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We present analytical and numerical results on the collective excitation spectrum of quasi-one-dimensional
spin-orbit (SO)-coupled spin-1 spinor ferromagnetic Bose-Einstein condensates. The collective excitation spec-
trum, using Bogoliubov–de Gennes theory, reveals the existence of a diverse range of phases in the SO-coupling
and Rabi coupling (kL-�) planes. Based on the nature of the eigenvalue of the excitation spectrum, we categorize
the kL-� plane into three distinct regions, namely, I, II (IIa and IIb), and III. In region I, a stable mode with
phononlike excitations is observed. In region IIa, single- and multiple-band instabilities are noted with a gapped
mode, while multiband instability accompanied by a mode corresponding to no gap between low-lying and
first-excited states is realized in region IIb, which also provides evidence of unstable avoided crossing between
low-lying and first-excited modes, responsible for the Io type of oscillatory nonequilibrium dynamical pattern
formation. The gap between low-lying and first-excited states increases upon increasing the Rabi coupling
and decreases upon increasing the SO coupling. Using eigenvector analysis, we confirm the presence of the
spin-dipole mode in the spinlike modes in region II. We corroborate the nature of the collective excitation through
real-time dynamical evolution of the ground state perturbed with the quench of the trap using the mean-field
Gross-Pitaevskii model. This analysis suggests the presence of dynamical instability leading to the disappearance
of the zeroth component of the condensate. In region III, mainly encompassing � ∼ 0 and finite kL , we observe
phononlike excitations in both the first-excited and the low-lying state. The eigenvectors in this region reveal
alternative in- and out-of-phase behaviors of the spin components. Numerical analysis reveals the presence of a
superstripe phase for small Rabi coupling in this region, wherein the eigenvector indicates the presence of more
complicated spinlike-density mixed modes.
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I. INTRODUCTION

Ultracold atoms offer a versatile but precise platform for
exploring quantum matter in the presence of diverse synthetic
fields [1]. The recent experimental realization of spin-orbit
(SO) coupling in spinor ultracold atoms [2,3] has sparked
great interest among researchers to explore the SO-coupling-
related physics in large-spin systems, which is challenging
to achieve in the electronic materials system of condensed-
matter physics. Over the past few decades, research on
spinor Bose-Einstein condensates (BECs) has captured the
community’s attention since it reveals interesting physical
phenomena such as vortices [4], the turbulence state triggered
by the modulational instabilities as a result of the counter-
flow motion between binary components [5], quantum phase
transitions [6,7], modulational instability [8], solitons [9],
magnetized vector solitons [10], and supersolidlike behavior
in quasi-two-dimensions [11].

*Corresponding author: ravicpc2012@gmail.com
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In the field of ultracold gases, numerical simulations have
become an indispensable tool for exploring numerous com-
plex phases and the underlying detailed mechanisms that
appear in those systems as low-lying excitation phases. To
this end, the mean-field models based on Gross-Pitaevskii
equations have been widely used to investigate various aspects
of SO-coupled spinor BECs, such as phase separation [12],
phase separation of vector solitons [13], stability and dynam-
ics of solitons [14–16], spin precession, and separation be-
tween spin components owing to anomalous spin-dependent
velocities [17–19]. Some studies have explored the dynamics
of modulation instability [20], preparation of stripe states [21],
and condensate flow past an obstacle [22] in SO-coupled
BECs.

One of the intriguing features of the SO-coupled BECs
is the presence of a modulated ground state that appears
as stripe phases for high values of SO couplings [23,24].
In recent years, there have been several studies indicating
an intimate connection between the stripe phase and the
supersolid behavior of the BECs. For instance, Adhikari
[11] reported supersolidlike states in quasi-two-dimensional
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trapped SO-coupled spinor BECs. In multicomponent con-
densates, Goldstein and Meystre [25] initiated the study of the
Hartree-Bogoliubov theory to determine the resulting quasi-
particle frequency spectrum and observed the interference
resulting from cross coupling among condensates leading to
the reversal of the sign of two-body interaction, which triggers
the onset of spatial instabilities. There are some studies that
suggest domain formation through the dynamical stability
analysis [26].

The investigation of collective excitations, which are low-
lying excitations in BECs, has played a pivotal role in
comprehending the fundamental characteristics of these quan-
tum degenerate gases. This includes aspects such as the
stability of various ground-state phases, superconductivity,
and superfluidity [27,28]. Landau coined the term “excita-
tions” to describe the emergence of superfluids as a combined
effect of a weakly interacting mixture of phonon and roton
quasiparticles. