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Role of optical channeling in contrast enhancement of echo interferometers
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We investigate channeling oscillations in the contrast of a density grating formed by exposing a sample
of ultracold atoms to an optical standing-wave pulse. We show that these dynamics can be imprinted on the
echo signal associated with a two-pulse atom interferometer. Experimental results are supported by a simple
model, which describes the grating contrast as the combination of two separate physical effects, namely,
matter-wave interference and classical optical channeling resulting in Pendellösung-like oscillations. We discuss
the enhancement in signal strength of echo interferometers that can be achieved by relying on these oscillations.
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I. INTRODUCTION

Raman atom interferometers (AIs) have evolved into valu-
able tools for investigating inertial effects with unprecedented
precision [1–5] and for tests of fundamental physics [6–8].
They have also become the primary technique used in state-of-
the-art portable inertial sensors [9–15]. A potentially simpler
experimental configuration that has achieved measurements
of h̄/m and gravitational acceleration (g) with a sensitiv-
ity ∼1 order of magnitude lower than Raman AIs is the
single-state echo-type AI [16–20]. Raman interferometers and
related techniques that rely on large momentum transfer to the
atomic sample can scatter several thousand photons per atom
when the matter-wave fringes are detected. In comparison, the
signal strength for echo AIs, which depends upon coherent
scattering from a density grating, is limited to ∼1 photon per
atom. Previous work relying on echo AIs has been further lim-
ited by the low contrast of these density gratings. Therefore, in
order to bridge this gap in sensitivity with respect to other AIs,
it is necessary to understand the basis for the grating contrast
and explore how it can be enhanced.

In grating echo AIs, two standing-wave (SW) pulses, sepa-
rated by a time T , illuminate an ultracold sample, resulting in
diffraction of the momentum states separated by 2h̄k, where
k = 2π/λ is the wave vector and λ is the wavelength of
light. The AI is characterized by the evolution of a density
grating after each excitation pulse and the rephasing of the
grating in the vicinity of the echo time t = 2T in a manner
reminiscent of a photon echo experiment [21], which is a
general technique for canceling the velocity distribution of the
sample. Unlike the photon echo experiment, which involves
the excited state, the grating echo AI relies on a ground-state
density grating arising from matter-wave interference that can
be probed by a coherently backscattered readout pulse.
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Figure 1 shows a schematic representation of the backscat-
tered signal when the readout pulse is applied following either
one or two excitation pulses. Ideally, when the excitation
pulses are short enough to satisfy the Raman-Nath criterion,
the momentum-state interference that produces the signal can
be modeled using Kaptiza-Dirac diffraction of plane waves,
an effect that was first demonstrated for atoms in Ref. [22].

Previous calculations have modeled the echo contrast in the
Raman-Nath regime [16,17,20,23], on the basis of diffraction
of atomic plane waves and by averaging over the velocity
distribution of the sample to determine the density modulation
of the wave function. While this approach is successful at
modeling the signal shapes in the Raman-Nath limit, it pro-
vides an incomplete picture when the excitation pulses are
longer. In this intermediate regime and in the well-studied
long-pulse (Bragg) regime [24–27], there are two mechanisms
at play, namely, the single-atom momentum-state interference
and the response of the ensemble that produces channeling
at the nodes of the SW potential [28]. These channeling os-
cillations have been previously observed in demonstrations
of Bragg scattering with cold atoms [27,29] as well as in
BEC experiments [30]. Work in the intermediate regime has
shown a smooth transition between the Raman-Nath and
Bragg regimes [27]. However, the increase in contrast asso-
ciated with channeling has not been adequately quantified in
grating echo experiments.

Among other related work with echo AIs, Ref. [31] ex-
plored the signal shapes by varying pulse parameters, while
Ref. [32] investigated the increase in grating contrast that can
be achieved by loading the cold sample into a lattice with a
long pulse.

