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Bose-enhanced relaxation of driven atom-molecule condensates
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Motivated by recent experiments [Zhang et al., Nat. Phys. 19, 1466 (2023)], we study the interconversion
between ultracold atomic and molecular condensates, quantifying the resulting oscillations and their slow decay.
We find that near equilibrium the dominant damping source is the decay of condensed molecules into noncon-
densed pairs, with a pair kinetic energy that is resonant with the frequency of the oscillating atom-molecule
interconversions. The decay, however, is nonexponential, as strong population of the resonant pairs leads to Bose
enhancement. Introducing an oscillating magnetic field, which periodically modulates the molecular binding
energy, enhances the oscillations at short times. However, the resulting enhancement of the pair-production
process results in an accelerated decay, which rapidly cuts off the initial oscillation growth.
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I. INTRODUCTION

At ultracold temperatures, atoms and molecules can
coherently interconvert [1]. For bosonic atoms that can
be manipulated via magnetically tunable Feshbach reso-
nances, this enables the experimentally controlled creation
of atomic and molecular Bose-Einstein condensates (BECs)
and their coherent superposition, a cornerstone of “ultracold
superchemistry” [2,3]. Recent experiments involving mag-
netic field quenches near a very narrow Cs resonance [4–6]
have been able to explore this phenomenon in a detail that
was not possible with earlier studies relying upon Ramsey-
type interferometry near broader Feshbach resonances [7].
These new experiments observed slowly damped oscillations
of the atom-molecule BEC fractions, directly visualizing the
macroscopic coherence. They further demonstrated that by
periodically modulating the magnetic field, these oscillations
could be enhanced. Here we model these phenomena. We
produce a microscopic theory of the damping and present a
framework for understanding the driven system.

The coherent atom-molecule interconversion process is
somewhat analogous to the quantum-mechanical motion of
particles in a double-well potential. One well represents un-
paired atoms and the other paired molecules. The system is,
however, highly nonlinear. Depending on the detailed form
of the interactions, and the chosen initial state, one finds
complicated dynamics already at the mean-field level [2,8–
10]. While a full theoretical description of the time evolution
is challenging, a reasonable expectation for the long-time
limit is that the system relaxes to the global minimum
of the mean-field energy landscape, which is a fixed point of
the corresponding equations of motion. Indeed, in Ref. [4] the
long-time dynamics were well described by damped oscilla-
tions, and the asymptotic populations were used to constrain
the form of the atom-molecule coupling. Our primary goal
is to model the damping in these experiments. We caution that
the system likely also supports long-lived metastable states,
which could be reached in these dynamics. Thus in Sec. V we
advocate for somewhat more controlled experiments which
are designed to explore the oscillations close to equilibrium.

Our approach is to write down a variational wave function
which includes both condensed and noncondensed degrees
of freedom, corresponding to a variant of a Bogoliubov ap-
proximation [9,11–14]. An important feature of this modeling
is that it explicitly tracks the degrees of freedom which are
responsible for the dissipation. This approach can be con-
trasted with treatments that integrate out the noncondensed
modes, producing an effective model [15–17]. While ele-
gant, eliminating the noncondensed modes relies on crucial
approximations which break down under the experimental
conditions. First, a separation of timescales is needed: the bath
of noncondensed atoms must equilibrate on a timescale that is
short compared to those that govern the condensate dynamics.
Second, these approximations require that the properties of the
bath not be influenced by the condensate dynamics. These un-
derlying assumptions are commonly known as “Markovian.”

In the large density limit, where the interaction with the
condensate particles dominates over the interbath interactions,
the Markovian assumption fails. A number of Bogoliubov
approximations have been developed [9,11–14] to circum-
vent this challenge and include the leading-order fluctuations.
In the resulting differential equations, time-dependent con-
tinuum fields are retained explicitly (i.e., the bath is not
integrated out). This greatly complicates the study of general
trajectories.

In this work we extend these Bogoliubov-type descriptions
of continuum effects to model the new experiments [4,5],
which are able to observe real-time atom-molecule oscilla-
tions, the damping of these oscillations, and the influence of
periodic driving on them. To this end, we use our variational
wave function to analyze the universal long-time coherent
oscillations of atomic and molecular BECs near their equi-
librium populations. We find that the oscillations are damped
by the coupling to the continuum in a highly nontrivial man-
ner: the oscillations cause a resonant decay of molecules into
correlated atom pairs with a kinetic energy that is set by the os-
cillation frequency. At shorter times this results in exponential
damping; at longer times the damping becomes superexpo-
nential due to a Bose enhancement of the resonantly populated
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continuum mode. This enhancement is particularly virulent
when the system is externally driven at its natural oscillation
frequency, since the overpopulation of the continuum modes
rapidly cuts off any initial oscillation enhancement from the
drive, in line with experimental observations [4].

In analyzing their experiment, the authors of Ref. [4]
made the case that they were observing a process where
three atoms collide, leaving behind a molecule and an atom.
While we focus on simpler two-body interconversion pro-
cesses, we expect our results to qualitatively translate to this
situation as well, as we briefly discuss in Appendix F. On
general grounds, we expect that three-body processes, while
important for high-energy, nonequilibrium trajectories, are
less crucial for equilibrium properties, since the three-body
interaction becomes irrelevant in the low-energy limit in a
renormalization group sense. Although we can only briefly
touch on it here, we furthermore find that the Bogoliubov
description of three-body processes comes with an interesting
technical subtlety: at the energy minimum of the system, an
extensive population of atomic pairs with vanishing momenta
becomes favorable, a so-called pair condensate. In a simpler
context, Nozierès and Saint James [18] have argued that a pair
condensate only appears for unphysical interaction parameters
which result in a mechanical instability (collapse). We leave
the detailed analysis of the physical viability of pair conden-
sation due to three-body interactions for future work.

During the preparation of this manuscript, a closely related
analysis was carried out by Wang et al. [6]. These authors
considered a similar variational ansatz and compared their
numerics to both the data from [4] as well as new experimental
data. Despite a similarity in methods, there is little overlap
with our work, and the analysis in Ref. [6] complements our
own: They concentrate on the experimental “quench” proto-
col, where the system is thrown far from equilibrium, while
we are concerned with the oscillatory dynamics near the fixed
point. We give a microscopic explanation of how pair produc-
tion leads to the decay of coherent atom-molecule oscillations,
identifying the relevant modes and how they evolve. We show
how Bose enhancement leads to nonexponential damping and
find signatures in the population of noncondensed particles.
We show that these effects are further enhanced when the
system is driven by a modulation of the magnetic field. Wang
et al. instead give rich insights into large amplitude atom-
molecule oscillations and how they depend on experimental
parameters.

The remainder of this article is structured as follows: In
Sec. II we analyze the energy landscape within the coherent-
state approximation. In Sec. III we describe the dynamics:
after reviewing the possible mean-field trajectories and com-
menting on finite particle-number deviations from mean field,
we model the damped BEC oscillations close to the minimal-
energy fixed point. We argue that the dominant source of
damping is the resonant decay of molecules into excited
pairs, derive the corresponding damping rate, and analyze the
long-time behavior where the resonant pairs become strongly
populated. In Sec. IV we analyze the impact of the experi-
mentally implemented periodical modulation of the molecule
level. In Sec. V we discuss experimental considerations: en-
ergy and timescales, and how experimental protocols could
be modified to explore our results. A conclusion and outlook

are presented in Sec. VI. Various technical derivations and
numerical visualizations are relegated to the Appendixes.

