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Temporal Talbot interferometer of a strongly interacting molecular Bose-Einstein condensate
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The Talbot interferometer, as a periodic reproduction of momentum distribution in the time domain, finds
significant applications in multiple research. The interparticle interactions during the diffraction and interference
process introduce numerous many-body physics problems, leading to unconventional interference character-
istics. This work investigates both experimentally and theoretically the influence of interaction in a Talbot
interferometer with a 6Li2 molecular Bose-Einstein condensate in a one-dimensional optical lattice, with interac-
tion strength directly tunable via magnetic Feshbach resonance. A clear dependence of the period and amplitude
of signal revivals on the interaction strength can be observed. While interactions increase the decay rate of the
signal and advance the revivals, we find that over a wide range of interactions, the Talbot interferometer remains
highly effective over a certain evolutionary timescale, including the case of fractional Talbot interference. This
work provides insight into the interplay between interaction and the coherence properties of a temporal Talbot
interference in optical lattices, paving the way for research into quantum interference in strongly interacting
systems.
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I. INTRODUCTION

The Talbot effect constitutes a near-field interference phe-
nomenon wherein a periodic pattern undergoes self-imaging
after passing through a diffraction grating [1]. The applicabil-
ity of the paraxial approximation is pivotal to this near-field
interference effect, with the periodic revivals stemming from
phase coherence across adjacent grating slits [2,3]. The Talbot
effect and its variants have been harnessed in diverse domains,
including x-ray imaging [4,5], waveguide arrays [6,7], and
plasmonics [8,9], influencing classical [10], nonlinear [11],
and quantum optics research [12] significantly.

Observations of the Talbot effect extend to atomic and
molecular matter-wave interference [13–15]. Ultracold gases,
with their exceptional controllability and advanced measuring
approaches [16], offer a robust experimental framework for
exploring novel quantum states [17], orbit-based quantum
simulations [18–20], quantum computing [21,22], precision
metrology [23,24], and macroscopic matter-wave interference
[25–27]. Lattice pulses can impart varying momentum distri-
butions to particles. Utilizing a pair of such pulses as gratings
creates a temporal Talbot interferometer, enabling the obser-
vation of periodic revivals with adjustable intervals [28] and
measurable via time-of-flight imaging [29].
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In interference experiments, efforts typically focused on
minimizing interaction-induced coherence perturbations [30].
Such interactions often resulted in pronounced collisions, evi-
dent in the s-wave scattering halos of atomic clouds expanding
from an optical lattice [31–33]. Nevertheless, interactions are
an inherent variable and necessitate quantitative analysis for
appropriate adjustment.

Heretofore, the impact of interactions on Talbot interfer-
ometry has been cursorily addressed only in Ref. [34], with
a preliminary assessment of the influence of tunable on-site
interactions presented in Ref. [35]. Yet experimental results
elucidating Talbot interference within the context of direct
interaction modulation remain unreported. Here, we study
both experimentally and theoretically the effects of interac-
tions within a Talbot interferometer, utilizing a 6Li2 molecular
Bose-Einstein condensate (mBEC) in a one-dimensional opti-
cal lattice. The interaction strength is precisely controlled via
magnetic Feshbach resonance [36]. We observe the dynamics
of Talbot signal revivals across diverse interaction conditions
and find a distinct relationship between interactions and the
periodicity and intensity of the signal revivals. In addition,
interference behaviors of the fractional Talbot effect [37] were
also observed in the presence of strong interactions. Numeri-
cal simulations were conducted to compare with experimental
data and aid in elucidating the underlying physical mecha-
nisms.

This paper is organized as follows. In Sec. II, we describe
our experimental procedure and the implementation method
of the Talbot interferometer with different interactions. In
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FIG. 1. Schematic of the experimental system. (a) Schematic of the experimental system. Feshbach mBECs are trapped in a pair of
crossover dipole traps. The blue circles in the x-y plane represent the Feshbach magnetic coils and the red Gaussian beams along the x
axis mark the crossed optical dipole trap. The two orange arrows in the x-y plane stand for the lattice beams with a crossing angle of 120◦.
The blue arrow shows the imaging direction, which is perpendicular to the x-y plane. (b) A typical experimental time sequence. The black
line represents the optical lattice, and the two pulses with duration of τ0 = 0.7 µs before and after τevo are Talbot pulses. The interference time
τ = τevo + τ0. The blue line and green line represent the strength of the Feshbach field and optical dipole trap, respectively. The Feshbach
field is switched from B0 to Bt in tswitch and kept for a period of thold = 100 ms. The optical dipole trap remains constant and is turned off
together with the second lattice pulse. The red line represents the absorption imaging pulse, which is applied after the time-of-flight process
with time tTOF = 3 ms. Different stages are denoted at the top with varying shades of gray. (c) T0: mBEC. (d) T1: the scattering pattern with
pulse U0 = 50Er and t = 0.7 µs. (e) T2: the interference pattern with τevo = TT/2. (top) Raw image after 3-ms TOF (ten images averaged)
for add = 865a0 and (bottom) the corresponding bimode fitting result for distinguishing between condensed and noncondensed particles. The
scales on the horizontal axis represents positions at ±2nh̄k modes, with each division marking 48 pixels (168 µm).

