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Flux-enhanced localization and reentrant delocalization in the quench dynamics
of two interacting bosons on a Bose-Hubbard ladder
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We study the quench dynamics of two bosons possessing on-site repulsive interaction on a two-leg ladder and
show that the presence of uniform flux piercing through the plaquettes of the ladder favors the localization of the
bound states in the dynamics. We find that, when the two bosons are symmetrically initialized on the edge rung of
the ladder, they tend to edge-localize in their quantum walk, a phenomenon which is not possible in the absence
of flux. However, when the bosons are initialized on the bulk rung they never localize and exhibit linear spreading
in their quantum walk. Interestingly, however, we find that, in the later case, a finite flux favors localization of
the bulk bound states in the presence of sufficiently weak quasiperiodic disorder, which is otherwise insufficient
to localize the particles in the absence of flux. In both cases, we obtain that the localization in the dynamics
strongly depends on the combined effect of the flux and interaction strengths, as a result of which we obtain a
signature of reentrant delocalization as a function of flux (interaction) for fixed interaction (flux) strengths.
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I. INTRODUCTION

The dynamics of a quantum state following a sudden
quench of a system parameter reveals important insights about
the quantum phases, spreading of correlation and entangle-
ment, transport properties, topology, and chaos [1–13]. Due
to the recent experimental progress in observing quench dy-
namics in artificial systems, a great number of studies have
been performed to understand the nonequilibrium dynamics
both theoretically and experimentally [14–27]. While the non-
interacting systems are easier to handle, many-body effects
pose serious constraints in addressing the dynamics of inter-
acting particles in practice. However, the theoretical analysis
of such systems requires sophisticated numerical methods. In
such a scenario, the quench dynamics of a state with few
interacting particles also known as the quantum walk (QW)
offers a unique platform to achieve enough insights about the
interacting systems. Often such dynamics also reveal novel
phenomena which does not occur in the true many-body limit.

Recently, the QW of interacting particles were extensively
studied to understand the effect of strong correlations, par-
ticle statistics, disorder, external gauge field, and topology
in lattice systems [28–45]. In this context, signatures lo-
calization transition, topological character, Bloch oscillation,
chiral dynamics, and the dynamics of quasiparticle excitation
have been theoretically studied and experimentally observed
[29,45–58]. Among these, the simplest yet interesting setup is
the dynamics of two interacting particles where the interplay
of the interaction and the nature of the energy bands play
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crucial roles in the quench dynamics. One such phenomenon
is the signature of a repulsively bound pair of strongly inter-
acting particles in one-dimensional lattices [59]. For the case
of bosons, while for the initial state with two bosons residing
on the same site results in a local bound state due to the
strong on-site interaction, the two nonlocal bosons never form
a bound state due to fermionization. However, strong off-site
interaction favors the nonlocal bound pairs in the dynamics
[60,61] of nonlocal bosons. Doublon bound states have also
been predicted in the dynamics of distinguishable particles
[43,57,62,63].

A completely different scenario appears in the case of a
two-leg ladder where the dynamics of hardcore bosons ex-
hibits features of bound states along the rung of the ladder.
A recent experiment based on the superconducting circuit
revealed the edge localization of a bosonic rung-pair in the
dynamics of two hardcore bosons initialized on the edge rung
of a two-leg Bose-Hubbard ladder with uniform rung and
leg-hopping strengths [64]. However, when in the bulk rung,
the bosons exhibit linear spreading in the dynamics implying
no localization. In a subsequent theoretical study by Li et al.
[65], it was shown that the nontrivial edge localization was
due to the complete flatness of the bound state band in the
two-particle band structure only in the limit of hardcore on-
site interaction.

In this paper, however, we show that, when a pair of bosons
are subjected to an artificial gauge field [66,67], they tend to
edge localize even in the presence of finite on-site interaction.
We study the QW of two interacting bosons on a two-leg
flux ladder [68–83] and examine the interplay between the
on-site interaction strength and the flux piercing through the
plaquette of the ladder in the quench dynamics. We find that,
in the absence of flux, in contrast to the hardcore bosons,
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FIG. 1. Figure depicts a two-leg Bose-Hubbard ladder in the
presence of uniform flux. J and K are the leg and rung hopping
strengths, respectively. U is the on-site interaction between the
bosons and � is the flux piercing through each plaquette and φ is
the phase acquired by the particles.

bosons with finite on-site interaction when symmetrically ini-
tialized on the edge rung of the ladder exhibit linear spreading.
However, in the softcore case we find that the onset of flux
results in the edge localization of the bosons. Interestingly,
this flux-enhanced edge localization is found to occur for
some intermediate values of interaction strengths, as a result
of which we obtain a reentrant behavior in the dynamics as a
function of interaction when the flux is fixed.

However, when the bosons with finite on-site interaction
are initialized on the bulk rung of the ladder, they always
exhibit linear spreading in the QW. In this case, we find that,
in the presence of a sufficiently weak quasiperiodic disorder,
the flux favors the localization of the bosons for a range of
values of interaction strengths. In both cases we find that
the localization involves the bosonic bound states which are
more favorable in the limit of strong rung hopping compared
to leg-hopping strengths. In the following we discuss these
behaviors in detail.

This paper is structured as follows. In Sec. II, we present
the model of the two-leg ladder subjected to uniform mag-
netic flux generated by an artificial gauge field for bosons. In
Sec. III, we provide the main results in two parts. In the first
part we discuss the edge localization of two interacting bosons
and in the second part we discuss the localization in the bulk.
Lastly, in Sec. IV, we provide a brief summary of our result.

II. MODEL

We consider the system of interacting bosons on a two-
leg ladder in the presence of the uniform magnetic flux as
depicted in Fig. 1. The Hamiltonian for this setup is given by

Ĥ = U

2

∑

l,σ

n̂l,σ (n̂l,σ − 1) − J
∑

l,σ

(b̂†
l,σ b̂l+1,σ + H.c.)

− K
∑

l

(e−ilφ b̂†
l,Ab̂l,B + H.c.), (1)

where σ ∈ A, B denotes the leg index. b̂l,σ (b̂†
l,σ ) are the

bosonic annihilation (creation) operator on rung l of leg-σ,

and n̂l,σ is the number operator on rung l of leg σ . J and
K denote the amplitudes of the intraleg and interleg nearest-
neighbor hoppings, respectively. Due to the freedom of the
gauge choice in this model, we consider the Peierls phase
factors associated with the rungs of the ladder such that when
a particle encircles a plaquette of the ladder, its wave func-
tion acquires a phase factor φ [76,82]. Here the acquired
phase is given as φ = π�/�0, where � is the magnetic flux

associated with each plaquette and �0 = h/e is the magnetic
flux quantum.

The quantum walk is studied by employing the unitary time
evolution protocol as |�(t )〉 = Û (t )|�(0)〉 where Û (t ) =
e−iĤ (t )/h̄ and |�(0)〉 is an initial state. For our studies, we
consider the initial state by placing two particles on the rung
of a ladder which is given by

|�(0)〉 = b̂†
l,Ab̂†

l,B|vac〉. (2)

Here, l denotes the rung and |vac〉 is the vacuum state. The
study is performed by exactly solving the Hamiltonian shown
in Eq. (1) for a ladder of length L = 25 rungs. For our analy-
sis, we consider stronger rung hopping, i.e., K = 5 and fix J =
1 which sets our energy scale unless otherwise mentioned.

III. RESULTS

In this section we discuss our main findings in detail. We
first focus on the edge localization of softcore bosons in the
presence of flux. Then we extend our analysis to explore the
possibility of the bosons initialized in the bulk of the ladder
where we explore the effect of quasiperiodic disorder in the
QW.

