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Superfluid oscillator circuit with a quantum current regulator
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We examine the properties of the atomic current in a superfluid oscillating circuit consisting of a mesoscopic
channel that connects two reservoirs of a Bose-Einstein condensate. We investigate the presence of a critical
current in the channel and examine how the amplitude of the oscillations in the number imbalance between the
two reservoirs varies with the system parameters. In addition to highlighting that the dissipative resistance stems
from the formation of vortex pairs, we also illustrate the role of these vortex pairs as a quantum current regulator.
The dissipation strength is discrete based on the number imbalance, which corresponds to the emergence of
vortex pairs in the system. Our findings indicate that the circuit demonstrates characteristics of both voltage-
limiting and current-limiting mechanisms. To model the damping behavior of the atomic superfluid circuit, we
develop an equivalent LC oscillator circuit with a quantum current regulator.
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I. INTRODUCTION

Atomtronics is an emerging interdisciplinary field that fo-
cuses on the development of matter-wave circuits utilizing
atoms as carriers [1]. The coherence of matter waves and the
many-body effects observed in atomic circuits give rise to
novel and exotic behaviors that are not found in electronics
or photonics, such as negative differential conductivity [2].
Moreover, ultracold atomic gases offer a highly controllable
and flexible platform for studying atomic devices, making
them the subject of extensive interest for their potential ap-
plications in quantum precise measurement [3–6], quantum
simulation of various systems [7–11], logic gate [12], and
quantum information processing [13–15]. To date, several the-
oretical proposals for atomic devices have been put forth, and
a number of them have been successfully demonstrated in ex-
perimental settings. These include atomic amplifiers [16,17],
transistors [18–22], switches [23], batteries [24], memories
[25–27], Josephson junctions [28–31], and quantum interfer-
ence devices [32,33].

Two-terminal systems have significant potential applica-
tions in various mesoscopic atomic optical devices, including
quantum metrology, quantum information, and Josephson
junctions [34–36]. Furthermore, these systems are of theoreti-
cal importance in elucidating superfluid transport properties
such as quantum conductivity [37,38] and thermoelectric
effects [39], as well as constructing general multiterminal
atomic circuits. A simple two-terminal system comprises two
reservoirs with a junction. The system exhibits various ex-
otic phenomena depending on the types of reservoir traps,
junction structures, and atom properties, each of which is
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described by different effective models, such as two-mode
Rabi oscillations [40] and inductor-capacitor oscillations [41].
For a system consisting of two large reservoirs connected by
a straight channel (as depicted in Fig. 1) [41–43], an initial
imbalance in the number of atoms between the reservoirs
induces a resistive flow during the evolution of the Bose-
Einstein condensate (BEC), resulting in subsequent circuit
oscillations. This oscillating behavior resembles the adiabatic
oscillations observed in superfluid liquid helium transport
experiments [44]. Small initial number imbalances of atoms
between the reservoirs induce undamped oscillations of the
superfluid flow. An acoustic model can be established to pre-
dict the correct frequency of the oscillation by establishing a
connection between the kinetic and potential energy contained
within sound waves in a superfluid and the electrical energy in
an LC circuit [41]. In the presence of a large population bias
initially, the quantum circuit can be analogized as a classi-
cal RLC circuit coupled with a Josephson junction [42,45].
However, for a small population bias, these models fail to
capture resistive behaviors and throttling characteristics, and
the corresponding theoretical model is considerably less clear.

In this work, we investigate a channel-connected two-
terminal system with a small initial population imbalance.
Using the Thomas-Fermi approximation, we determine the
critical width of the channel for tunneling between two reser-
voirs. Additionally, we establish the relationship between the
oscillatory frequency, the amplitude, the critical current, and
the system’s geometry. Furthermore, we develop an equiva-
lent quantum circuit that reproduces the numerical simulation
results obtained from the Gross-Pitaevskii equation (GPE)
of the two-terminal BEC system. Our findings demonstrate
a linear increase in the oscillating current amplitude in the
channel as the initial population bias increases. Beyond a
certain threshold, the emergence of vortex pairs acts as a
quantum current regulator, constraining the oscillating current
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FIG. 1. The initial density distribution of the BEC in the oscil-
lator circuit consisting of two reservoirs of radius R = 4.5ao and a
narrow channel of length l = 3ao and width d = 0.4ao. Here, the
potential bias is V = 0.1Vc.

amplitude to a specific range determined by the energy of a
vortex pair. This discovery suggests the existence of a simple
model featuring a quantum current regulator. The correlation
between dissipation and vortex dynamics in our study demon-
strates a strong coherence with that found in Josephson-type
two-terminal systems [46–48].