II. ENERGETICS

We consider an ensemble of bosonic atoms and molecules
in three spatial dimensions at T = 0. If we neglect the effects
of the optical trap, the system is governed by the model
Hamiltonian,

H =
∑

k

(
ε0 + k2

4m

)
φ

†
k φk + k2

2m
ψ

†
k ψk

+ λ√
V

∑
pq

φ
†
p+qψpψq + ψ†

pψ
†
q φp+q , (1)

where the operator φk (ψk ) annihilates a molecule (atom) with
momentum k. Here ε0 is the molecular energy relative to the
atomic continuum, which is chosen to be the zero of energy.
Further, λ is an intensive short-range coupling constant and
V the system volume. In addition to the Yukawa term, one
can also include various density-density interaction terms [6].
At resonance we expect those contributions to be subdomi-
nant, but they can be important for various out-of-resonance
phenomena and have to be considered for an accurate deter-
mination of phase boundaries [19].

We use units such that h̄ = 1 take the atomic mass to be m
and the molecular mass to be 2m. We discuss the numerical
values of the parameters in Sec. V. In the bulk of the paper
we are more concerned with trends and scaling behavior than
matching experimental observations.

Let N = ∑
k 〈ψ†

k ψk〉 + 2 〈φ†
k φk〉 be the conserved total

number of particles. In the thermodynamic limit N → ∞, the
system is dominated by the atomic and molecular condensates
in the k = 0 modes. As a first approximation one can ne-
glect the population of finite momentum states. The resulting
mean-field physics is captured by a variational coherent-state
ansatz [20]:

|�cond〉 ≡ exp(−N f 2/2 − Ng2/4)

× exp(z f

√
Nψ

†
0 + zg

√
N/2φ

†
0 ) |vac〉 . (2)

Here z f = f eiθ and zg = geiχ are complex numbers
parametrizing the atomic and molecular condensates,
respectively. They fulfill f 2 + g2 = 1. With the help of
the states |�cond〉, we can determine the energy density
Econd [20]. It is convenient to measure energies in units
of

√
2nλ, where n = N/V is the density. For a given

renormalized detuning ε ≡ ε0/(
√

2nλ), we can then
parametrize Econd ≡ 〈�cond|H |�cond〉 /(

√
2nλN ) in terms of

the molecular amplitude g and the relative phase η = 2θ − χ .
We find

Econd = ε

2
g2 + cos(η)(1 − g2)g . (3)

An illustration of the energy landscape is shown in Fig. 1. The
energy is minimized by taking η = η∗ and g = g∗ with

η
 = π, g
 =
√

ε2 + 12 − ε

6
. (4)

Therefore, the ground state is a coherent superposition of
atomic and molecular condensates. The molecular condensate
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FIG. 1. Condensate energy density Econd corresponding to Eq. (3)
for three values of the molecular detuning ε. Dashed lines correspond
to zero-energy contours. Darker colors represent lower energies. The
white spiral in the left figure shows a typical trajectory when the
excited atomic states are taken into account, see Sec. III. Energy and
timescales used for dimensionalizing are described in Sec. V.

fraction is small but nonvanishing at large positive detunings
ε. For ε � −2, the condensate is purely molecular.

Now we include the excited states, considering processes
where a condensed molecule can decay into excited atomic
pairs with momenta k,−k (equivalent to “rogue photodisas-
sociation” discussed by Javanainen and collaborators [11,21]).
Such pair creation is incorporated into our ansatz by extending
the coherent-state ansatz of Eq. (2) to [18]

|�〉 ≡ exp(−N f 2/2 − Ng2/4)√
N

× exp

(
z f

√
Nψ

†
0 + zg

√
N/2φ

†
0 +eiχ

∑
k

′
zkψ

†
k ψ

†
−k

)
|vac〉 ,

N =
∏

k

′
(1 − |zk|2)−1. (5)

Here, the prime indicates that only half of all momenta need
to be taken into account to avoid double counting in the sums
and products [18], which can, for instance, be implemented
by imposing kx � 0. In addition to zg, z f , the generalized
coherent states are parametrized by momentum-dependent
complex numbers zk , with an extra factor of eiχ pulled out
for convenience.

As is common to many variational descriptions, the accu-
racy of the ansatz (5) is hard to quantify. It becomes exact
in the condensate-only limit and, in the spirit of Bogoliubov
theory, it should capture the leading high-density corrections.
The wave function |�〉 has the properties (see Appendix A)

〈�|ψkψ−k|�〉 = zkeiχ

1 − |zk|2 , 〈�|ψ†
k ψ−k|�〉 = |zk|2

1 − |zk|2 .

(6)

Taking into account the excited states, particle-number con-
servation implies

f 2 + g2 + 1

N

∑
k

|zk|2
1 − |zk|2 = 1. (7)

In a spatially homogeneous system, momentum-dependent
quantities can be expressed as functions of the scaled energies,

εk ≡ k2

2m
× 1

λ
√

2n
. (8)

Going to the continuum limit, the particle-number conserva-
tion can then be rewritten as

f 2 + g2 + α

∫
k

|zk|2
1 − |zk|2 = 1 , (9)∫

k
≡

∫
dεk

√
εk, α = m3/2

√
2π2n

× (λ
√

2n)3/2. (10)

Here α is the effective dimensionless coupling con-
stant in the problem, which vanishes in the high-
density or weak-interaction limit. The energy density E ≡
〈�|H |�〉 /(

√
2Nn1/2λ) becomes

E = ε

2
g2 + cos(η)g

(
1 − g2 − α

∫
k

|zk|2
1 − |zk|2

)

+ α

∫
k

1

1 − |zk|2
(
εk|zk|2 + ukg

)
, (11)

where zk = uk + ivk . At the energy minimum the phase dif-
ference satisfies η = π , as in the condensate-only case. The
minimal-energy choice for the excited-state coefficients is

v

k = 0 (12)

u

k (g) = −(g + εk ) +

√
(g + εk )2 − g2

g

→
{−1, εk → 0
− g

2εk
εk → ∞ .

(13)

Equation (12) implies that phase-locking between the molec-
ular condensate and the excited atomic wave functions is
energetically favorable. Although 1/(1 − (u∗

k )2) diverges as
k → 0, the divergence is integrable. However, when taken
at face value, the ultraviolet behavior of u


k is problematic:
inserting Eq. (13) back into Eq. (11), the second integral on the
right hand side is divergent, nominally implying E → −∞.
This unphysical divergence is an artifact of the short-range
coupling and can be averted by introducing a renormalized
detuning εren [9,12]:

εren ≡ ε − α

∫
k

1

2εk
(14)

E = εren

2
g2 + cos(η)g

(
1 − g2 − α

∫
k

|zk|2
1 − |zk|2

)

+ α

∫
k

[
1

1 − |zk|2 (εk|zk|2 + ukg) + g2

4εk

]
. (15)

In the following we drop the subscript in εren for brevity.
Inserting u


k (g) into Eq. (15), we can numerically determine
g
 as a function of α. The result is shown in Fig. 2(a).
We see that introducing the excited states leads to an ana-
lytic correction g
(α) = g
(0) − cεα + O(α2), where cε is a
detuning-dependent O(1) constant, and the higher-order in α

terms are negligible on the scale in the figure. In Fig. 2(b)
we show the corresponding mode occupation weighted by the
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FIG. 2. (a) Shift of the equilibrium molecular amplitude due
to coupling to the atomic continuum: 
g
(α) = g
(α) − g
(0).
(b) Equilibrium atomic mode occupation nk weighted by the density
of states

√
εk , Eq. (16), for ε = 0 and α → 0.

density of states,
√

εknk = √
εk[u


k (g
)]2/(1 − [u

k (g
)]2) . (16)

Note that the total continuum occupation, Nk = α
∫

k nk , is
weighted by the coupling constant α and therefore vanishes
as α → 0. The atomic and molecular condensates are robust
against adding these modes, and in the high-density (α → 0)
limit we recover the mean-field results that came from the
ansatz in Eq. (2).

In principle, our ansatz, Eq. (5), can be extended to include
excited molecular states, for example, by considering an ex-
pression of the form

|�〉 = exp

(∑
k

ηkφ
†
k ψ

†
−k +

∑
k

′
wkφ

†
k φ

†
−k

)
|�〉. (17)

Here ηk and wk are related to the presence of correlated atom-
molecule or molecule-molecule pairs. In Ref. [6] the authors
included wk but not ηk , finding that adding those terms had
no impact on the dynamics. This result is sensible, as there
are no terms in the Hamiltonian which can produce correlated
molecule-molecule pairs without first forming atom-molecule
pairs. Thus if ηk = 0, one should also have wk = 0.

In Appendix G we extend our ansatz � by including the ηk

terms; we expect the wk contributions to be less important at
small densities of excited molecules. We find that extending
our ansatz in this way leads to an energy minimum that con-
tains a pair condensate [18], similar to the case of a three-body
interaction (Appendix F). It remains to be seen whether this
pair condensate survives the inclusion of stabilizing molecule-
molecule interactions.

Regardless, we do not expect that the molecular contin-
uum has a major impact on experimental timescales. The
leading scattering process φ

†
k ψkψ0 which produces excited

molecular states involves excited atomic states, whose occu-
pation is considerably suppressed relative to the condensate
modes in the controlled high-density limit α 
 1 we are
interested in. Therefore, following previous literature, we
neglect the molecular continuum in this article; its correct
treatment will be the subject of future work [22]. In the high-
density limit, we may also neglect further coupling between
the excited modes, which could, in principle, be captured by
considering variational ansaetze with more than two noncon-
densed operators in the exponent. At sufficiently long times
the momentum distributions should thermally equilibrate, a

process which is often modeled using a quantum Boltzmann
equation (for example, see Ref. [23]).

III. DYNAMICS

We proceed with calculating the system dynamics, apply-
ing the time-dependent variational principle [24]. It is based
upon the fact that the many-body wave function which solves
the Schrödinger equation is a stationary point of the action,

S =
∫

dt 〈�(t )|i∂t − H |�(t )〉 . (18)

We use the coherent-state ansatz, Eq. (5), for |�(t )〉, with
time-dependent coefficients z f (t ), zg(t ), zk (t ). The stationary-
point condition, δS/δz̄i(t ) = 0, where z̄ is the complex
conjugate of z, leads to the following set of equations (see
Appendix B):

ġ = sin(η) f 2 + α

∫
k

vk

1 − |zk|2 ,

ḟ = − f g sin(η),

η̇ = ε + cos(η)

(
f 2

g
− 2g

)
+ α

∫
k

(
uk

g(1 − |zk|2)
+ 1

2εk

)
,

iżk = 2zk (εk − μ) + g
(
1 + z2

k

)
. (19)

The time-dependent chemical potential μ is

μ = ε

2
+ f 2

2g
cos(η) + α

2

∫
k

(
uk

g(1 − |zk|2)
+ 1

2εk

)
, (20)

which determines the population of continuum states and
arises from the time dependence of the molecular conden-
sate phase, μ = −χ̇/2. Equation (19) is in agreement with
the results of Ref. [6]. Related differential equations have
also previously been reported, e.g., in Refs. [11,12], based
on approximations of Heisenberg equations of motion where
atomic operators are treated as c-numbers. In those prior treat-
ments, the denominators ∼1/(1 − |zk|2) are absent, which are
crucial for correctly describing the long-time evolution.

In the following we systematically analyze the solutions to
Eq. (19): In Sec. III A we discuss the mean-field dynamics and
quantum fluctuations in the single-mode limit. In Sec. III B
we make general remarks about the influence of the noncon-
densed modes, and in Sec. III D we linearize about the fixed
point, producing our central results.

A. Mean-field dynamics and single-mode fluctuations

Before exploring the role of the noncondensed modes, it is
important to understand the mean-field dynamics which occur
when α = 0. Absent dissipation, physical trajectories follow
the equal-energy contours depicted in Fig. 1. Two special
cases are of interest. First, one can consider a scenario where
at t = 0 the system consists of atoms only ( f = 1, g = 0+),
which can be accomplished in experiment by quenching the
molecular level position from large to small detuning [4]. Per
Eq. (3), the time evolution proceeds along the zero-energy
contour [dashed lines in Fig. 1(a)]. For vanishing molecular
level detuning, ε = 0, the resulting trajectory monotonically
grows, asymptoting to g = 1 as t → ∞, see Fig. 3(a) [25]. For
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FIG. 3. Time evolution of molecule population for two different
molecular energies ε without coupling to the atomic continuum,
α = 0. (a) Boundary condition g(0) = 0. The dashed horizontal line
marks gmax (main text). (b) g(0) � g
, η � η
.

ε 
= 0, g(t ) only reaches a value of gmax =
√

1 + (ε/4)2 − ε/4
and oscillates with a period which scales as log(1/ε) at small
ε. This solitonlike trajectory does not depend on the initial
condition for the relative phase variable η (see Appendix C
for details).

That behavior can be contrasted to the small oscillations
which are found when the trajectory begins close to the energy
minimum at g = g
 + δg, η = η
 + δη [Eq. (4)]. Lineariza-
tion leads to the simple oscillator equation

δ̈g + ω2
gδg = 0, ωg =

√
1 + 2(g
)2 − 3(g
)4

g

, (21)

and g oscillates around g
 with frequency ωg [4], see Fig. 3(b).
Note that the oscillation becomes slow, ωg → 0, when the
condensate becomes purely molecular at ε → −2.

The trajectories depicted in Fig. 3 are obtained in the
mean-field limit. That analysis neglects coupling to the con-
tinuum and ignores the quantum fluctuations of the k = 0
modes. What is their fate beyond these idealized conditions?
While the bulk of our efforts are aimed at understanding the
role of the continuum, we briefly comment on the role of
k = 0 quantum fluctuations. These quantum fluctuations lead
to decoherence and deviations from the mean-field trajecto-
ries at long times t > tMF [26–28]. When g(0) = 0 and ε 

1, one finds tMF ∼ ln N , and for longer times one observes
substantial differences from the solitonlike mean-field solu-
tions [26,27]. The oscillatory solutions with g � g
 are more
robust. The decoherence induces some damping; however,
for large systems this effect is very weak, since tMF ∼ N in
this case. A comparison of mean-field dynamics and numer-
ically exact results for finite N is presented in Appendix D,
demonstrating this behavior. For experimentally relevant sys-
tem sizes, we can ignore the k = 0 quantum fluctuations.