A. Edge localization

In this subsection we study the QW by considering an
initial state |�(0)〉 given in Eq. (2) for l = 0, i.e.,

|�(0)〉 = b̂†
0,Ab̂†

0,B|vac〉, (3)

in which the bosons are initialized at the left-most edge rung
of the ladder. As already mentioned in the Introduction, the
QW with this initial state for hardcore bosons results in an
edge localization of the particles due to the appearance of the
flat band corresponding to the rung-pair state. However, for
finite on-site interaction U (softcore bosons), the edge local-
ization is forbidden and the bosons perform a linear spreading
in the QW. Here, we examine the QW of softcore bosons in
the presence of finite flux strength. To this end we first plot
the temporal evolution of the on-site particle density given as

〈n̂l (t )〉 = 〈n̂l,A(t )〉 + 〈n̂l,B(t )〉, (4)

which is the total density of bosons on a particular rung l of
the ladder. In Figs. 2(a) to 2(c) we show that the spreading of
the density for different values of on-site interaction strengths
U and φ = π . We obtain that when U = 0, the QW exhibits
a faster spreading of the density throughout the lattice as
can be seen from Fig. 2(a). However, as U increases and
reaches a moderate value, i.e., U ∼ 3, a clear localization
of the particles at the initial position (i.e., the left edge) is
seen in Fig. 2(b). Unexpectedly, as the interaction strength
increases further, the edge localization gradually fades away
and a complete delocalization of the particles occurs for very
strong interaction, resulting in the linear spreading again as
depicted in Fig. 2(c) for U = 30. We quantify this edge
localization of bosons by examining the time evolution of the
edge-rung density defined as

P(t ) = 〈n̂0(t )〉. (5)
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FIG. 2. (a)–(c) Show the density evolution of two particles in a
two-leg ladder for U = 0, 3, and 30, respectively, with the initial
states |�(0)〉 given in Eq. (3). (d)–(f) Show the correlation matrix
�i, j at time t = 20(J−1) for the same values of U as in the upper
panel. Here we consider φ = π .

In Fig. 3 we plot P as a function of t for different values of
U and φ = π . It can be seen that for U = 0 (gray circles),
P saturates to a very small value in time. However, as U
increases, P saturates to a finite and large value indicating a
maximum probability of occupation on the edge rung which
is the signature of an edge localization of the particles. As
U increases further, the saturation value of P tends to fall
indicating no edge rung localization. From this analysis we
obtain that the saturated value of P is maximum for U ∼ 3 for
φ = π .

At this point it is understood that a finite flux favors an
edge localization of a rung-pair state of softcore bosons for
some particular range of values of U . This leads to a re-entrant
dynamics that exhibits a delocalization to localization and
then to delocalization as a function of U . Now the question
becomnes how does the range of U for which the edge local-
ization is favored depend on the flux strength? To examine this

0 20 40 60 80 100
t ( J−1)

0.0

0.5

1.0

1.5

2.0

P
(t

)

U = 0

U = 2

U = 3

U = 5

U = 10

U = 20

U = 30

U = 40

FIG. 3. P as a function of t (J−1) for different values of U and for
φ = π .
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FIG. 4. Pavg is plotted as a function of U and φ/π for the initial
state |�(0)〉 given in Eq. (3). The red central patch corresponds to the
range of U for which the localization is maximum for each values of
φ. Here the Pavg is calculated by averaging time between 0 to T =
1000(J−1) with a step size of �t = 2(J−1).

we calculate the time-averaged value of the edge-rung density

Pavg = 1

m

T∑

t=0

P(t ), (6)

where m is the number of time steps and plot it as a function
of U for φ/π in Fig. 4. In the figure the blue (red) region cor-
responds to small (large) values of P. It can be seen that, as the
flux decreases, the range of U at which the edge localization
is maximum (red region in Fig. 4) shift towards higher and
higher values and eventually tends to fade away in the limit of
strong interaction and weak φ/π .