In this paper, we investigate a complementary technique
that relies on intermediate-length SW pulses to produce
Pendellösung-like channeling oscillations in the grating con-
trast. We study the basic features of these oscillations by
probing the contrast of a density grating, due to a sin-
gle pulse, whose dynamics can then be imprinted onto an
echo signal in a two-pulse interferometer. Further, we show
the unambiguous quadratic dependence of the signal on the
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FIG. 1. Schematic of standing-wave-induced atomic gratings in
a cold sample. Momentum state diffraction of a generic ground state
|1, p〉 is shown following the application of two standing-wave (SW,
±k) pulses, along with the backscattering of a traveling-wave readout
(RO, kRO) pulse applied after either one or two SW pulses. The
lower panels show experimental signals (red points) and theoretical
calculations (solid black lines) for a sample of 85Rb atoms with a
temperature of ∼10 µK in both one- and two-pulse configurations.
Each panel also shows a vertical bar denoting the small integration
window used to measure the peak reflectivity.

excitation pulse area within the Raman-Nath regime and iden-
tify improvements in contrast attributable to channeling when
this regime is violated using longer excitation pulses. We
explore how channeling using intermediate-length pulses can
increase the reflectivity of the atomic sample in echo exper-
iments. Our experimental results are supported by a simple
model, which shows that the contrast can be described as
the combination of two separate physical effects: matter-wave
interference and classical optical channeling that produces
Pendellösung-like oscillations.

In what follows, we present an overview of the experiment
and an introduction of a simple theoretical model, followed by
results and discussion.

II. EXPERIMENTAL SETUP

The experimental setup resembles the apparatus described
in Ref. [33] and is shown in Fig. 2(a). A pyrex cell (∼1 m
in length) with rectangular faces contains room-temperature
rubidium vapor. The system is pumped with an ion pump
and locally heated such that the background pressure is ∼4 ×
10−9 Torr and the trap loading time is ∼5 s. The trapping,

FIG. 2. (a) Sketch of pyrex trapping cell and AI layout that uses
an AOM-gated-PMT for signal collection. The direction of g (along
z) is shown with an arrow. Open circles: lenses; closed circles: mir-
rors; CAM: CCD camera; PD: photodiode; PBS: polarizing beam
splitter; λ/4: quarter wave plate. (b) Timing sequence used for AI
experiments. Dashed lines indicate additional pulses used for echo
experiments. Gate: Electronic gate of PMT and gating AOM; RO:
traveling-wave readout pulses; AI: SW excitation pulses; RP: repump
laser, TRP: trapping laser; dB/dz: magnetic field gradient.

repump, and AI beams are generated using tapered amplifiers
seeded with external cavity diode lasers [34,35] and shuttered
by acousto-optic modulators (AOMs). After turning off the
confining magnetic field gradient, the atoms are held in a
molasses for 5.5 ms, while the trapping beams are further
detuned by ∼40 MHz to reduce heating. The vapor cell loaded
magneto-optical trap (MOT) contains ∼109 85Rb atoms at a
temperature of ∼13 µK, as determined by CCD imaging of
the free expansion of the cloud [36].

The timing diagram for the AI experiment is shown in
Fig. 2(b). The circularly polarized SW excitation pulses (blue
detuned between 100 and 400 MHz with respect to the F =
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3 → F ′ = 4′ transition in 85Rb) and the traveling-wave read-
out pulse (blue detuned ∼50 MHz from the F = 3 → F ′ =
4′ transition in 85Rb) are generated from separate chains of
AOMs and applied along the vertical direction, as shown in
Fig. 2(a). Typically pulses use ∼20 mW of optical power
and have a beam waist of ∼3 mm. The backscattered signal
is diffracted into an electronically gated photomultiplier tube
(PMT) using a 250 MHz AOM with an efficiency of ∼20%
and a rise time of ∼100 ns. The electronic gate, which has a
rise time of 200 ns, is engaged at the same time as the gating
AOM with the readout pulse applied only after both the gate
and the AOM are fully opened.

III. THEORETICAL MODEL

In this section, we describe two aspects of the backscat-
tered signals, namely, the effect of matter-wave interference
and the consequences of channeling in the SW potential. We
combine these effects using a simple model to describe the
density evolution of the sample and show how the contrast of
the gratings can be maximized.

In the limit of short excitation pulses, the atoms sample
only a highly localized portion of the spatially varying poten-
tial. In this case, the contribution from matter-wave interfer-
ence has been analytically described in Refs. [16,20,23,31].
In all of these experiments, the backscattered electric field
resulting from the matter-wave interference is proportional to
the k = 2 Fourier component of the density distribution of the
sample. When the readout is applied following a single SW
pulse, the backscattered electric field, shown in Fig. 1, is given
by

S1 = re−(�t/τcoh )2
E2

ROu2
1 sin2(φ − θ )

× [J0(2u1ω1) + J2(2u1ω1)]2, (1)

where φ = ωq�t is the recoil phase, ωq = (2k)2h̄/2m is the
recoil frequency, and m is the mass of the atomic species. The
thermal coherence time of a sample with temperature T is
given by τcoh = (kũ)−1, where we define the most probable
speed for an atom as ũ = √

kBT /m. JM is the Mth-order
Bessel function of the first kind, ERO is the electric field of
the readout beam, θ is the phase shift of the scattered field
signal arising from spontaneous emission during the exci-
tation, ω1 = √

sin(φ + θ ) sin(φ − θ ), and r is a constant of
proportionality. The signal envelope described by Eq. (1) is
shown in the lower left panel of Fig. 1. The rise of the signal
is associated with the evolution of the grating contrast and
the fall represents the dephasing resulting from the velocity
distribution. The overall width of the signal is parameterized
by τcoh. Note that in the case of a one-pulse grating, the rela-
tive time, �t = t − tsignal, is simply t since the density grating
begins to form at tsignal = 0. We also define uN = 	2

0τN/2�

as the two-photon area of the N th excitation with a pulse
width τN , Rabi frequency 	0, and single-photon detuning �.
The quantity 	2

0/2� is referred to as the atom-field coupling
strength.

When the readout pulse is applied in the vicinity of the
echo time, following two excitation pulses separated by a time

FIG. 3. Peak reflectivity of the atomic gratings in the Raman-
Nath limit, described by Eqs. (1) and (2) as a function of the first
pulse area, u1 = 	2

0τ1/2�. The black line is a second-order Taylor
expansion of the reflectivity about u1 = 0 showing the quadratic
dependence of this quantity for small pulse areas. Inset: The same
quantity as a function of excitation pulse duration, plotted as a
fraction of τHO [see Eq. (3)]. Calculations are shown for a range of
atom-field coupling strengths (see legend).

T , the backscattered field, also shown in Fig. 1, is given by

S2 = re−(�t/τcoh )2
E2

ROu2
1u4

2 sin2(φ + θ ) sin4(φ + ωqT − θ )

× [J0(2u1ω1) + J2(2u1ω1)]2

× [
J0(2u2ω2) + 4

3 J2(2u2ω2) + 1
3 J4(2u2ω2)

]2
, (2)

where ω2 = √
sin(φ + ωqT + θ ) sin(φ + ωqT − θ ). The sig-

nal envelope described by Eq. (2) is shown in the lower right
panel of Fig. 1. The minimum in the signal at �t = 0 repre-
sents the replication of the phase grating created by the first
standing-wave pulse. The double-peaked structure exhibits
asymmetry in the relative height of the two lobes as a function
of the pulse separation T , as well as the areas of the excitation
pulses [17,23,31]. In the case of an echo experiment, the
relative time refers to �t = t − 2T since the grating echo will
form in the vicinity of tsignal = 2T .