B. Overview of the atomic continuum

The atomic continuum plays two dissipative roles: over
time it both reduces the number of condensed atoms and
pulls energy from the condensate. Unlike the decoherence
from k = 0 fluctuations, this damping is relevant even for
relatively large N , and its magnitude is controlled by the
coupling constant α ∝ N−1/4. The dissipative influence of the
noncondensed modes is generic: one encounters similar dis-
sipation whenever a Hamiltonian system is coupled to a bath,

FIG. 4. Time evolution of molecule population for boundary
condition g(0) = 0, continuum coupling α = 0.27, and three dif-
ferent molecular energies ε. The dashed lines mark the equilibrium
fixed-point values g
.

and the damping rate can formally be obtained by integrating
out the bath, as customary in the study of open quantum
systems. Commonly, this is done under a Markovian approxi-
mation, where the bath equilibrates on the shortest timescale,
retaining no memory of interaction with the condensate. Such
Markovian treatments of the atom-molecule oscillations can
be found in Ref. [29] (and references within). In particular,
the authors of Ref. [29] show that the oscillatory (elliptic)
fixed point becomes attractive, such that the oscillations die
out [29,30].

That analysis holds in the low-density limit where the equi-
librating interbath interactions are larger than the BEC-bath
ones. In the high-density limit under study in this work, the
Markov approximation breaks down. The compact form of
the differential system (19) allows us to retain the continuum
degrees of freedom explicitly and track the precise way the
decay occurs in our model.

C. Dynamics of solitonlike solutions coupled to the continuum

In Fig. 4, we present the solitonlike trajectories, with
boundary condition g(0) = 0, f (0) = 1 as appropriate for
quench-type experiments [4,6]. We chose a value of the con-
tinuum coupling α = 0.27 which reflects current experimental
conditions, see Sec. V. Our numerics are in good agreement
with concurrent results presented in Ref. [6], where a similar
model is employed and detailed comparison to experimental
data is presented, highlighting strengths and weaknesses of
the model. Generically, we find that the molecular population
relaxes to a stationary value which is smaller than the equilib-
rium fixed-point value g
. This can be attributed to a stronger
population of the continuum modes during the initial time
evolution. We observe a few damped oscillations around the
long-time asymptote. The damping is weakest for the negative
molecular detuning ε = −1, which is due to the fact that the
molecular state lies outside of the atomic continuum. Under
those conditions the decay process is a many-body effect,
where the energy required to break up a molecule comes from
the condensate as a whole. Understanding this slow damping
is the central goal of our study of the linearized trajectories in
Sec. III D.

The solitonlike solutions, which have also been studied
in several previous works [6,9,11–14], are high-energy tra-
jectories; as such, they are strongly affected by additional
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decay sources, e.g., from atom-atom collisions, trap effects
etc., which are not captured by our model. Therefore, we
cannot expect the numerics in Fig. 4 to model the experiments
quantitatively. For the remainder of this paper, we focus on the
oscillatory dynamics near the equilibrium fixed point, which
does not suffer from such a theoretical limitation and can be
addressed by a modified experimental protocol, see Sec. V B.

D. Dynamics near the fixed point

We now derive our central results, corresponding to the
dynamics near the fixed point. We start by linearizing Eq. (19)
around its fixed-point value, x ≡ (g, f , η, uk, vk ) � x
 + δx.
Here, f 
 can be determined by using the particle-number
conservation, Eq. (9). Using the fact that v


k = 0, η
 = π , we
obtain the following differential equation for δg:

δ̈g + ω2
gδg = α

∫
k

( ˙δvk

1 − (u

k )2

− δuk
( f 
)2(1 + u


k )2

g
[1 − (u

k )2]2

)
,

(22)

where we have neglected an O(α) correction to the oscillator
frequency ωg. As we will now show, to the leading order in α

the term on the right-hand side of Eq. (22) is proportional to
δ̇g and therefore serves as a damping source. To prove this, we
consider the equations for δvk, δuk :

¨δuk + �2
kδuk = −δg�kFk

¨δvk + �2
kδvk = −δ̇gFk . (23)

In Eq. (23) the we used the labels

�k = 2(εk − μ
 + g
u

k ), μ
 = −g

Fk = 1 + (u

k )2 − u


k

(g
)2 + 1

(g
)2
. (24)

Equations (22) and (23) form a closed system. We can es-
timate the effective damping of δg to leading order in α by
approximating all quantities in Eq. (23) by their values at
α = 0. Below we formally develop this perturbative expan-
sion. In this leading-order treatment, Eq. (23) describes a
set of undamped oscillators subject to a sinusoidal driving
force. The drive is resonant when �k = ωg, signaling en-
hanced decay of the condensed molecules into atomic pairs
at momenta obeying this resonance condition. At vanishing
level detuning ε, the resonance occurs at εk � 0.5774. Impor-
tantly, this resonance arises from the oscillatory dynamics of
g: for a static g = g
, the effective molecule level is below the
atomic continuum, as signaled by the negative value of the
chemical potential μ
 = −g
, and the decay is switched off.
For the oscillating solution, the residual energy stored in the
oscillation enables decay into pairs with kinetic energy equal
to the oscillation frequency.

In Fig. 5(a) we plot the time-dependent atomic occupation
nk = |zk|2/(1 − |zk|2) weighted by the density of states

√
εk ,

as obtained from full numerical solution of Eq. (19) with
boundary condition x = x
 + δx, |δx| 
 1. The long-time en-
hancement of the resonant mode is clearly visible.

To obtain our analytical description of the resonant de-
cay and associated damping, we parametrize δg(t )|α=0 =
A cos(ωgt ) + B sin(ωgt ). Close to the resonance one can ig-
nore counter-rotating terms in Eq. (23) and the solution for

FIG. 5. Numerical demonstration of the resonant production of
atomic pairs during small oscillations about the fixed point. (a) Time
evolution of weighted atomic density nk (t )

√
εk , obtained by dis-

cretizing Eq. (19) on a sufficiently dense momentum grid. Here
we used ε = 0, α = 0.01, and initial conditions with the molecu-
lar fraction shifted slightly from its equilibrium value. The dashed
horizontal line indicates the resonance energy. (b) Linear growth of
resonant modes illustrated by plotting δvk/(1 − (u∗

k )2) vs time, for k
satisfying the resonant condition [dashed white line in panel (a)]. The
full numerical solution (red) is contrasted with the approximation
(blue) from Eq. (25). (c) Scaled damping rate � as function of ε, see
Eq. (26).

δvk can be expressed as

δvres
k (t ) = BFk

2(ωg − �k )
[cos(ωgt ) − c1 cos(�kt )]

− AFk

2(ωg − �k )
[sin(ωgt ) − c2 sin(�kt )]. (25)

The coefficients c1, c2 are determined by boundary condi-
tions, which generically depend upon the entire history of the
system. Nonetheless, we can impose some constraints by as-
suming that the noncondensed modes are not macroscopically
occupied, δuk (0), δvk (0) 
 1. For the near-resonant modes,
we then require c1 = c2 = 1. Similar arguments hold for uk .
The resonance condition in Eq. (25) shows that the oscillation
frequency ωg sets the kinetic energy of excited atomic pairs
which are predominantly generated during the dynamics. Fur-
thermore, in Eq. (25) the excitation rate is proportional to A
and B, which encode the deviation of g from its equilibrium
value g∗. A numerical check is presented in Fig. 5(b), where
we show δvres

k (t ) weighted by 1/[1 − (u
)2]. This corresponds
to the integrand on the right-hand side of Eq. (22). We see
excellent agreement with this perturbative treatment up to
times of order t � 1/|δx|: at longer times, δvres

k , δures
k become

O(1), and the linearization used to derive Eq. (25) is no longer
justified.

With Eq. (25) at hand, we can evaluate the right-hand side
of Eq. (22) in the intermediate-time limit, taking into account
the near-resonant contributions only (Appendix E); the non-
resonant terms are rapidly oscillating functions of εk , and
their contributions to the k integral are small. The timescale
on which the resonant contributions start to dominate scales
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FIG. 6. Molecular amplitude g(t ) at ε = 0 for α = 0.1 (a) and a
smaller value α = 0.01 (b). In the energy landscape of Fig. 1, the
damped oscillation corresponds to a spiral towards the fixed point.
The long-time deviation from the ordinary exponential decay, which
sets in at t � 1/|δx|, is clearly observed in (b).

as 1/ωg. The evaluation of the damping rate within the lin-
earized theory is therefore controlled in the large time window
1/ωg < t < 1/|δx|. For these times we obtain

α

∫
k

( ˙δvk

1 − (u

k )2

− δuk
( f 
)2(1 + u


k )2

g
[1 − (u

k )2]2

)
� −α�δ̇g , (26)

with solution

ganalyt.(t ) = g
 + δg(t )

= g
 + [A cos(ωgt ) + B sin(ωgt )] exp

(
− α�

2
t

)
.

(27)

Here � is a function of ε which has a complicated analytical
form; it is plotted in Fig. 5(c). � vanishes as ε → −2, while it
grows roughly linearly at larger ε.

In Fig. 6 we compare the damped oscillation ganalyt. to
the numerically obtained one for a small initial displacement
|δx| = δg(0) = 0.02. In Fig. 6(a) a sizable overall interac-
tion α = 0.1 is used; in this case, the exponentially damped
solution Eq. (27) agrees with the numerics up to arbitrary
times, since the oscillations are already damped out com-
pletely for t > 1/|δx| ∼ 50. In Fig. 6(b) we consider a smaller
value α = 0.01. While we still find excellent agreement for
early times, the numerical solution starts to deviate strongly
from the approximation (27) at long times t � 1/|δx| ∼ 50,
when the linearization used to derive Eq. (27) breaks down. At
these longer times, much stronger nonexponential damping is
observed. This enhanced “non-Markovian” damping can be
attributed to the strong population of the resonant mode: a
“Bose enhancement” effect encoded in the 1/(1 − |zk|2) factor
in Eq. (19). These deviations from the linearized behavior
become more important when the oscillations have larger am-
plitude (i.e., |δx| is larger) or when the linearized decay rate,
α�, is smaller. At the longest times, small beats are observed
in Fig. 6(b), which we attribute to coherent interconversion
between condensed molecules and the strongly populated
continuum atomic pairs at momenta close to resonance.

As described in Sec. V, in the current experiments α ∼
0.27. Thus the breakdown of the linearized theory will only
occur for large deviations from equilibrium.

Beyond the damping, the strong population of the resonant
momentum pair should be observable directly by switching-
off the trap and imaging the resulting momentum distribution

FIG. 7. Molecular amplitude g(t ) subject to off-resonant drive,
ε(t ) = ε + δε cos(ωεt ). Here ε = 0, α = 0.27 as in the experi-
ment, see Sec. V, and δε = 0.1. (a) Driving frequency ωε = 0.3ωg.
(b) ωε = 1.7ωg. The analytical approximation is obtained from solv-
ing Eq. (28).

of atoms in a time-of-flight measurement. This has been
achieved in other setups where correlated k,−k atom pairs
are created, for instance, Refs. [31,32].

IV. DRIVEN SYSTEMS

The molecule binding energy ε depends on the magnetic
field B. Thus periodically modulating the magnetic field leads
to a time-dependent ε, which can drive the atom-molecule
association–disassociation [1,4,33–35]. In our modeling this
drive can be trivially implemented by making ε time-
dependent. For simplicity, we focus on the simple sinusoidal
driving function, ε → ε + δε cos(ωεt ). For the solitonlike
trajectories of Fig. 3(a), periodic driving can enhance the time-
averaged molecule population when the driving frequency
matches ε [34,35]. Here, we study the impact of the drive on
the coherent oscillations close the equilibrium fixed point. For
small driving amplitudes δε, the linearized equation, Eq. (26),
becomes

δ̈g + ω2
gδg + α�δ̇g = −δε cos(ωεt )( f 
)2. (28)

This linearized equation applies as long as δg remains small.
This requires that δε is small and that ωe is sufficiently
far from the resonant frequency ωg. Figure 7 illustrates
this off-resonant regime for an experimentally relevant value
of the coupling α = 0.27. After an initial transient period,
g(t ) oscillates with the drive frequency. This figure shows
clear agreement between the full numerical calculation and
Eq. (28). The only trend not captured by Eq. (28) is a small ad-
ditional decay of g(t ) that is observed for the high-frequency
drive [Fig. 7(b)] at the longest times; it can be attributed to the
population of atomic pairs with a kinetic energy that is com-
mensurate with the driving frequency ωε and is suppressed for
smaller values of α.

For a resonant drive, ωg = ωε , the simple linearization in
Eq. (28) predicts a linear increase of the oscillation amplitude
δg(t ) as a function of time. However, once δg becomes suf-
ficiently large, the linearized theory breaks down. Figures 8
and 9 illustrate this breakdown for different parameter values.

In the limit α = 0, when the condensate fractions are
decoupled from the continuum, g(t ) displays beats when res-
onantly driven, see Fig. 8. This behavior originates from the
fact that the effective potential which determines the g tra-
jectory is anharmonic. As predicted by the linearized theory,
δg initially grows linearly in time. As δg grows, however,
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FIG. 8. Molecular amplitude g(t ) subject to resonant drive,
ε(t ) = ε + δε cos(ωεt ), with ωg � ωε without coupling to the con-
tinuum, α = 0. Here ε = 0, δε = 0.1. The analytical approximation
ganalyt., which is valid for short times t � 1/δε only, is calculated
from Eq. (28).

the natural oscillation frequency shifts out of resonance with
the drive. The resulting phase lag causes the drive to remove
energy from the system, reversing the growth and causing δg
to shrink. Once δg is sufficiently small, the drive once again
causes linear growth.

Of course, the limit α = 0 is somewhat academic.
Figure 9(a) shows the generic behavior that we find when
α 
= 0. We see only a single beat, whose physical origin is
very different from the α = 0 case. Here what happens is
that as δg grows we develop strong occupation of the non-
condensed modes. The resulting Bose enhancement means
that the decay rate exceeds the drive-induced growth rate,
causing δg to fall. The timescale where this effect becomes
important is set by the inverse driving rate 1/δε. At long times
one finds small oscillations which are largely due to coherent
oscillations between condensed and noncondensed modes.

Figure 9(b) shows the occupation of the noncondensed
modes during this process. The population is mainly ex-
cited in a narrow range of εk , corresponding to �k ∼ ωg

[see the discussion following Eq. (24)]. Figure 9(c) shows
the population at this resonant energy. There is a remark-
able enhancement compared with the undriven situation. The
oscillations again indicate coherent interconversion between
condensed molecules and noncondensed atom pairs.

V. EXPERIMENTAL CONSIDERATIONS

A. Energy and timescales

In this paper we work in natural units, which make the
phenomena most transparent. To connect with experiments,
we now reintroduce physical units and provide estimates for
typical parameter values.

Solving the two-body problem with the Hamiltonian in
Eq. (1) gives a scattering length [36] as = −mλ2/(4π h̄2ε),
which should be matched with the phenomenological be-
havior of as close to a Feshbach resonance, as � −abg
B/

(B − B0).
The experiments work with 133Cs, for which m = 133 amu.