To discern the states involved in the edge localization we
compute the time-evolved two-particle correlation function
defined as

�i, j = 〈b̂†
i b̂†

j b̂ j b̂i〉, (7)

where b̂i(b̂
†
i ) is the particle annihilation (creation) operator

and i, j are the site indices of the ladder. For correlation
calculation, the indexing starts from the left most site of leg-A
of the ladder such that even (odd) indices are on leg-A (leg-B).
We plot �i, j for three different values of U such as U = 0, 3,

and 30 at t = 20(J−1) in the time evolution in Figs. 2(d), 2(e)
and 2(f), respectively. When U = 0, the free particle dynamics
can be seen as the uniformly distributed correlation matrix
elements �i, j in Fig. 2(d). The asymmetric distribution in the
correlation matrix element in this case is due to the location of
the initial state. For U = 3, only a few finite elements appear
at the lower left corner of the correlation matrix �i, j due to the
localization of the particles at the left edge of the ladder [see
Fig. 2(e)]. A zoomed-in picture of these matrix elements [inset
of Fig. 2(e)] reveals that the diagonal terms are finite, which
is an indication of the two-particle on-site bound pair. Apart
from the diagonal terms, we also find finite elements one site
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FIG. 5. IPR of the states plotted as a function of energy eigenval-
ues and the eigenstate index for U = 3 and φ = π .

above or below the diagonal which is the signature of the rung
pairs, i.e., a bound state of the bosons residing on each site
of a rung. This clarifies that the states which take part in the
edge localization are either the rung-pair states or two-particle
on-site pair state or a superposition of these states. However,
for U = 30, these bound states no longer remain on the edge
but rather spreads throughout the lattice as revealed by the
correlation matrix plotted in Fig. 2(f). This also reveals that,
although the density evolution shown in Figs. 2(a) and 2(c)
look similar, the one in Fig. 2(c) corresponds to the dynamics
of the bound states only. To understand this dynamical edge
localization of the bosons we examine the equilibrium energy
spectrum. The degree of localization of the states can be
quantified from the inverse participation ratio (IPR) [84,85],
which is defined as

IPR =
∑

i

|ψi|4, (8)

where ψi is the ith element of the eigenstate. We plot the IPR
of each state in the spectrum as a function of the eigenenergy
and the eigenstate index as shown in Fig. 5. Four localized
states appear which are identified as the states possessing
the maximum IPR values which are shown in the zoomed-in
regions in the insets of Fig. 5. The eigenstates with higher
IPR values are well isolated from the continuous energy spec-
trum. These correspond to the states which are localized at
the edges of the ladder as can be seen from Fig. 6 where
the rung densities are plotted for each state (with higher IPR
values). The initial state under consideration in the dynamics
which is shown in Eq. (3) corresponds to the state = 1251
[Fig. 6(b)], and therefore, we observe the bosons edge localize
in the dynamics. From Fig. 6(a), it is also evident that similar
edge localization is possible by considering the initial state as
the linear superposition of the states where the particles are
localized at the two edge rungs of the ladder. To confirm this
behavior we plot the time evolution of the density 〈nl (t )〉 for

0 12 24
Rung index-l

0.0

0.5

1.0

〈n̂
l〉

state-323

state-324

0 12 24
Rung index-l

0

1

2
state-1250

state-1251

(a) (b)

FIG. 6. (a) and (b) show the particle density at each rung for the
eigenstate with higher IPR values.

the initial state

|�(0)〉 = 1√
2

(b̂†
0,Ab̂†

0,B + b̂†
24,Ab̂†

24,B)|vac〉, (9)

in Fig. 7. As expected, the bosons tend to localize at both the
edges of the ladder in the QW when U ∼ 3.

Furthermore, the edge localization for a range of values of
U for fixed φ can be understood from the energy spectrum
as a function of U . In Fig. 8(a), we plot the IPR of all the
states as a function of eigenenergies E and U for φ = π .
We obtain that, for a range of values of U , some isolated
energy states appear which are identified by their finite IPR
(see insets for clarity). These states merge with the continuous
energy spectrum when U is not within this particular range.
For example, for the localization of states on the left edge
of the ladder, this range corresponds to the red region in
Fig. 4. To further quantify this we plot |�E | = |Eedge − Ebulk|
in Figs. 8(b) and 8(c), where Eedge and Ebulk are the energies of
the states that take part in the localization and the nearest state,
which is in the continuum band. Due to the appearance of
isolated states for a range of values of U , �E exhibits a finite
bump as a function of U as shown in Figs. 8(b) and 8(c) which
correspond to the localization at one of the edges and both
the edges, respectively. We now examine the effect of rung
hopping K on the edge localization. To this end we fix φ = π

and U = 3 for which the edge localization is maximum and
plot the time evolution of P for different values of K in Fig. 9.
We obtain that, when K = 1, P saturates to ∼0.5 in the long
time evolution indicating that there is no edge localization.
However, as K increases, P increases and tends to saturate
to a value close to 2 in the time evolution which is the total
number of particles in the system. This suggests that stronger
rung hopping favors edge localization of bosons in the QW.