Sec. III, the theoretical model for the Talbot interferometer in
a one-dimensional (1D) optical lattice with strong interaction
strength is described. In Secs. IV and V, we present the experi-
mental results of Talbot signals decay and Talbot revivals shift
under different interaction strengths, respectively. The exper-
imental results of the fractional Talbot effect in the presence
of interactions are described in Sec. VI. Finally, we give the
conclusion in Sec. VII.

II. TEMPORAL TALBOT INTERFEROMETER

Our experiments are performed with BECs of 6Li Fes-
hbach molecules (refer to Appendix A). In each cycle we
prepare a two-state mixture of lithium atoms in the lowest hy-
perfine states |F = 1/2, mF = 1/2〉(|1〉) and |F = 1/2, mF =
−1/2〉(|2〉). Then, through evaporation cooling in a cross-
beam dipole trap at the unitary limit (832 Gauss) of the
Feshbach resonance [38] and by switching to the BEC side
(670–750 Gauss in our experiment), we obtain the mBECs
of ∼20 000 6Li2 Feshbach molecules [39]. By controlling the
magnetic field we can tune the s-wave scattering length be-
tween molecules, which is given by add = 0.6a12 [40], where

a12 is the s-wave scattering length between atoms in states |1〉
and |2〉.

Figure 1(a) shows the schematic of the experimental setup.
The mBECs are confined in a trapping potential formed by
a pair of far-red-detuned lasers in a vertical plane with a
30◦ to each other. A pair of hollow electric coils produce
the Feshbach Resonance magnetic field. The combined trap-
ping frequencies are (ωx, ωy, ωz ) = 2π × (20, 128, 132) Hz,
where the x axis refers to the horizontal direction where the
plane trapping beams are located, y the other horizontal di-
rection, and z the vertical direction. We use two beams of
λ = 1064 nm lasers, mutually separated by θ = 120◦, to form
a one-dimensional lattice potential U (x) = U0cos2(πx/D) in
the horizontal direction, where U0 is the lattice potential
depth and D = λ/2sin(θ/2) = 614.3 nm the lattice spatial
period. The lattice laser beams are focused to beam waists
of (wHorizontal,wVertical ) = (250, 110) µm. The beams are large
compared to the size of the mBEC, and hence the lattice
potential depth is approximately uniform across the cloud.
The two-lattice laser beams are derived from the same laser
source, the intensity controlled by an acoustooptic modulator
(AOM), and split by a polarizing beam splitter to about 50:50,
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FIG. 2. Temporal Talbot interferometer of strongly interacting
mBEC. The plot shows the proportion of the 0h̄k particles over
the total number of particles in the absorption image for different
free evolution times between two pulses of a 1D optical lattice for
add = 865a0. The red dots are experimental results, and the error
bar shows the standard error of five measurements. The blue dashed
and solid lines are the theoretical results without damping and with
exponential decay correction, respectively. Raw plots of three differ-
ent nodes during oscillation are presented in the insets. The red box
indicates the molecular statistical range of each momentum mode.
The positions of TT/2 multiples are indicated by gray dotted lines.

on-off controlled by the two other AOMs synchronously. The
characteristic lattice energy is Er = h̄2k2/2m, where k = π/D
and m is the mass of a lithium molecule (6Li2).

The experimental time sequence is presented in Fig. 1(b).
After completion of evaporation cooling, the Feshbach mag-
netic field is adiabatically (500 Gauss/s) ramped from B0 to Bt

within tswitch and kept for an additional duration of thold = 100
ms to stabilize. The lattice potential is then pulsed on two
times with a variable evolution interval τevo in between. The
Talbot interference time τ is defined by the sum of the evolu-
tion time τevo and the duration of the first pulse τ0. The optical
dipole traps remain unchanged throughout the experiment,
so a well-defined geometry and interaction energy are main-
tained during the scattering and interference process. After the
second pulse, detection is performed by absorption imaging
with tTOF = 3 ms time of flight (TOF). Figure 1(c) depicts the
absorption image after 3 ms TOF before the first pulse (T0) as
mBEC. In addition, Fig. 1(d) depict the 3 ms TOF absorption
imaging results taken after the first pulse (T1), showing the
momentum distribution of particles after Kaptiza-Dirac (KD)
scattering, which refers to two-photon scattering processes
when particles move through a lattice [41]. The 3 ms TOF
image after the second pulse (T2) with an interference time of
τ = TT /2 is shown in Fig. 1(e).