According to [4,6], the Feshbach resonance is at B0 =
19.849(2)G and has a width 
B = 8.3(5)mG. Far from the
resonance the low-energy scattering is characterized by a
background scattering length abg = 163aB, where aB is the
Bohr radius. The magnetic moment difference between the
closed (molecular) and open (atomic) channel is δμ = h̄ ×
4.8(2)(µs)−1G−1. The molecular energy is then ε = δμ(B −
B0). Thus we conclude that λ =

√
(4π h̄2δμabg
B)/m. A

TABLE I. Typical parameter values for comparison with exper-
iments [4,6]. The first column shows the small parameter in our
expansion, α, which characterizes the coupling between atoms and
molecules. The second shows τ , the time unit used in all graphs.
The third gives the conversion factor which relates the dimensionless
molecular energy ε to the physical magnetic field detuning from
resonance, δB = B − B0.

α Time unit (Energy unit)/δμ

0.27 τ = 0.09 ms δB/ε = 2.3 mG

typical density reported in the experiments is n = 2.9 ×
1013 cm−3. Inserting these values into the definition of the
effective dimensionless coupling α, Eq. (9), the unit of
time h̄/(

√
2nλ), and magnetic-field equivalent of the unit of

energy,
√

2nλ/δμ, leads to parameter values as shown in
Table I.

B. Experimental protocols

The experimental protocol used in Refs. [4,6] throws the
system far out of equilibrium. This causes large signals but
makes modeling challenging. Small perturbations can be am-
plified through the nonequilibrium dynamics, and there are
no small parameters controlling the behavior. We argue that
the core physics can be explored using more robust near-
equilibrium experiments. For detailed modeling of the current
experiments we refer the reader to Ref. [6].

We advocate for a quasiequilibrium experiment, where one
slowly ramps the magnetic field to produce a setting where
the atoms and molecules are in chemical equilibrium. One
could then perturb the magnetic field to excite the oscillations
studied in Secs. III D or IV, depending on if the perturbation
is static or periodic.

One additional feature is that, as noted in [6,19,36], near
the resonance the equilibrium system’s compressibility is
negative unless the molecule-molecule scattering is large.
Consequently, there is a mechanical instability which will
lead to collapse [37,38]. It would be extremely interesting to
study this instability in the strongly interacting limit, and the
interplay between chemical and mechanical dynamics. If one
wants to avoid this complication, one can restrict experiments
to detunings where the system is mechanically stable or where
the collapse time is long.

VI. SUMMARY AND OUTLOOK

Some of the most important questions being addressed
in atomic, molecular, and optical systems involve the cou-
pling between macroscopic quantum degrees of freedom
and incoherent baths. These questions are key to manipu-
lating quantum information [39] and exploring the ways in
which quantum systems thermalize [40]. In this work we
explored a dramatic example of such dynamics, namely, the
interconversion between atomic and molecular Bose-Einstein
condensates near a Feshbach resonance. We have shown that
the coherent atom-molecule oscillations are damped by the
decay of molecules into noncondensed atomic pairs. This is
a resonant process, and the atomic pair energy is set by the
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FIG. 9. (a) Molecular amplitude g(t ) subject to resonant drive, ωg � ωε , with coupling to the continuum. Here ε = 0, δε = 0.1, α = 0.27.
At times t > 1/δε, strong population of the resonant continuum mode sets in, leading to a breakdown of the linearized analytical solution
derived from Eq. (28). (b) Time evolution of excited-state population. The horizontal dashed line marks the resonance energy obtained for
α = 0. (c) Time evolution of resonant excited-state mode with �k � ωg [see Eq. (23)], compared to the situation without external drive.

atom-molecule oscillation frequency. This pair production is
somewhat analogous to the “atomic fireworks” in driven con-
densates [32]. Here the atom-molecule oscillations play the
role of the drive.

A key feature of this system is that the decay process is
nonlinear. Due to Bose stimulation, it occurs faster when there
are more noncondensed pairs in the system. This leads to
significant deviation from simpler theories which assume a
Markovian, memory-free bath.

Motivated by the experiments [4], we also considered
the response of this system to periodically modulating the
molecular binding energy. Such modulation can drive atom-
molecule oscillations, but coupling to the continuum causes
these oscillations to damp out. Again, the nonlinear nature of
the decay process is significant, and they have a larger impact
for resonant driving.

Our work complements the recent calculations of Wang
et al., who used a similar formalism to study the far-from-
equilibrium dynamics after a magnetic field quench [6],
mimicking the experimental protocol. They make direct com-
parison with the experiment, revealing both the strengths
and weaknesses of this type of Bogoliubov description. We
argue that better quantitative agreement will be found in
near-equilibrium experiments and advocate for a modified
experimental approach.

We made several approximations in our analysis. Most cru-
cially, we included processes in which condensed molecules
could dissociate into atomic pairs but did not include terms
where those atoms scattered off one another, nor where they
recombined to form molecules with nonzero momentum.
At longer times one would expect these neglected terms
to become important. For example, they are required for
the eventual thermalization of the system. The first step to-
wards modeling this longer-time physics involves extending
our ansatz to include molecule-molecule and atom-molecule
pairs [22]. Additionally, it would be natural to model the
three-body processes which appear to be relevant in the ex-
periment [4].

Finally, it would be interesting to analyze whether the noise
generated by the interaction with the continuum is always
detrimental to an external drive of the condensate or whether
driving protocols exist where the noise can be beneficial in the
sense of a stochastic resonance [41].
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APPENDIX A: PAIR COHERENT STATES

In this Appendix, we derive the relevant properties of the
coherent state |�〉, Eq. (5). First, we recap the properties of
the condensate parts, which fulfill

〈�|ψ0|�〉 =
√

N f eiθ

〈�|ψ†
0 |�〉 =

√
N f e−iθ

〈�|ψ†
0 ψ0|�〉 = N f 2

〈�|ψ0ψ0|�〉 = N f 2e2iθ . (A1)

We now derive analogous properties for the single-mode
state [18],

|�̃k〉 = exp(zkψ
†
k ψ

†
−k ) |vac〉 =

∞∑
n=0

zn
k |n, n〉 , (A2)

where |n, n〉 is a number eigenstate with n-fold populated
atomic states with momenta k (first entry) and −k (second
entry). The squared norm of |�̃k〉 is found by summing a
geometric series,

〈�̃k|�̃k〉 = 1

1 − |zk|2 . (A3)

We then note that

ψ
†
k ψ

†
−k |�̃k〉 =

∞∑
n=0

(n + 1)zn
k |n + 1, n + 1〉 = ∂zk |�̃k〉 ,

(A4)

which implies

〈�̃k|ψ†
k ψ

†
−k|�̃k〉 = ∂zk 〈�̃k|�̃k〉 = zk

(1 − |zk|2)2
, (A5)
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where the derivative is taken holding zk , the complex con-
jugate of zk , fixed. As a result, the normalized state |�〉 =
〈�̃k|�̃k〉−

1
2 |�̃〉 fulfills

〈�k|ψ†
k ψ

†
−k|�〉 = zk

(1 − |zk|2)
. (A6)

The first identity in Eq. (6) follows by pulling out a phase
factor, and the second one can be derived in the same vein.