0 12 24
0

25

50

75

100

t(
J
−1

)

(a) U = 0

0 12 24
Rung index-l

(b) U = 3

0 12 24

(c) U = 30

0.0

0.25

0.5

0.75

1.0

〈n
l〉

FIG. 7. (a)–(c) Show the density evolution of the two particles
with the initial state |�(0)〉 given in Eq. (9) for U = 0, U = 3, and
U = 30, respectively, and for φ = π .
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FIG. 8. (a) IPR of the states is plotted as a function of energy
eigenvalues E and U for fixed values of rung hopping strength K = 5
and φ = π . The isolated localized states are shown in the insets
for clarity. (b,c) show the behavior of |�E | as a function of U
corresponding to the localization of particles at one edge and both
edges of the ladder, respectively.

This behavior can also be confirmed by looking at the IPR of
the equilibrium energy spectrum which is plotted in Fig. 10 as
a function of eigenenergies (E ) and K for U = 3 and φ = π .
It can be seen from Fig. 10 that for K < 2, all the states exhibit
smaller IPR ∼0. However, as K increases, four isolated states
emerge with higher IPR values which are already identified as
localized states in Fig. 5.

From the above analysis it is revealed that flux enhances
edge localization of softcore bosons in the limit of stronger
K and favors a reentrant delocalization as a function of the
on-site interaction strength. In the following we will study the
role of flux on the QW of interacting bosons when they are
initialized on the bulk rung of the ladder.

0 20 40 60 80 100
t ( J−1)

0.0

0.5

1.0

1.5

2.0

P
(t

)

K = 1.0

K = 2.0

K = 3.0

K = 4.0

K = 5.0

K = 6.0

FIG. 9. The figure depicts P as a function of t (J−1) for different
values of K keeping U = 3 and φ = π .

FIG. 10. IPR of the states is plotted as a function of energy
eigenvalues E and the rung-hopping K for U = 3 and φ = π .

B. Bulk localization

In this section we consider an initial state corresponding to
bosons residing on the bulk rung of the ladder which is given
as

|�(0)〉 = b̂†
12,Ab̂†

12,B|vac〉. (10)

The QW of this initial state has already been studied in
detail in the presence of both flux and interaction [86]. In
this case, bosons do not localize in the lattice although a
nonmonotonous behavior in the dynamics as a function of U
appears which can be seen from Figs. 11(a) to 11(c). From the
radial dynamics of the density, it is evident that the velocity
of propagation initially slows down, reaches a minimum and
then increases as a function of U (see Ref. [86] for details).
Now the following question arises: If the slowing down of
the radial velocity of interacting bosons is due to flux can it

0 12 24
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100

t(
J
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)

(a)
(I) U = 0

0 12 24

(b)
(II) U = 3

0 12 24

(c)
(III) U = 30

0.0
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1.5

2.0
〈n

l〉

0 12 24
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100

t(
J
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)

(d)

0 12 24
Rung index-l

(e)

0 12 24

(f)

0.0

0.5

1.0

1.5

2.0

〈n
l〉

FIG. 11. (I)–(III) Figure shows the density evolution of the initial
state |�(0)〉 given in Eq. (10) for U = 0, 3, and 30, respectively, and
φ = π . (a)–(c) correspond to the case when λ = 0 and and (d)–(f)
correspond to the case when λ = 0.25 and χ = 0.
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promote the localization of bosons in the presence of weak
disorder? To address this question we investigate the QW
of interacting bosons on the flux ladder in the presence of
an on-site quasiperiodic disorder. Lattices with quasiperiodic
disorder are intermediate to random and clean lattices which
exhibit well-defined localization transitions in low dimen-
sions. Such localization transitions were extensively studied
in the context of the Aubry-André model and its variants for
noninteracting [51,84,87–95] as well as interacting particles
[96–104].