In the experiment, the lattice depth of the pulses, which
is calibrated by KD scattering, is set to U0 = 50Er and the
duration of both pulses is τ0 = 0.7 µs. The pulse time is short
enough to keep within the Raman-Nath regime t

√
ErU0/h̄ <

1 [42] so that the particles remain approximately station-
ary during the lattice pulse and the interference process. In
Fig. 2, the relative population P0 as a function of the varied
interval τevo for add = 865a0 is shown by the red dots, with
τevo changed every 0.2 µs up to 60 µs. a0 is the Bohr radius

(0.0529 nm) and P0 = N0/Np, in which N0 is the particle
number of 0h̄k modes and Np the total number of particles.

Here, we introduce Method 1 for obtaining Talbot signals
(also the traditional one). N0 and Np are obtained by inte-
grating the number of particles in square regions near each
momentum peak, as indicated by the red box in the inset.
The side length of boxes is 84 µm, equivalent to the range of
±0.5h̄k for each momentum mode.

The Talbot time in our system is TT � 22.5 µs, while the
theoretical value is Ttheoretic = h/4Er = 22.7 µs. The two es-
sentially stay the same, with the slight deviation attributed to
a minute discrepancy in the angle of the lattice beams. The
positions of TT/2 multiples are indicated by gray dotted lines
in Fig. 2. When there is no significant momentum broadening
in the initial state or considerable interaction, P0 will become
maximal close to 1 at odd multiples of the half Talbot time
TT/2 and minimal nearly 0 at even multiples of TT/2, just
as the theoretical simulation result shows (blue dashed line).
However, in the case of strong interactions, the decay of the
phase correlations cannot be ignored and is reflected in an
exponential decay. We apply an exponential correction to the
simulation result and find it aligns well with the experimental
data.

III. THEORETICAL ANALYSIS

To further understand the experiment, we conduct a theo-
retical analysis of the temporal Talbot interferometer under
various interactions. The simulations employ a mean-field
approach based on the Gross-Pitaevskii equation (GPE)

ih̄
∂�

∂t
=

[
− h̄2

2m

∂2

∂x2
+ 1

2
mω2

x x2 + U (x) + g|�|2
]
�, (1)

where m is the mass of a molecule 6Li2, ωx is the com-
bined trapping frequency, U (x) is the lattice potential, and
g ∼ add the effective interaction constant. In our system, the
dynamics in the elongated direction are more relevant, while
the transverse directions can be integrated out, leading to an
effective 1D description with the 1D interaction parameter,
g1D = 16h̄2add/3mR2

TFr . The RTFr is the Thomas-Fermi ra-
dius along the radial directions of the three-dimensional (3D0
mBEC and is calculated with the radial combined trapping
frequencies (ωy, ωz) which are calibrated at a set of scattering
lengths.

We implement simulations of the Talbot interferometer
with different interaction strength (scattering length add ),
different optical lattice pulses (lattice depth U0 and pulse
duration τ0), and different characteristic lattice energy Er . The
simulation results under the same conditions as the experi-
ment are presented in Figs. 2 and 4 for comparison, while
the others are presented in Appendix B to show the overall
trend. It demonstrates that the effect of interaction on Talbot
interference can be approximately determined by the values
of g/Er and U0τ0.

When g/Er is small, the signal curve changes quite little
compared to the situation without interaction. For larger g/Er ,
the whole curve compresses towards t = 0, and the peaks
exhibit a negative temporal shift as well as an amplitude
decay. From an analytical perspective, the interaction term in
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FIG. 3. The damping of the Talbot signals under different inter-
actions. (a) The first peak of P0 under different interactions. The red
square dots with error bars are the results of Method 1, and the blue
circular dots are the results of Method 2, fitted with the black line.
(b) The decay rate of the Talbot signals under different interactions.
(c) The variation of the full width at half maximum (FWHM) of the
molecular cluster with momentum 0h̄k, under different interactions,
as a function of the interference period. The length corresponding to
2h̄k in the momentum space is 168 µm.