II. DESCRIPTION OF SUPERFLUID CIRCUIT SYSTEM

A superfluid oscillator circuit [41,42] is realized by loading
a BEC of 87Rb into a quasi-two-dimensional (quasi-2D) trap
Vtrap with two reservoirs connected by a narrow channel of
length l and width d (see Fig. 1). The dynamics of the BEC
are governed by the 2D GPE,

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + [Vtrap +V(r, t )]ψ + g|ψ |2ψ, (1)

where g is the effective interatomic interaction strength. In our
simulations, ψ is normalized to the total number of atoms N
and g = 2.5 × 104h̄2/m. The potential outside the reservoirs
and the channel is a hard-wall potential with a height of
105h̄ωo, where ωo = 2π × 5 Hz is chosen as the reference
frequency. In the dynamical evolution, the characteristic time
t0 = 1/ωo is chosen as the unit of time.

Inside the trap, the potential is initially set to be

V(r, t = 0) =
⎧⎨
⎩

0, left reservoir,
V/2 + xV/l, channel,
V, Right reservoir,

(2)

where V refers to the potential bias between two reservoirs.
This potential induces an initial state biased towards popu-
lation. To drive superfluid flow within the system, V(r) is
maintained at 0 during the dynamics. The radius of the reser-
voirs is set to be R = 4.5ao, with a0 = √

h̄/mωo � 4.83 μm
being the characteristic length.

The initial state is prepared as the ground state of the
BEC system, which can be obtained numerically by solving
the GPE in the imaginary time evolution. In our numerical
calculations, we use a grid size of 800 × 300 in the spatial
dimensions, with spacings dx = dy = 0.05ao. The left reser-
voir is populated by a higher number of atoms to create the
bias of the potential. We define the atom number imbalance

FIG. 2. (a) The time evolution of the shifted number imbalance,
η(t ) − η(0), for 51 different V uniformly located in the region
[0, 0.1]Vc. The variable V is observed to gradually increase from the
yellow lines to the blue lines. The inset is the enlargement of the
region in the red box. (b) The density distribution (left subfigure)
and the corresponding phase distribution (right subfigure) in the red
box region at t = 2.5t0 with V = 0.08Vc. The length and the width
of the channel in panels (a) and (b) are l = 2ao and d = 0.6ao,
respectively. (c) The density and the phase distributions at t = 2.5t0

with V = 0.062Vc, l = 3ao, and d = 0.4ao.

η
.= NL − NR, where NL and NR represent the atom numbers in

the left and right reservoirs, respectively. Within the Thomas-
Fermi (TF) approximation, when the potential bias exceeds
the critical value, given by Vc = g/πR2 � 393h̄ωo, the system
becomes fully polarized (η = 1). For V � Vc, we have η =
V/Vc. Therefore, the initial number imbalance can be adjusted
by linearly changing the potential bias. The numerical result
of the BEC density distribution for V = 0.1Vc is depicted in
Fig. 1.

III. LAWS IN SUPERFLUID OSCILLATOR CIRCUIT

The quench dynamics of the system are investigated by
abruptly turning off the potential bias, given as V(r) = 0 for
t > 0. In response, the condensate starts to flow between the
left and right reservoirs, causing the number imbalance η(t ) to
change over time. The current in the channel can be expressed
as I = dη/2dt . Figure 2(a) depicts the temporal evolution
of the shifted number imbalance, η(t ) − η(0), under various
values of V belonging to the range [0, 0.1]Vc. Depending
on the magnitude of V , the behavior of the system can be
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categorized as either nondissipative or dissipative, as indicated
by the evolution of the number imbalance.