The peak reflectivity RPk, which is a measure of the con-
trast of these gratings, can be obtained by integrating the total
backscattered signal over a small time interval, as shown in
Fig. 1. The peak reflectivity as a function of the first pulse area
u1, calculated on the basis of Eqs. (1) and (2) (for one- and
two-pulse configurations, respectively), is shown in Fig. 3.
The excitation pulse areas can be modified by changing either
the pulse intensity (atom-field coupling strength) or pulse
duration. The inset to Fig. 3 shows the peak reflectivity plotted
as a function of pulse duration for a variety of atom-field
coupling strengths. The pulse duration is shown as a fraction
of the harmonic oscillator (HO) period [28,37],

τHO = π

/√
	2

0ωq/�. (3)

When the Raman-Nath limit is well satisfied, the backscat-
tered signal exhibits a quadratic dependence on the pulse area,
as shown in Fig. 3. However, if the pulse durations violate
the Raman-Nath limit, the atoms sample the spatial variation
of the SW potential. In this case, the peak reflectivity is
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FIG. 4. (a) Center-of-mass trajectories of atoms in the far-off
resonance channeling potential [Eq. (4)] as a function of exci-
tation length. (b) Time evolution of atomic density distribution
during Pendellösung-like channeling. (c) Histogram of population
distribution across two lattice periods for several channeling times.
(d) Backscattered signal estimated as the q = 2 (or λ/2) Fourier
harmonic of the density distributions from (b) as a function of chan-
neling time. The vertical bar shows the maximum predicted signal
which occurs at τ1 ∼ 0.3 τHO.

dominated by channeling into the nodes of the potential.
Under these conditions, the reflectivity would be expected to
increase at the same rate with respect to τHO, irrespective of
atom-field coupling. The differing rates of reflectivity satu-
ration shown in the inset of Fig. 3 highlight the absence of
channeling in Eqs. (1) and (2).

The effect of channeling can be explained on the basis of
the following simple model. We consider the classical, center-
of-mass motion of the atoms interacting with the SW along
the z direction to be described by

mz̈ = − h̄k	2
0

�
sin(2kz). (4)

Figure 4(a) shows the trajectories of atoms channeled in
this potential, from an initially uniform spatial distribution.
These atomic trajectories lead to density modulation P(z, τ ),
in the sample which evolves as shown in Fig. 4(b). The
grating contrast can be visualized by taking temporal slices
of the sample density, as shown in Fig. 4(c). In a purely
harmonic potential, the atoms would congregate at the nodes
after τ = τHO/4. Here, we observe the maximum contrast at
τ ∼ τHO/3 since the atoms sample an anharmonic (sinusoidal)
SW potential. The backscattered signal from such a density
modulation can be modeled by the q = 2 Fourier component
of the population distribution. Figure 4(d) shows the evolution
of this reflected signal amplitude as a function of the channel-
ing time. This plot is obtained by displaying the q = 2 Fourier
component of each temporal slice of Fig. 4(b) for each value
of the channeling time.

Here we note that this peak reflectivity, which stems from
channeling, exhibits a modulation reminiscent of so-called
Pendellösung oscillations [38], first linked to x-ray diffrac-
tion [39] and later observed in cold-atom experiments [29].
This signal will remain unchanged as a function of the

FIG. 5. Peak reflectivity calculated using Eq. (5) for a variety
of atom-field coupling strengths shown in the legend. (a) Results
for very small excitation pulse areas demonstrating the quadratic
dependence (black line). (b) Results for a wider range of pulse areas.
(c) Results plotted as a function of the excitation pulse length (shown
as a fraction of τHO). Simulations use α = 1 and τRN = 0.15 τHO.
(d) and (e) show the same calculations as (b) and (c), including an ex-
ponential decay of the form Ae−Cτ1 + B to incorporate the effects of
experimental decoherence, with A = 1, B = 0.3, and C = 	2

0/2�.

atom-field coupling strength, as the atoms will be character-
istically channeled on the timescale of Eq. (3). This is quite
distinct from the prediction shown in the inset to Fig. 3, which
represents the result of matter-wave interference, a signal that
reaches a maximum value at different channeling times (with
respect to τHO) for different atom-field coupling strengths.