APPENDIX B: DERIVATION OF THE TIME EVOLUTION

To obtain the main differential equation, Eq. (19), from
the coherent-state representation, one needs to calculate the
Lagrangian L = 〈�(t )|i∂t − H |�(t )〉 and find its station-
ary point. The expectation value 〈�(t )|H |�(t )〉 is given
by Eq. (15) with time-dependent coefficients. To find the
part 〈�(t )|∂t |�(t )〉, we first consider |z f 〉 ≡ exp(−N f 2/2) ×
exp(z f

√
Nψ

†
0 ) |vac〉, which is one of the factors entering

|�(t )〉. Recall that z f = f eiθ . We have

∂t |z f 〉 = (ż f ∂z f + ˙̄z f ∂z̄ f ) |z f 〉 (B1)

and

∂z̄ f |z f 〉 = −Nz f

2
|z f 〉

∂z f |z f 〉 =
(

−Nz̄ f

2
+

√
Nψ

†
0

)
|z f 〉

〈z f |∂z̄ f |z f 〉 = −Nz f

2

〈z f |∂z f |z f 〉 = Nz̄ f

2
. (B2)

As a result,

〈z f |∂t |z f 〉 = Nz̄ f

2
ż f − Nz f

2
˙̄z f → Nz̄ f ż f , (B3)

where we have integrated by parts (with respect to the
integration S = ∫

dtL). The contributions of the remain-
ing parameters zg, zk are obtained in the same manner.
Equation (19) can then be obtained from the conditions ∂z̄iL =
0, i = { f , g, k} and measuring the time in units of 1/(

√
2nλ).

APPENDIX C: PROPERTIES OF SOLITONLIKE
SOLUTIONS

The solitonlike solutions to Eq. (19) obey the boundary
conditions f (t = 0) = 1, g(t = 0) = 0+. When the contin-
uum modes are neglected (α = 0), they evolve along a contour
of vanishing condensate energy Econd = 0 [Eq. (3)]. This con-
dition can be used to eliminate the phase variable η and obtain
a single differential equation for g:

ġ =
√

(1 − g2)2 − (gε/2)2 . (C1)

From ġ = 0 we obtain the turning point value gmax =√
1 + (ε/4)2 − ε/4. Separating variables, the oscillation pe-

riod can be extracted as

T = 2
∫ xmax

0
dx

1

2
√

(1 − x2)x − (
xε
4

)2
, (C2)

FIG. 10. Exact vs mean-field dynamics for solitonlike solution
with g(0) = 0+. (a) g(t ) for fixed total particle number N (mean-field
corresponds to N = ∞). (b) Scaling of tMF with N on a log-linear
plot.

where x = g2, xmax = g2
max. Integration gives

T =
EllipticK

(
1

1+(ε/4)2

)
√

1 + (ε/4)2
∼

{
log(1/ε) ε → 0

1/ε ε → ∞ , (C3)

where EllipticK is the complete elliptic integral of the first
kind.

APPENDIX D: MEAN FIELD VS EXACT DYNAMICS

In this Appendix we compare the dynamics obtained from
the mean-field-like coherent-state variational approach with
exact diagonalization results for the pure condensate case
(α = 0). For fixed total particle number N , the exact wave
function can be expressed as

|ψ〉 =
N/2∑
m=1

cm(t ) |Nφ = m, Nψ = N − 2m〉 , (D1)

where |Nφ = m, Nψ = N − 2m〉 is a number eigenstate that
contains m molecules and N − 2m atoms. For initial con-
ditions we choose coefficients cm such that the system
is in a finite-N version of the coherent ansatz (2), with
〈ψ |φ†

0φ0|ψ〉−1/2 ≡ g(0)
√

N/2. We then compare the evolu-

tion of gN (t ) ≡
√

2
N 〈ψ |φ†

0φ0|ψ〉−1/2
with g(t ) obtained from

the (N = ∞) coherent state. At short times, the coefficients
cm are sharply peaked around the mean-field result. At longer
times, dephasing sets in: the cm distribution broadens since
different quantum trajectories effectively evolve with different
frequencies. This causes gN (t ) to deviate from g(t ).

In Fig. 10 we show results for the soliton-type trajectory
with g(0) = 0+. While the finite-N trajectories follow the
mean-field result accurately for g 
 1, they deviate signifi-
cantly as g → 1 [Fig. 10(a)]. We define tMF as the time when
the mean field and the finite-N trajectories deviate by 10% (a
value which is chosen arbitrarily). As seen in the log-linear
plot shown in Fig. 10(b), tMF grows as log(N ) for the soliton
trajectory [26,27].

In Fig. 11 we show analogous results for an oscillatory
trajectory with g(0) � g
. At fairly small N , dephasing leads
to damped oscillations, see Fig. 11(a). However, at larger N
the mean-field result quickly becomes accurate, and the corre-
sponding dephasing time tMF scales linear in N . For ultracold
experiments with O(104) atoms [4], the mean-field approxi-
mation is excellent for all experimentally relevant times.
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FIG. 11. Exact vs mean-field dynamics for oscillatory solution
with g = g
 − 0.04. (a) g(t ) for fixed total particle number N , with
colors as in Fig. 10. (b) Scaling of tMF with N .

APPENDIX E: EVALUATION OF DECAY RATE

According to Eq. (26), the relevant integral for the deter-
mination of the damping rate is of the form

I ≡
∫

k

˙δvk, (E1)

plus a contribution from uk which can be evaluated in the same
manner. Consider the solution for δvk close to resonance,
�k � ωg [we chose our origin of time so that δg contains no
sin(ωgt ) terms]:

δg(t )|α=0 = A cos(ωgt ) (E2)

δvres
k (t ) = AFk

2(�k − ωg)
[sin(ωgt ) − sin(�kt )], (E3)

where Fk,�k are given in Eq. (24). For t � 1/ωg, Eq. (E3) is
strongly peaked at �k = ωg, with a peak height that is linear in
t . In Eq. (E1) it is convenient to change variables as εk → �k ,
yielding a modified integration measure h(�k ):

dεk
√

εk → d�k

�k

√√
4g2 + �2

k − 2g

2
√

2
√

4g2 + �2
k

≡ d�kh(�k ) . (E4)

Since we are interested in the resonant contribution only, we
restrict the integral to a symmetric region around �k = ωg:

Ires ≡
∫ ωg+κ

ωg−κ

d�k f (�k )
sin(ωgt ) − sin(�kt )

�k − ωg
, (E5)

where κ 
 ωg, and f (�k ) = AFkh(�k )/2 contains all terms
that are nonsingular when �k → ωg. Changing variables to
x = (�k − ωg)t , we can rewrite Ires as

Ires = Re

[
eiωgt

∫ κt

−κt
dx

1 − eix

x
f
(x

t
+ ωg

)]

� Re

[
eiωgt

∫ κt

−κt
dx

1 − eix

x
f (ωg)

]

= Re

[
−ieiωgt

∫ κt

−κt
dx

sin(x)

x
f (ωg)

]
κt�1� π f (ωg) sin(ωgt )

= − π

2ωg
Fkh(�k )|�k=ωg δ̇g(t )|α=0. (E6)

The prefactor in this result determines the damping rate.