In the case where η(0) is small, the oscillating number
imbalance exhibits a simple cosine behavior without any
dissipation. This can be described by the equation η(t ) =
η(0) cos ωt . During this oscillation, the interatomic interac-
tion energy and the kinetic energy carried by the flow can
transfer into each other. However, when η(0) exceeds a certain
threshold, the atom number imbalance initially undergoes a
decay due to the formation of vortex pairs near the contact
points of the channel and the right reservoir [as depicted in
Fig. 2(b)]. These vortex pairs are formed because the velocity
of the flow in the channel exceeds the critical value νc [42],
which leads to energy cascading to small scales and nonlocal
kinetic energy dissipation. This dissipation indicates that the
flow becomes resistive once the velocity surpasses the critical
value. After the dissipation, the reduced number imbalance
recovers and continues to exhibit undamped oscillation. It is
important to note that when the channel width is sufficiently
narrow, dark solitons rather than vortices are created. These
solitons quickly decay into phonons, as shown in Fig. 2(c).
One can see that compared to vortex excitation, phonon ex-
citation has little effect on the amplitude of the oscillating
atomic flow. The long-term evolution of η is not highly regu-
lar, as vortex pairs experience complex movement that induces
density-wave oscillations (sound waves) within the system
[49–52].

The evolution of the number imbalance η is influenced by
various factors such as the initial bias V , the channel length
l , and the width d . To establish quantitative relationships
between the oscillation of η and these system parameters, we
fit the undamped portion of the evolution curve η(t ) by using a
sinusoidal function. This allows us to determine the oscillation
frequency ω and the amplitude A. Based on our analysis, we
conclude that the frequency does not significantly depend on
the initial bias and is an intrinsic property of the system.
This frequency is linked to the system’s geometry, as well as
particle properties such as mass and interaction strength. The
numerical results depicting the frequencies with changes in
the channel dimensions are presented in Fig. 3. Similar to the
3D system discussed in Ref. [41], we propose that for a 2D
system,

ω2 = c2

[
(d − dc)�(d − dc)

l + δ

(
1

SL
+ 1

SR

)]
, (3)

where c = √
gn/m is the sound speed of the superfluid with

number density n = 1/2πR2, SL = SR = πR2 are the areas
of the two reservoirs, � is the Heaviside function, and δ is
the end correction for the effective length of the channel.
Different from the wide-channel case analyzed in Ref. [41],
the system exhibits no particle current in the channel when its
width is below a critical value, dc. We explain this threshold
as follows: when the potential V is greater than or equal to
Vc, the chemical potential μ approximates as g/πR2 in the
TF approximation, causing all atoms to populate at the left
reservoir. The lowest energy for the transverse standing wave
in the channel is E0 = h̄2π2/2md2. Thus, when μ < E0, i.e.,
d < dc = h̄Rπ3/2/(2mg)1/2, and the channel is long enough,
the atoms are unable to pass through the channel after the
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FIG. 3. The dependence of ω2 (or ω−2) on two factors of the
channel: (a) the width d and (b) the length l . The triangles accom-
panied by error bars, represent the statistical average of ω across
different V in the range of [0, 0.1]Vc. The error bars indicate the
range of ω2 (or ω−2) resulting from all V . Additionally, solid lines
depict the fitting results obtained from Eq. (3) using δ = 2.3d .

bias V is switched off. For the current parameter setting, dc is
approximately equal to 0.112ao. By numerically fitting with
Eq. (3), the only unknown parameter, δ, is determined to be
2.3d . The fitting results are in excellent agreement with the
numerical results, as illustrated in Fig. 3.

In Fig. 4(a), the amplitude A of the dampingless oscillating
part of η(t ) is plotted against the initial potential bias V/Vc for
l = 2ao and d = 0.6ao. Initially, when the biases are small,
no damping occurs, so we have A = η(0), which is equal
to V/Vc in the TF approximation. As the bias V increases,
the amplitude of the oscillation A also increases. However,
when A reaches a critical value, it suddenly decreases and then
increases again as the bias increases. This process continues
to repeat. Additionally, the instantaneously maximum current
passing through the channel, denoted as Imax = Max[I (t )] for
the dampingless oscillating part, is defined. The changes in
Imax with the potential bias are shown in Fig. 4(b). Theoretical
analysis reveals that Imax = Aω/2, which includes character-
istics of the amplitude. These characteristics indicate that the
circuit is both voltage limiting and current limiting. To further
analyze, we define the critical amplitude Ac (the maximum
value of A for V in the range [0, 0.1]Vc) and the critical
current Ic (the maximum value of Imax). Figures 4(c) and 4(d)
demonstrate the plot of these critical values as functions of the
channel length and width, respectively. Figure 4(d) indicates
that the critical value Ic almost does not depend on the length
of the channel but linearly depends on the width. This result
is reasonable since Ic is proportional to vcdeff, where vc is
the threshold of the superfluid velocity required to generate
a vortex-pair and deff = d − dc is the effective width of the
channel. Based on Eq. (3) and the fact that Ac = 2Ic/ω, it fol-
lows that Ac is proportional to (deffleff )1/2, where leff = l + δ is
the effective length of the channel. This explains the increase
of the critical value Ac with d and l , as shown in Fig. 4(c).
In the following, we provide a quantitative explanation for the
critical value Ic.
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FIG. 4. (a) The amplitude A and (b) the maximum current Imax