We model the full sample density as the convolution
of the independent position-space distributions arising from
matter-wave interference and channeling. Using the convolu-
tion theorem, the scattered field signal from the AI can be
written as the product of the q-space representation of each
distribution,

Stot (τ ) = αSchan × SN (min[τ, τRN]), (5)

where α is a multiplicative factor that can be used to
rescale the predicted reflectivity and compare to data, Schan =
Fq[P(z, τ )] is the q = 2 Fourier component of the density
modulation resulting from channeling [see Fig. 4(d)], and
SN represents the scattered field signals described by either
Eq. (1) (N = 1) or Eq. (2) (N = 2), respectively. Since the
theoretical formalism underpinning Eqs. (1) and (2) relies
upon the diffraction of plane waves in the Raman-Nath limit,
we truncate the contribution of these matter-wave interference
terms if the pulse durations become suitably long, where τRN

represents the limit of the Raman-Nath regime.
Figure 5(a) shows the predictions for Eq. (5) for a range

of atom-field couplings, for which the pulse durations are
within the Raman-Nath limit. We note that the scattered field
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is predicted to scale quadratically in this regime as a function
of pulse area. This scaling suggests a useful method for iden-
tifying violations of the Raman-Nath criterion. We define the
limit as τRN = 0.2 τHO in accordance with the extent of this
quadratic trend.

Figure 5(b) shows the predictions of Eq. (5) as a function
of pulse area for a variety of atom-field coupling strengths.
Here the pulse durations are not limited to the Raman-Nath
regime and extend well beyond this limit. It is evident that
the oscillations seen in the signal amplitudes are out of phase
for different atom-field coupling strengths if the pulse dura-
tion extends beyond the Raman-Nath limit. In comparison,
Fig. 5(c) shows the same predictions plotted as a function of
the excitation pulse width, in units of τHO for each atom-field
coupling strength. Here, we note that the reflectivity reaches
a maximum at a consistent fraction of the harmonic oscillator
period and remains in phase for all pulse durations and cou-
pling strengths, in contrast to predictions that do not consider
channeling (see inset of Fig. 3).

To include contributions of experimental decoherence,
such as possible excitation due to stray near-resonant photons
and spontaneous emission during the excitation pulse, we
augment the model by convolving Eq. (5) with a phenomeno-
logical exponential decay of the form Ae−CτN + B, where A
and B are free parameters and C depends upon the coupling
strength [40].

Figures 5(d) and 5(e) show the results of this refined model,
with the reflectivity plotted as a function of the pulse area and
pulse duration as a fraction of τHO, respectively. These panels
show that the reflectivity approaches a steady-state value for
long interaction times. It is apparent that the steady-state value
is correlated with the atom-field coupling strength with the
ratio of the steady-state value and that of the first maximum in
the reflectivity being inversely related to the coupling strength.
Figure 5(e) also highlights an additional effect of this deco-
herence, namely, a slight dephasing of the revivals in signal
strength for different atom-field coupling strengths.

We test these predictions in the following section and iden-
tify the conditions under which the grating contrast can be
maximized.

IV. RESULTS AND DISCUSSION

Figure 6(a) shows the peak reflectivity for the one-pulse
experiment as a function of the pulse area in the Raman-Nath
limit. As predicted by theory (see Fig. 3), there is a distinct
quadratic dependence for a small pulse area, independent of
atom-field coupling strength. Here we only display data for
pulse durations of less than 0.2 τHO, where the atomic motion
is deemed to satisfy the Raman-Nath criterion.