APPENDIX F: THREE-BODY INTERACTIONS

To include three-body processes that involve the decay of
a molecule and an atom into three atoms and vice versa, the
Hamiltonian can be extended with a term [4]

H (3)
int = λ3

V 3/2

∑
kpqs

φ
†
k+p+q−sψ

†
s ψkψpψq + ψ

†
k ψ†

pψ
†
q ψsφk+p+q−s,

(F1)

with an intensive short-range coupling constant λ3.
We focus on a simplified situation where the three-body

term dominates over the two-body one, λ3 � λ, and mea-
sure energies in units of

√
2n3/2λ3. First, we consider the

condensate-only case, where we reproduce the two-body re-
sults qualitatively, with only a difference in numbers. The
energy takes the form

E (3)
cond = ε

2
g2 + cos(η)gf 4 = ε

2
g2 + cos(η)g(1 − g2)2 . (F2)

At vanishing detuning, the energy minimum corresponds to
η
 = π, g
 = 1/

√
5. The equations of motion read

∂t g = (1 − g2)2 sin η

∂tη = ε +
(

(1 − g2)2

g
− 4g(1 − g2)

)
cos η . (F3)

Similar to the two-body case, these equations admit soliton-
like solutions for g(0) � 0 and oscillatory ones for g(0) � g
.
The scaling of energies (e.g., the oscillation frequency) with
density as n3/2, possibly renormalized by trap effects, and the
value of g
 = 1/

√
5 suggest that the recent experiment [4] was

dominated by three-body processes.
To study the impact of the atomic continuum, we can

evaluate the three-body Hamiltonian using the general ansatz
|�〉 from Eq. (5). We obtain an expectation value

E (3) = 〈�|H |�〉 /(
√

2n3/2λ3N ) = ε

2
g2 + cos(η) f 4g

+ α3

∫
k

1

1 − |zk|2 {3 f 2g[uk + cos(η)|zk|2] + εk|zk|2},
(F4)

where α3 = m3/2(λ3

√
2n3/2)3/2/(

√
2nπ2), compare Eq. (10).

It is clear that the minumum occurs when η = π , zk = uk < 0.
The factor of 3 in the second line of Eq. (F4) is crucial: It rep-
resents the different possibilities to choose two noncondensed
atoms out of the interaction term (F1) in the pairing or density
channel.

Minimizing Eq. (F4) is harder than in the case of two-body
interactions in Eq. (11), as the interconversion term contains
the factor f 2g. Thus using number conservation to eliminate
f results in quite involved expressions. One can proceed by
introducing a Lagrange multiplier, but it is more elegant to
further restrict our ansatz and produce an upper bound to the
ground-state energy. To simplify the algebra we consider the
resonant case, ε = 0.

For our restricted ansatz we take uk = 0 when εk is above
some cutoff ξ . We choose ξ to be sufficiently small that we
can neglect the εk term in Eq. (F4). Because our approach is
variational, this gives us an upper bound to the energy, and
making ξ smaller should decrease our energy.
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We then use that |uk| > u2
k , to bound the energy as

E (3)
min � −g( f 4 + 6 f 2c2) + O(ξ ) , (F5)

where

c2 ≡ α3

∫
k

u2
k

1 − u2
k

(F6)

is the total number of continuum states, and we have taken
η = π . For the chosen configuration with uk = zk , num-
ber conservation implies g2 + f 2 + c2 = 1. Inserting this
into (F5), we find (g
)2 = 1/5, (c
)2 = 8/25, ( f 
)2 = 12/25,
which leads to an energy bound Emin � −0.515, significantly
lower than the estimate with c2 = 0 for which E = −0.268.

We emphasize that even for an infinitesimal α3, this ansatz
creates an order-1 change in the energy and leads to a
macroscopic change in the number of condensed particles:
( f ∗)2 is reduced from the value of 4/5, which is found
if one takes α3 = 0. These particles can be thought of as
“pairs”—meaning that they have correlated momenta but are
not molecules. Note that these noncondensed pairs all have
εk < ξ for infinitesimal ξ . Thus this represents a form of pair
condensation or a fragmented condensate [18,42].

Pair condensates are quite exotic, and in the absence of
an atomic condensate would have vortex structures with an
atomic phase winding of π , corresponding to a half-quantum
vortex [43,44]. Models with pair condensation often have me-
chanical instabilities which prevent their observation [18,45],
and more analysis is needed to see if this physics is observable
here.

To verify that this analysis is sensible, we apply the same
procedure to the two-body case in Eq. (11). We find an upper
bound,

E (2)
min � −g( f 2 + c2), (F7)

and it is not energetically favorable to convert atoms into
noncondensed pairs.

APPENDIX G: COHERENT-STATE DESCRIPTION OF
EXCITED MOLECULAR STATES

To include the possible decay into excited molecular
states in the two-body case, the coherent-state ansatz of
Eq. (5) needs to be generalized. One possible ansatz (not
normalized) is

|�̃〉 =
∏

k

′ |�̃k〉 ,

|�̃k〉 = exp(ηk (φ†
k ψ

†
−k + φ

†
−kψ

†
k ) + zkψ

†
k ψ

†
−k ) |vac〉 , (G1)

where have suppressed the condensate operators and have not
pulled out any phase factors. Note that the most general coher-
ent ansatz should also contain a term φ

†
k φ

†
−k . For simplicity,

we restrict ourselves to the limited ansatz (G1) instead, since
it captures the essential physics and should be quantitatively
accurate for small molecule populations, as it contains the
relevant linear terms in φ

†
k .

The wave function, |�̃k〉, can be expressed as

|�̃〉k =
∞∑

l,m,n=0

ηl+m
k zn

k

√(
m + n

m

)(
l + n

l

)
|l, m, m + n, l + n〉 ,

(G2)

where

|Mk, M−k, Nk, N−k〉

= (φ†
k )Mk (φ†

−k )M−k (ψ†
k )Nk (ψ†

−k )N−k

√
Mk!M−k!Nk!N−k!

|vac〉, (G3)

i.e., the first two entries refer to the population of molecules
with momenta k,−k and the last two to atoms, again with
k,−k. The squared norm of |�k〉 is given by

〈�̃k|�̃k〉 =
∞∑

l,m,n=0

|ηk|2(l+m)|zk|2n

(
m + n

m

)(
l + n

l

)
. (G4)

This sum can be evaluated with the help of the identities(
m + n

m

)
= (−1)m

(−(n + 1)

m

)
,

∞∑
m=0

(
a

m

)
xm = (1 + x)a . (G5)

We obtain the compact expression

〈�̃k|�̃k〉 = 1

(1 − |ηk|2)2 − |zk|2 . (G6)

We can now introduce the normalized state |�k〉 =
〈�̃k|�̃k〉−1/2 |�̃k〉 and evaluate the expectation values of var-
ious operator combinations appearing in the Hamiltonian.
Employing identities similar to (G5), we obtain

〈�k|φ†
k φk|�k〉 = |ηk|2(1 − |ηk|2)

(1 − |ηk|2)2 − |zk|2

〈�k|ψ†
k ψk|�k〉 = |ηk|2(1 − |ηk|2) + |zk|2

(1 − |ηk|2)2 − |zk|2

〈�k|ψkψ−k|�k〉 = zk

(1 − |ηk|2)2 − |zk|2

〈�k|φ†
k ψk|�k〉 = wkzk

(1 − |ηk|2)2 − |zk|2 . (G7)

Relabeling the parameters as zk → exp(iχ )zk, ηk →
exp(iγ )ηk for convenience (with γ to be determined) and
reintroducing the condensate fractions, the normalized energy
expectation value E = 〈�|H |�〉 /(

√
2nλN ) can be written as

E = ε

2
g2 + cos(η)gf 2

+ α

∫
k
εk

3
2 |ηk|2(1 − |ηk|2) + |zk|2

(1 − |ηk|2)2 − |zk|2

+ α

∫
k

guk + √
2 f Re[exp[i(θ + χ − γ )]zkηk]

(1 − |ηk|2)2 − |zk|2 (G8)

f 2 =
(

1 − g2 − α

∫
k

3|ηk|2(1 − |ηk|2) + |zk|2
[(1 − |ηk|2)2 − |zk|2]

)
, (G9)

where Eq. (G9) shows the particle conservation.
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Using a similar argument to Appendix F, we can again show that the minimum contains a pair condensate. As discussed in
that section, it is not clear if that state is robust against mechanical instabilities without adding extra terms to the Hamiltonian.
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