(1) can be approximately treated as a shallow lattice term with
a position-dependent amplitude [43]. It induces an extra phase
in the free evolution stage like an ordinary optical lattice,
resulting in a positive correction on Er . Therefore, Ttheoretic =
h/4Er will decrease and cause a negative temporal shift on
the peaks. Meanwhile, a higher proportion of high-momentum

FIG. 4. The shift of Talbot time caused by interactions. The blue
cross dots and the red round dots show the experimental results of
the oscillation of Talbot signals near τ = 3TT/2 under 655a0 and
2004a0, fitted with the blue solid line and red solid line, respectively.
Details near the peak are shown in the inset, with the simulation
results marked by the blue dashed (right) line (655a0) and red dashed
(left) line (2004a0).

modes is produced, strengthening the collision and decoher-
ence among particles to make a signal damping. Both of these
effects are caused by interactions during the evolution stage,
rather than the lattice pulse stage.

In addition, as U0τ0 increases, a greater number of
higher-order momentum modes emerge, accompanied by the
appearance of submaximal peaks in the time domain, other
than the principal maxima of the Talbot signal. The phe-
nomenon is commonly referred to as the fractional Talbot
effect, and there are some different behaviors under strong
interactions.

IV. TALBOT SIGNAL DAMPING UNDER
DIFFERENT INTERACTIONS

To experimentally delineate the effect of interaction on the
damping of temporal Talbot signals, we evaluate the decay
rates for varying interaction strengths modulated via Fesh-
bach resonance. The scattering lengths in the experiment are
designated as add = 655a0, 865a0, 1330a0, 2004a0. In our
experiment, there is a notable reduction in particle count
as add decreases. To eliminate this disturbance, we utilize
μ/h̄ω̄ ∼ (Npadd )5/2 as the standard measure of interaction
strength.

Initially, we employed Method 1 to acquire the signals.
At τ = TT/2, the first peak of P0 showed no significant dif-
ference under varying interactions [red dots in Fig. 3(a)].
We find that the damping effect does not increase monoton-
ically with interaction strength, it diminishes after reaching a
peak rather (refer to Appendix C for details). Analysis of the
raw data reveals that strong interactions generate numerous
thermal particles near the 0h̄k momentum mode, originating
from collisions both during the interference phase and when
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different momentum components segregate during the TOF
stage. These particles cause distortions in the Talbot signals
and likely do not contribute to the oscillatory interference pro-
cess. This influence becomes more pronounced when μ/h̄ω̄ �
20.

Adopting the method from Ref. [44], we introduce Method
2 to refine the extraction of Talbot signals. A bimodal fit is
used to separate the condensed and noncondensed fractions,
with the latter being excluded from the analysis of the Talbot
signal [Fig. 1(d), bottom panel].

The signals from Method 2 at τ = TT/2, represented by
the blue dots in Fig. 3(a), correspond to the averaged fitted
results from 25 datasets. Contrary to the results from Method
1, a significant reduction in the amplitude of the first re-
vival correlated with increased interaction strength is noted,
implying that interactions induce damping during the pulse,
initial evolution, and TOF stages. However, the effect is minor
as P0 remains above 0.9. Furthermore, the fitting of these
points yields P0(τ = TT/2) ∼ 1 in the absence of interaction.
Applying this method, we chart the decay across the first
ten revivals for four distinct interaction strengths to derive
decay rates linearly (Appendix C). The absolute values of
the slopes are considered as the decay rates, and represented
by the blue dots in Fig. 3(b). Upon fitting an exponential
curve, we notice a significant increase in signal damping as
the interaction strength increases. This indicates a significant
impact of interaction on the evolution stage.

Despite its utility, Method 2 has some limitations. The
bimode fit’s accuracy is questionable for peaks with few parti-
cles, and variations in fitting parameters can significantly alter
the outcomes. For interactions below add = 1000a0, the fitting
results are comparable with Method 1, except for the absence
of error bars for individual data points.

For a more tangible perspective of interaction-induced
damping, we plot the variation in the full width at half max-
imum (FWHM) of the 0h̄k molecular clusters in Fig. 3(c).
For demonstration, the timeline has been simplified to Nevo =
2τ/Tactual, in which Tactual represents the actual Talbot time
TT under various interactions. An augmented FWHM sug-
gests a wider momentum distribution and reduced coherence.
The FWHM escalates with higher interaction strengths, no-
tably surpassing 2h̄k (168 µm) when Nevo = 11 at add =
2004a0. Correspondingly, P0 values indicate an almost com-
plete absence of condensed particles at zero momentum
with Nevo � 11 (refer to Appendix C for details). Mean-
while, the oscillation amplitude of the Talbot signal measured
at this time is almost zero, signifying the interferometer’s
breakdown.