Figure 6(b) shows the peak reflectivity for the one-pulse
experiments over a wider range of pulse areas that violate the
Raman-Nath criterion. In accordance with the simple model
presented in Sec. III, the maximum reflectivity for a particular
atom-field coupling is obtained with a distinct pulse area, in
contrast to predictions that do not consider channeling (see
Fig. 3). Comparing the largest attainable signals [shown in
Fig. 6(b)] with the maximum reflectivity observed within
the Raman-Nath limit [shown in Fig. 6(a)], we note that the
reflectivity appears to be enhanced by ∼2.5 times when the

FIG. 6. Peak reflectivity measured in one-pulse grating exper-
iments using a variety of atom-field coupling strengths (	2

0/2�)
shown in the legends. (a) Results for very small excitation pulse areas
demonstrating the quadratic dependence (black line). (b) Results for
a wider range of pulse areas. (c) Results as a function of the excitation
pulse length (plotted as a fraction of τHO). The data were collected
with an excitation detuning of � = 390 MHz. (d) Ratio of the steady-
state and maximum reflectivities as a function of atom-field coupling.
The solid line is an exponential fit to the data. (e) Maximum peak
reflectivity attained as a function of the atom-field coupling. Here the
excitation detuning was varied between � = 160 and � = 390 MHz
to further change the atom-field coupling. The solid line shows the
prediction of Eq. (5) with α = 0.7 and τRN = 0.18 τHO.

Raman-Nath limit is violated and the atoms are channeled to
the nodes in the potential.

Figure 6(c) shows the same data as Fig. 6(b), plotted as
a function of the excitation pulse width, in units of τHO, for
each atom-field coupling strength. Recasting the data in this
manner synchronizes the oscillations in reflectivity, revealing
the characteristic channeling period predicted by the model in
Sec. III (see Fig. 5). This agreement suggests that when the
Raman-Nath criterion is violated, the dominant contribution
to the signal arises from the macroscopic channeling of the
atomic ensemble in the potential. The trends in Fig. 6(c)
suggest that our simple model provides an effective method to
understand the data. However, a more elaborate model based
on density variations in the sample and light propagation
through the vapor may be required to understand all features,
such as the absence of more than one revival in the reflectivity.

In general, the oscillation period in a sinusoidal potential
can be expected to deviate from τHO in Eq. (3), which is
the prediction for a harmonic oscillator potential. These de-
viations were noted in Ref. [29] and observed over several
cycles in Ref. [30] by exposing a BEC to a very shallow
optical potential. We note that rescaling the data in the manner
presented in Fig. 6(c) allows for a direct observation of the
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underlying channeling period for anharmonic potentials of
varying depths.

In the same way, this rescaling also reveals the slight
dephasing of subsequent oscillations of the reflectivity pre-
dicted in Sec. III stemming from experimental sources of
decoherence. Figure 6(d) shows the ratio of the steady-state
reflectivity to the first maximum in the peak reflectivity as a
function of the atom-field coupling strength. We find that this
ratio scales inversely as the coupling strength is increased, an
aspect that is consistent with the model introduced in Sec. III.

Figure 6(e) shows the maximum peak reflectivity obtained
as a function of the atom-field coupling in one-pulse ex-
periments. The solid line shows the predictions of Eq. (5)
with an overall scale factor of α = 0.7 and τRN = 0.18 τHO.
While the agreement appears reasonable, this comparison
demonstrates the sensitivity of the model to τRN, which we
take to be the limit of the Raman-Nath regime. These data
also suggest that the highest peak reflectivity is attained for
a fairly modest atom-field coupling which optimizes both
the momentum-state interference and the channeling effect.
Therefore, a larger atom-field coupling is not expected to
further enhance the reflectivity. Nevertheless, the first max-
imum in the peak reflectivity can still be exploited in echo
experiments to enhance the grating contrast.

In Fig. 7, we show that the trends in Fig. 6 are replicated
in two-pulse (echo) experiments when the width of the first
excitation pulse is varied. Comparing the maximum reflec-
tivity [Fig. 7(b)] with the largest reflectivity attained within
the Raman-Nath limit [Fig. 7(a)], we find an enhancement of
∼2 times when the atoms are channeled with a first excitation
pulse that violates the Raman-Nath criterion.

