universal functional, and it holds for all finite-energy states,
i.e., both few-body and many-body states, both pure and
mixed states, both zero-temperature and finite-temperature
states. It will be important to understand the nontrivial con-
straints on the occupation probabilities of the single-particle
levels, because such an understanding will enable one to de-
termine the many-body ground state energies by minimizing
the energy functional in the presence of such constraints. One
might be able to generalize the energy functional to multi-
component fermions, to fermions with unequal masses, and
to bosons. Future experiments might be able to measure both
the occupation probabilities of single-particle levels and the
many-body energies of the systems we have studied. Such
experiments should verify the energy functionals that we have
derived.
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