The failure of the interferometer can largely be equated
with the decoherence of the system [43,45], which can be
largely attributed to two dominant factors. The first is the
momentum broadening caused by interactions, as illustrated
in Fig. 3(c). A broader momentum distribution implies that
the atoms participating in the interference deviate more from
the ideal ±2nh̄k momentum modes, disrupting the coher-
ence of the system. The second is the interparticle scattering
caused by interactions, which is clearly evidenced by a direct
bimode fit to the raw images, showing a larger scattering
length associated with a higher proportion of noncondensed
fractions. These noncondensates, which arise both during the

interference process and TOF procedure, constantly collide
with condensed molecules, causing irreversible detrimental
effects to the system’s coherence [33].

Method 1 and Method 2, as data processing techniques,
inherently cannot circumvent these two effects of interactions
on the interference, which are actually the primary obser-
vational targets of this experiment. However, Method 2 is
capable of excluding noncondensates, the byproducts of the
second effect, from the statistical analysis of the Talbot signal.
This allows for a more direct observation of the interactions’
impact on the main subject of the interferometer (the coherent
condensed portion). Method 2 also has its drawbacks, specif-
ically when the number of particles in the zero-momentum
mode condensate is low, the fitting results can become dis-
torted. This situation occurs more frequently at the signal
troughs under any interaction and at the signal peaks under
stronger interactions (add = 2004a0).

Apart from interactions, there are additional factors that
can affect the coherence of our interferometer, including the
optical and magnetic parts of the harmonic trap [27], quan-
tum fluctuations [46], thermal fluctuations [47], and so on.
To further mitigate the impact of these factors on coherence,
one may consider lowering the temperature of the condensate
[48], optimizing the harmonic trap [49], or employing special
techniques such as echo techniques [50,51].

V. INTERACTION-INDUCED TALBOT PERIOD SHIFT

To investigate the shift of the Talbot period due to varying
interaction strengths, we conduct experiments within a fixed
τ region, specifically around 3TT/2. This region is chosen
because it accentuates the period shift while maintaining a
relatively small decay of the signal. The selected time range
is approximately one times TT. Then the experimental data
are fitted with a no-interaction theoretical curve. The fitting
process is guided by several parameters, which include the
timescaling factor r, signal oscillation amplitude A, signal
offset b, and decay constant τdecay. The fitting expression is
as follows:

P0 = f (τevo) −→
P′

0 = A f [(1 + r)τevo]e
− τevo

τdecay

+ A′[1 − f [(1 + r)τevo]e
− τevo

τdecay ] + b, (2)

in which 0 � A + b � 1, 0 � A′ � A, b � 0. The experimen-
tal results and corresponding fitting curves for interaction
strengths of add = 655a0 and 2004a0 are depicted in Fig. 4.
We select the result with the smallest error after 100 iterations
of the fitting. Within the measured domain, the fitting curves
are in good agreement with the experimental data points.
A detailed view of the two curves around their respective
maxima is presented in the inset, and the results of theoret-
ical simulations are shown by the blue and red dashed lines.
Table I presents the simulated and experimental values of τevo

aligned with the peaks under different interaction intensities.
The parentheses indicate the τshift under various interac-

tions compared to those obtained under add = 655a0. The
experimental and simulated results exhibit similar trends, with
the values of τshift also being relatively close. This change in
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TABLE I. The temporal shift of τevo ∼ 3TT/2 under different
interactions.

add (a0) μ/h̄ω̄ Simulation (µs) Experiment (µs)

655 11.47 33.043 (0) 33.626 (0)
865 14.32 32.990 (−0.053) 33.527 (−0.099)
1330 19.45 32.904 (−0.139) 33.394 (−0.232)
2004 25.28 32.777 (−0.266) 33.082 (−0.544)

TT, as described in Sec. III, originates from the interaction’s
impact on Er or U0τ0 of optical lattices like an extra lattice.

Due to the limitations of the step size adjustment in the
interference duration and the measurement errors near the
maximum value, in experiments, it is only possible to quali-
tatively picture that increasing the interaction will shorten the
Talbot time and cause a temporal peak shift. For quantitative
measurements, as described in Sec. B, the accuracy can be
enhanced by applying a pair of small-angle lattice beams with
smaller Er .