as functions of V/Vc for l = 2ao and d = 0.6ao. The black dashed
line in panel (a) is the result of the TF approximation. The red
solid lines in panels (a) and (b) are determined by the equivalent
quantum circuit described by Eqs. (6)–(8). (c) The critical amplitude
Ac and (d) the critical current Ic with respect to the geometry of
the channel. The blue dashed line in panel (d) is the fitting result,
and the red dashed line is the result given by the Landau critical
velocity.

From the Bogoliubov spectrum of the GPE (1), we can de-
termine that the Landau critical velocity, which is equivalent
to the phonon speed, can be expressed as vL = Min[Ek/h̄k] =√

gn/m, where Ek =
√

ε2
k + 2εkgn and εk = k2/2m is the ki-

netic energy of free atoms. Hence, the Landau critical current
in the channel can be represented as IL = vLdeffn. In Fig. 4(d),
the Landau critical current is illustrated with a red dashed
line, while the critical current (Ic) obtained from simulations
is presented with a blue dashed line, revealing a discrepancy
where Ic = 0.53IL. This deviation arises due to the fact that
the critical velocity (vc) required to generate vortex pairs is
proportional to the Landau critical velocity, with a ratio of
0.42 for a cylindrical moving obstacle [53,54].

The damping behavior in the superfluid circuit can be
represented by calculating the dissipation strength, defined as
D = η(0) − A. Figure 5(a) illustrates that for small biases, the
strength D remains at 0. However, it increases abruptly when
the bias voltage V/Vc reaches a series of discrete values. Each
of these values corresponds to the creation of a new vortex-
pair, as depicted in Figs. 5(b)–5(e). Additionally, we introduce
the concept of one-step jumping Ds of the dissipation strength,
indicated in Fig. 5(a). It is worth noting that as the bias voltage
increases, the magnitudes of subsequent step jumps become
slightly smaller compared to the first step jump due to the
interactions between vortex pairs. The relationship between
the first step jumping Ds and the geometric parameters of the
channel (l and d) is presented in Fig. 5(f), revealing that Ds

increases with d but decreases with l .

FIG. 5. (a) The dissipation strength D = η0 − A as a function of
the potential bias V for l = 2ao and d = 0.6ao. The red solid line is
the result of the equivalent quantum circuit described by Eqs. (6)–(8).
(b)–(e) Vortices created for the biases marked in panel (a). (f) The
dissipation step Ds as a function of l and d . (g) The energy loss (the
blue dashed line) and the energy of a single vortex-pair (triangles) as
a function of d for different l .

The dissipation phenomenon occurs when a portion of
the interaction energy in the initial state is utilized in the
formation of vortices. By employing the TF approximation,
we can estimate the loss of interaction energy during a one-
step jump. Assuming an initial bias η(0), the total energy
of the system immediately after quenching can be approx-
imated as E = 1

2 gN (N2
L + N2

R )/πR2, where N = NL + NR.
Simultaneously, within the TF approximation, we have the
equation g(NL − NR)/πR2 = V = η(0)Vc. By considering the
fact that NL + NR ≈ 1, and for small η(0), we can obtain the
initial energy of the system as

E = gN[1 + η(0)2]

4πR2
. (4)

After the one-step jumping, the bias cannot be recovered any
more, i.e., η(0) → [η(0) − Ds]. From Eq. (4), the interaction
energy loss is about

Eloss = gN
[
2η(0)Ds − D2

s

]
4πR2

. (5)

The energy of a single vortex-pair is given by the ex-
pression Evp = (2π h̄2Nn/m) ln(deff/ξ ), where ξ = h̄/

√
2gnm

represents the healing length [55]. Figure 5(g) provides a
comparison between Evp/N and Eloss/N for different widths
d . The results indicate that the energy of the vortex pair is ap-
proximately equivalent to the loss of interaction energy, thus
confirming that the generation of vortex excitations effectively
dissipates the number imbalance between the two reservoirs.
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FIG. 6. The time evolution of η(t ) − η(0) for the equivalent
quantum circuit (inset), where η(t ) = 2Q(t ), with Q(t ) being the
charges stored in the capacitance. This simulation corresponds to the
superfluid circuit of l = 2ao and d = 0.6ao with η(0) ∈ [0, 0.1] as
shown in Fig. 2. In the simulation, the parameters ω = 0.8984ω0,
Ds = 0.0145, and Ic = 0.0289ω0 were used. These values corre-
spond to approximately 95% and 141% of the theoretical estimation
values for ωth = 0.9457ω0 [obtained from Eq. (1)] and Dth

s = 0.0103
(derived from Eloss = Evp), respectively. The results for A, Imax, and
D are shown in Figs. 4(a), 4(b), and 5(a), respectively.

IV. EQUIVALENT QUANTUM CIRCUIT

We have observed that the dissipation D exhibits a steplike
behavior in the region η(0) ∈ [0, 0.1], corresponding to the
initial potential bias or atom number imbalance. The discon-
tinuity in the dissipation is directly linked to the creation of
vortices within the system. Each step increase in dissipation
signifies the formation of an additional vortex-pair. This be-
havior results in the circuit acting as both a voltage-limiting
device and a current-limiting device. Consequently, the classi-
cal RLC circuit analogy is inadequate in this scenario. Instead,
an additional quantum current regulator is required to control
the maximum current by manipulating quanta. The equivalent
quantum circuit is depicted in Fig. 6. The current satisfies

Q̇(t ) = I (t ), (6)

İ (t ) = −ω2Q(t ), (7)

for |I (t )| < Ic, where ω2 = 1/LC can be determined by
Eq. (3), and Q(t ) is the instantaneous charge stored in the ca-
pacitor. When |I (t )| reaches Ic, it suffers a sudden suppression,

I (t+) = sgn[I (t )](|I (t )| − �I ), (8)

where t+ = t + 0+, and �I = Dsω/2 is a quantum, repre-
senting the creation of a vortex pair. Ds can be estimated by
setting Eloss = Evp. The mapping between η(t ) and Q(t ) is

η(t ) = 2Q(t ), since I (t ) = dη(t )/2dt . As shown in Fig. 6, the
equivalent quantum circuit well replays the results given by
the original superfluid circuit.

V. CONCLUSIONS

In conclusion, we have investigated the behavior of a su-
perfluid oscillating circuit comprised of a mesoscopic channel
connecting two large BEC reservoirs. Our study revealed the
presence of a critical current that is proportionate to the effec-
tive channel width and independent of its length. Additionally,
we determined the correlation between the amplitude of oscil-
lation and the system parameters. We demonstrated that the
emergence of vortex pairs serves as a quantum current regula-
tor, leading to intriguing phenomena in this highly nonlinear
system. Initially, a small population imbalance η resulted in
a linear relationship with the induced current’s amplitude.
However, surpassing a threshold in bias excess constrained
the amplitude to the interval of [Ic − �I, Ic]. Furthermore,
we constructed an equivalent LC oscillator circuit with a
quantum current regulator, establishing a comprehensive link
between the parameters of the quantum LC circuit and the
original superfluid circuit. It is important to note that this
correspondence between the two circuits is limited to small
initial biases. Interestingly, the complete suppression of os-
cillation amplitude observed at large η(0) ≈ 0.6 in Ref. [41]
cannot be accounted for by the current equivalent circuit. In
this particular system, the damping of current stems from the
creation of vortex pairs, as opposed to heat dissipation. The
energy loss is stored within the vortex pairs, which could
potentially function as a quantum battery if the stored energy
can be efficiently released.
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