Another feature of the echo experiment is that it is pos-
sible to further optimize sample reflectivity by varying the
duration of the second excitation pulse. Figure 8 shows the
reflectivity in an echo experiment in which the second pulse
width is varied and the first excitation pulse width is fixed
(τ1 = 0.3 τHO) such that the corresponding one-pulse signal
is maximized. Figure 8(a) shows the reflectivity plotted as
a function of the second pulse area, while Fig. 8(b) shows
the same quantity plotted as a function of the pulse width
in units of τHO. The solid vertical line in Fig. 8(b) shows
the Raman-Nath criterion defined by τ2 ≈ 0.2 τHO, and the
enhancement in reflectivity achieved by increasing the second
pulse length beyond this limit. The reflectivity for various
atom-field coupling strengths shows clear maxima which are
in phase with respect to the pulse width (as a fraction of
τHO), but not in terms of the pulse area, trends which are
similar to those in Figs. 7(b) and 7(c). However, there are
no prominent revivals in the reflectivity if the pulse width is
further increased.

The enhancement in reflectivity resulting from the use
of a second pulse which violates the Raman-Nath criterion
has been investigated in Ref. [32] in the presence of a long
(τ1 � 100 τHO) lattice pulse that was applied during the trap
loading time. Reference [32] reported an overall fourfold
enhancement in reflectivity resulting from the use of a non-
Raman-Nath pulse after the confinement of atoms at the nodes
of the SW lattice potential. As shown in Fig. 8(b), our results
suggest that a ∼2–3× enhancement is achieved by allow-
ing the second excitation pulse to violate the Raman-Nath

FIG. 7. Peak reflectivity measured in two-pulse grating echo ex-
periments using a variety of atom-field coupling strengths shown
in the legends. (a) Results for very small excitation pulse areas
with a quadratic fit (black line). (b) Results for a wider range of
pulse areas. (c) Results as a function of the excitation pulse length
(plotted as a fraction of τHO). (d) Ratio of steady-state and maximum
reflectivities as a function of atom-field coupling. The solid line is
an exponential fit to the data. (e) Maximum peak reflectivity attained
for each atom-field coupling. The solid line shows the predictions
of Eq. (5) with α = 1 and τRN = 0.20 τHO chosen to match the
experimental data. Here, pulse separation T = 70.2 µs, second pulse
duration τ2 ≈ 0.15 τHO, and excitation detuning � = 390 MHz.

criterion, following a first pulse with only τ1 ∼ 0.3 τHO, ap-
plied after the confining forces of the MOT are turned off.

When taken together, we find a nearly sixfold enhancement
from the combined effects of allowing both excitation pulses
to extend beyond the short-pulse limit (see Figs. 7 and 8), as
compared to when their lengths are restricted to satisfy the
Raman-Nath criterion.

FIG. 8. Peak reflectivity of grating echo experiments as a func-
tion of the second pulse duration for various atom-field coupling
strengths (shown in the legend). Results are plotted as a function of
(a) the pulse area and (b) the pulse duration as a fraction of τHO.
In (b), the vertical line shows the predicted end of the Raman-Nath
regime, defined by τ2 ∼ 0.2 τHO. These data were collected using
T = 70.2 µs, a first excitation pulse of length τ1 = 0.3 τHO, and an
excitation detuning of � = 160 MHz.
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V. CONCLUSIONS

We have studied channeling oscillations in the reflectivity
of atomic gratings in the context of echo experiments. We
have demonstrated an improvement in contrast by increasing
the length of the excitation pulses beyond the Raman-Nath
limit that is complementary to the work in Ref. [32] which
relied on lattice loading during the trapping phase. We have
explained the results using a simple theoretical model which
appears to be applicable to a broad class of experiments in
which atoms are channeled using long excitation pulses.

Our results lay the groundwork for achieving further sig-
nificant improvements in contrast by varying the detuning
of the readout pulse and the number of atoms in the cold
sample. These effects can be modeled by combining the de-
scription of channeling in this paper with a more detailed

calculation of the peak reflectivity in samples with variable
density [41,42]. Since our apparatus has addressed magnetic
field inhomogeneities and improved vibration stability com-
pared to previous experiments [18,19], we expect that the
signal enhancement will translate to improved sensitivity of
echo experiments on a ∼250 ms timescale.
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