VI. FRACTIONAL TALBOT EFFECT

Considering the fractional Talbot interferometer [13,37]
with higher-order momentum modes, collisions between par-
ticles with different momenta will become more intense
during the interference process. To check the effectiveness
under strong interactions, we modify the energy imparted to
the particles by altering the initial and final pulses. We present
the observation at different trap depths (U0) and fixed pulse
duration under the interaction strength of add = 865a0 (691
Gauss). The trap depth reaches values of 100Er and 150Er ,
giving a initial states (T1) of Figs. 5(a1) and 5(b1). For a trap
depth of U0 = 50Er , the peak of P0 only appears when the
evolution time is equal to the odd multiple of the half Talbot
period. However, as illustrated in Fig. 5(a2), for a trap depth
of U0 = 100Er , in addition to the maximum at odd multiples
of TT/2, there are two submaxima appearing between two
adjacent peaks, symmetrically distributed on both sides of the
maximum peak. When the optical lattice depth is increased
to U0 = 150Er , even more submaxima emerge, as illustrated
in Fig. 5(b2). This observation is also confirmed by numer-
ical simulations, showing the same results. The theoretical
curves are marked by solid blue lines and the experimental
data are marked by solid orange dots with error bars, in both
Figs. 5(a2) and 5(b2).

By comparing the initial states at different lattice
depths, it can be observed that when the depths are U0 =
50Er, 100Er, 150Er , respectively, the dominant momentum in
the initial state is 0h̄k, ±2h̄k, and ±4h̄k, while the number of
maxima appearing in each Talbot period is 1, 3, and 5. Thus
we can conclude that this fractional Talbot effect is caused by
the interference among higher-order momentum modes. Fur-
thermore, for initial states dominated by ±2nh̄k, there will be
2n + 1 maxima in each Talbot period. This conclusion is also
supported by the results of Gross-Pitaevskii equation (GPE)
simulations.

The influence of interactions on the fractional Talbot
interferometer can be observed through a comparison of

FIG. 5. Fractional Talbot effect of strong interacting mBEC.
(a) U0 = 100Er . (b) U0 = 150Er . (a1,b1) The initial state after the
first lattice pulse (T1). (a2,b2) Fractional Talbot interferometer with
add = 865a0. The theoretical curves are marked by solid blue lines
and the experimental data are marked by solid red dots with error
bars. τevo corresponding to integer multiples of TT/2 are depicted by
gray dashed lines.

experimental and theoretical curves. In addition to the pre-
viously mentioned decay, there are also changes in the shape
of certain peaks. As for the signal decay, the changes in peak
values at odd multiples of TT/2 are not significantly different
from those at low lattice depths. However, the decay of other
submaxima is much faster because the submaxima are mainly
generated by higher-order momentum interference, and the
dephasing caused by collisions between higher-order momen-
tum modes is more pronounced as the interaction strength
increases compared to lower-order momentum modes. The
changes in peak shape arise from the slight modifications of
the lattice depth due to interactions, which result in deviations
between the experimental and theoretical initial states. Over-
all, the behavior of the fractional Talbot interferometer under
strong interactions does not exhibit significant differences
compared to the regular case.

VII. CONCLUSION

In this study, we explore the effects of interaction
on the Talbot signal’s damping and temporal shift in a
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FIG. 6. Experimental apparatus. Schematics of the experimental
setup.

one-dimensional optical lattice. Our findings indicate that
interactions minimally influence the Talbot signal during
the pulse sequence. Conversely, intensified interactions in
the evolution stage accelerate the damping of the signal
markedly. This is also reflected by the widening response in
the half-width at half-maximum of the 0h̄k momentum modes.
Additionally, interactions induce a slight drift in the Talbot
time TT, resulting in an earlier peak occurrence. However,
within the experimentally acceptable interaction range, this
shift in Talbot time is practically inconsequential.

Across a wide range of interactions, the Talbot interfer-
ometer remains highly effective over a certain evolutionary
timescale, inclusive of fractional Talbot interference scenar-
ios. Under the modification of theoretical quantification, it
can be utilized for lattice parameter calibration, momentum
filtering, and coherence measurement in strongly interacting
systems.

This work provides insight into the interplay between in-
teraction and the coherence properties of a temporal Talbot
interferometer in optical lattices, paving the way for research
into quantum interference in strongly interacting systems.
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APPENDIX A: EXPERIMENTAL APPARATUS

The experimental setup, as illustrated in Fig. 6, consists of
an ultrahigh vacuum system comprising an atomic vapor oven,
a Zeeman slower, and a science chamber. The vacuum pres-
sure is maintained at an extremely low level of approximately
10−10 mbar in the oven section and a few 10−11 mbar in the
experimental chambers, thanks to the presence of two titanium
sublimation pumps and two ion getter pumps (40 L/150 L).
Laser cooling is employed in three sequential steps: the
magnetooptical trap (MOT), compressed magneto-optical trap
(C-MOT), and gray molasses. The MOT collects lithium
atoms, which have been laser cooled and collected from an
oven through a Zeeman slower, at the experimental cham-
ber using the D2 line optical transition (22s1/2 → 22 p3/2).