For our case, we allow quasiperiodic disorder along the
legs of the ladder such that the modified Hamiltonian for the
system is given as

Ĥ = − J
∑

l,σ

(b̂†
l,σ b̂l+1,σ +H.c.) − K

∑

l

(e−ilφ b̂†
l,Ab̂l,B+H.c.)

+ U

2

∑

l,σ

n̂l,σ (n̂l,σ − 1) + λ
∑

l,σ

cos(2πβl + χ )n̂l,σ ,

(11)

where λ is the strength of the quasiperiodic disorder. We
choose β =

√
5−1
2 , which is the Golden ratio that introduces

quasiperiodicity in the lattice and χ is the phase of the
quasiperiodic potential.

We now investigate the QW by considering a weak dis-
order strength in the presence of both flux and interaction.
In Figs. 11(d) to 11(f) we plot the density evolution for the
values of U considered in Figs. 11(a) to 11(c) for φ = π and
λ = 0.25. The absence of particle density after a few sites
around the initial position in Fig. 11(e) indicates an absence
of linear spreading of density for U = 3 and is a characteristic
feature of the dynamics exhibited by localized states. This
implies the localization of states for some intermediate value
of U (i.e., U = 3 in this case) where the radial velocity was
found to be minimum in the absence of disorder [compare
with Fig. 11(b)]. However, such behavior in the dynamics is
not visible for U = 0 and U = 30 where the bosons exhibit
linear spreading as shown in Figs. 11(d) and 11(f), respec-
tively.

To quantify this localization we compute the survival prob-
ability which is defined as

SPr (t ) = 1

N

r∑

l=−r

〈ψ (t )|n̂l |ψ (t )〉, (12)

where N is the total number of particles. In this case, the
quantity SPr when calculated within a range of sites r around
the initial position of the particles tends to approach 1 if there
is localization in the system. In Fig. 12(a), we plot SPr by
setting r = 3 around the central rung as a function of time
for different values of U and fixing λ = 0.25 and φ = π .
Starting from U = 0, the time-evolved survival probability
first increases, reaches a maximum value of SP3 ∼ 1 for a
range of values of U, and then gradually decreases as U
increases. For comparison, we also plot SP3 as a function of
time for different values of U for the case of φ = π and λ = 0
in Fig. 12(b). We find that, for all the values of U , SP3 always
decreases in the presence of weak disorder. This confirms that
the flux enhances the localization of states.
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FIG. 12. (a) and (b) depict the survival probability SP3 as a func-
tion of time t (J−1) corresponding to disorder strengths λ = 0.25 and
λ = 0, respectively, and φ = π with the initial state |�(0)〉 given in
Eq. (10). In (a), the survival probability is computed by averaging
over 500 random χ values.

The results from the survival probability infers that the
flux-enhanced localization also strongly depends on the in-
teraction strength, and moreover, the localization is found to
happen for a range of intermediate values of U . To investigate
how this range of U varies with φ, we plot the time-averaged
survival probability

SPr−avg = 1

m

T∑

t=0

SPr (t ), (13)

where m is the number of time steps. We plot SPr−avg as a
function of φ and U in Fig. 13 by keeping λ = 0.25 and r = 3.
The deep red region is the range of U where SP3−avg attains
its maximum value is an indication of the localization of the
states. The blue regions on either sides of the localized region
correspond to the delocalization of the state.

The value of λ for which the bulk localization occurs
is dependent on the values of U and φ. This is shown in
Figs. 14(a) to 14(d), where we plot the survival probability
SP3 as a function of t (J−1) for different values of U and λ for
fixed φ = π and χ = 0. It can be seen that, when U = 3, the
localization occurs for a very small value of λ ∼ 0.05. How-
ever, for U = 10 and 15, stronger values of λ are necessary for
the localization to occur. However, for U = 20, the strength
λ = 0.25 is not sufficient for localization to occur.
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FIG. 13. Shows SP3−avg as a function of φ/π and U with the
initial state |�(0)〉 given in Eq. (10). Here the values of λ = 0.25
and χ = 0 are considered and the time average is obtained for time
between t = 0(J−1) to 1000(J−1) with interval �t = 2(J−1).

The reentrant behavior of the bulk localization can be
understood from the band structure in the absence of λ as
shown in Figs. 15(a) and 15(b) for U = 3 and 30, respectively,
while fixing the value of φ = π . These two values of U
correspond to the localization and delocalization scenarios,
respectively, when disorder is present in the system. We cal-
culate the overlap O = |〈�|αi〉|2 between the eigenstates |αi〉
and the rung pair state |�〉 (which is our initial state) of the
momentum space Hamiltonian and plot them as color-coded
data in Figs. 15(a) and 15(b) for all the states. In this case,
the eigenstates that exhibit nonzero values of O contribute to
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FIG. 14. (a)–(d) show the survival probabilities SP3 as a function
of t (J−1) for U = 3, 10, 15, and 20, respectively, with different
values of λ for each case. Here we start the dynamics from the initial
state |�(0)〉 = b̂†

12,Ab̂†
12,B|vac〉 and fix the parameter values φ = π

and χ = 0.
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FIG. 15. (a) and (b) show the band structures in the absence
of disorder for U = 3 and U = 30, respectively. In both cases, we
consider φ = π . The zoomed in data are shown in the insets for
clarity.

the dynamics. It can be seen that the width of the band that
contributes to the dynamics is much flatter for U = 3 than
for U = 30 [compare Figs. 15(a) with 15(b)]. The smaller
bandwidth indicates the lower effective hopping (Jeff) and
hence the slowing down of the particles. As the localization
of the system depends on the ratio λ/Jeff, a smaller value of λ

favors localization for some particular values of U and φ.
These findings reveal that, for sufficiently weak disorder

strength, flux favors localization of the quantum states of two
interacting bosons. The localization also strongly depends on
the interaction strength where, for a fixed value of φ, the
system undergoes delocalization to localization and then to
delocalization transition as a function of interaction strength.
This phenomenon of delocalization to localization and to
delocalization in the interacting system can be termed as a
signature of the reentrant delocalization transition in the inter-
acting system.

IV. CONCLUSION

In this work, we investigated the quench dynamics of two
interacting bosons in a two-leg ladder under the influence of
an artificial gauge field. Our investigation revealed two inter-
esting scenarios in the context of localization of interacting
particles in the simplest possible system. In the first case,
we showed that when the two bosons were initialized on the
edge rung of the ladder, the interplay of flux and finite on-site
interaction resulted in an edge localization of the bosons. We
obtained that, for a fixed value of flux, such edge localiza-
tion occured for a range of values of interaction strengths.
Moreover, this range was found to be dependent on the flux
strength, i.e., the localization occurs for stronger interaction
strength when the flux strength was weaker and vice versa.
However, we found that, in the case of bosons initialized on
the bulk rung, such localization did not happen. In the later
case, if a sufficiently weak quasiperiodic disorder strength was
introduced, a clear localization was found to be favored by the
flux. In both the cases, the localization was favored when the
rung hopping was stronger than the leg hopping in the ladder.
This flux-enhanced localization lead to a feature of reentrant
delocalization where the delocalized states first localize and
then delocalize again.
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The quench dynamics on flux ladders have been experi-
mentally studied recently in systems of ultracold atoms in
optical lattices [33,49,52,105–109]. For example, the authors
of Ref. [33] explored the quench dynamics of two interact-
ing bosons on a system described by the model considered
in our analysis. Hence, our finding can be immediately be
observed in the experiments using artificial systems. However,
our study provides a mechanism for localization of interacting
bosons in the absence of disorder or in the presence of weak
disorder at the two-particle level, which poses open questions

on the stability of such phenomena in the true many-body
limit in the presence of strong disorder and off-site interac-
tions.
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