The MOT comprises cooling and repump lights that excite
atoms from the F = 3/2 and F = 1/2 states, respectively, and
typically captures around 2 × 109 atoms at a temperature of
approximately 1.5 mK. The cooling and repumping beams
are combined into the same optical fiber, which then generates
three pairs of laser beams with a retroreflection configuration.
By ramping the laser frequency close to resonance and de-
creasing the optical intensity in the C-MOT, the temperature is
further reduced to approximately 300 µK, while maintaining
around 8 × 108 atoms. The loading of atoms into the MOT
takes around 8 seconds, and the C-MOT lasts for about 35
ms. In our experiment, the cooling and repumping light for
the gray molasses has a blue detuning of approximately 6	

from the D1 line transition (22s1/2 → 22 p1/2), where the nat-
ural linewidth 	 of the excited state is 5.87 MHz. The laser
beams for the gray molasses overlap with those of the MOT,
facilitating optical alignment. The stage of gray molasses lasts
for 2 ms after switching off the magnetic field of the C-MOT,
resulting in a reduction of the atomic temperature to 80 µK,
approximately one order of magnitude smaller.

The creation of a Bose-Einstein condensate (BEC) neces-
sitates the application of various experimental techniques, as
well as the provision of an ultrahigh vacuum environment
and stable laser light for atom trapping and imaging. For 6Li,
the creation of homogeneous magnetic fields to form bosonic
molecules that can be condensed is an additional requirement.
After transferring the atoms to the optical dipole trap (ODT),
the quadrupole magnetic field of the MOT is switched off, and
a pair of Helmholtz coils provides homogeneous Feshbach
magnetic fields.

To achieve degenerate Fermi gases, we load cold atoms
into an ODT for evaporative cooling. The ODT light is
generated by a single-mode ytterbium-doped IPG fiber laser
(YLR-200-1064-LP-WC). The ODT light is turned on 200 ms
before the end of the MOT. By extinguishing the repumping
light of the gray molasses 100 µs earlier than the cooling light,
the atoms are pumped to the F = 1/2 states, which are the
lowest two magnetic sublevels |1〉 and |2〉. The configuration
of the ODT is shown in Fig. 1(a), with two laser beams
focused and intersecting in the science chamber at an angle of
30◦. The waist radius of the laser beam is 34 µm. To avoid op-
tical interference, two acoustooptical modulators (AOMs) are
used to control the laser beams at frequencies of +110 MHz
and −110 MHz, respectively. Evaporation cooling is then per-
formed by decreasing the optical power of the dipole trap. The
evaporation process is carried out under a magnetic field offset
of 832 Gauss, where the s-wave scattering length is infinitely
large, resulting in strong interaction between the spin states
and rapid thermalization. The ODT light is initially turned on
with a power of 200 W for each beam and kept on for approx-
imately 200 ms to reach equilibrium. The laser power is then
ramped down through a two-stage exponential attenuation
scanning process with a period of approximately 1.8 s. The
percentage of laser power is monitored by a photodetector. In
the first stages, the laser power is controlled by an external
voltage, while in the final stages, a proportional-integral (PI)
locking circuit is introduced to stabilize the optical intensity.
As the laser power decreases, the atomic temperature also
decreases. When the laser power is further ramped down to
approximately 10 mW, the Fermi gas becomes degenerate,
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FIG. 7. Theoretical calculation of strongly interacting Talbot in-
terferometer. The optical lattice pulse pattern is the same with lattice
depth U0 = 50Er0 and pulse duration τ0 = 0.7 µs. The particle num-
ber is set as 30 000. (a) Talbot interferometer at different scattering
lengths. The blue solid line, red dashed line, yellow dotted line,
and purple dash-dotted line represent the simulation results with
add = 100a0, 1000a0, 5000a0, and 10 000a0, respectively. NTalbot =
2τ/Ttheoretic. (b) Talbot interferometer at add = 1000a0 with different
characteristic lattice energy Er . The blue solid line, red dashed line,
and green dotted line represent the simulation results with Er = Er0,
Er = 0.2Er0, and Er = 0.1Er0, respectively. (c) The results of simula-
tions with different interactions during the pulse stage and evolution
stage. The blue solid line represents the results with constant inter-
action add = 2004a0, while the red dashed line indicates scenarios
where no interaction occurs throughout. The yellow squares and
green circles denote the results obtained when interaction is absent
during the pulse phase and evolution phase, respectively.

with T/TF ≈ 0.1, where T is the atomic temperature and TF

is the Fermi temperature of the noninteracting Fermi gas.

APPENDIX B: CALCULATION OF INTERACTING
TALBOT INTERFEROMETERS

To understand the effect of interaction in Talbot interfer-
ence, we implemented (i) simulation at different scattering
length with same optical lattice pulses (U0 = 50Er , τ0 =
0.7 µs) and (ii) simulation at scattering length add = 1000a0

with the same optical lattice pulses (U0 = 50Er , τ0 = 0.7 µs)
but different characteristic lattice energies. Figure 7(a) shows
the results of (i), the Talbot effect with different interaction
strengths. We observe increasing negative shifts of the peak
in height and position with increasing scattering length. With
a larger scattering length, the effect of interaction becomes
significant so that the profile of the curve has slightly changed.
Figure 7(b) shows the results of (ii), the Talbot effect with the
same interaction strength and optical lattice pulses for small
characteristic lattice energy Er (larger lattice spatial depth D).
With smaller values of Er , the Talbot effect shows similar
changes in interaction as illustrated in Fig. 7(a), while the

Talbot effect with no interaction remains unaffected. It is easy
to understand because the decrease of Er equals the increase
in interaction.

To distinguish the effect of interaction during the pulse
stage and free evolution stage, we perform simulations by
tuning interactions during these two stages separately. As
demonstrated in Fig. 7(c), when the pulse stage is devoid of
interaction, the results are indistinguishable from those where
interactions are present throughout the entire interference pro-
cess. Conversely, when the evolution stage lacks interactions,
the results align with those obtained in the absence of any
interactions during the entire sequence. It indicates that the
influence of interaction focuses more on the free evolution
stage. It is predictable because the lattice trap depth is too
large for the interaction and the duration is too short for the
free evolution time.

APPENDIX C: DECAY SEQUENCES

In Sec. IV, due to the disturbance caused by thermal par-
ticles near 0h̄k region in the Talbot signals obtained by the
traditional method (Method 1) under strong interactions, we
introduce Method 2 as the basis for judging signal damping.
As shown in Fig. 8(a), the Talbot signal damping obtained
through Method 1 under different interactions shows no sig-
nificant relevance with interaction strengths. Even in the case
of the highest interaction strength (add = 2004a0), the decay
curve appears the smoothest.

However, although the changes in signal damping observed
are not intuitive, we can still obtain the effects of interactions
from their fitting parameters. Considering the most com-

mon exponential fitting f (τevo) = Ae
− τevo

τdecay + y0, we extracted
τdecay and y0 under different interactions and presented them
in Fig. 8(b). y0 increases with higher interaction strengths,
indicating that the interaction promotes the signal damping
to approach a higher P0, which is in good agreement with
our judgment of the influence of thermal particles generated
during the interference period. Meanwhile, higher interaction
strengths bring smaller τevo, showing a shorter decay charac-
teristic timescale, which agrees well with the decay constants
obtained through Method 2. In summary, the experimental
results obtained through Method 1 and Method 2 can both
confirm the theoretical prediction that interaction leads to
faster Talbot signal damping.

The decay curves obtained with Method 2 under dif-
ferent interactions are shown in Fig. 8(c). When we only
include condensate parts in the calculation of the Talbot
signal, the contrast of signal damping under different inter-
actions is much better than the signal obtained from Method
1. When the interaction strength is below add = 865a0, the
signal damping is very slow, even slower than the results
obtained from Method 1. When the interaction strength is
above add = 1330a0, the decay significantly accelerates, and
at add = 2004a0, the proportion of condensate in the 0h̄k
mode is almost zero. This is because the width of the thermal
particle component remains almost constant, contributing to
both the 0h̄k mode and the other higher modes (±2h̄k, ±4h̄k)
regardless of the interaction. When the interaction strength is
relatively weak, the optical density of the thermal particles
is relatively small and the contribution to the 0h̄k mode is
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FIG. 8. Talbot signal decay in Method 1 and Method 2. (a) The decay curve obtained with Method 1 under different interactions. The
black squares, red circles, orange triangles, and blue pentagons represent the experimental results of add = 655a0, 865a0, 1330a0, and 2004a0,
respectively. The fitting results under each interaction strength are indicated by lines of the corresponding colors. (b) The exponential fitting
parameters for the decay curves under different interactions. τdecay is marked by the blue square dots and y0 the red round dots. (c) The decay
curve is obtained with Method 2 under different interactions. The black squares, red circles, orange triangles, and blue pentagons represent
the experimental results of add = 655a0, 865a0, 1330a0, and 2004a0, respectively. The linear fitting results under each interaction strength are
indicated by lines of the corresponding colors.

smaller (in proportion) compared to the other higher modes,
thus reducing the signal statistically. On the contrary, when
the interaction strength is strong Method 2 eliminates this

disturbance and can therefore obtain a clearer Talbot signal
variation curve. As for why the signal decay shows good
linearity, further research is needed.
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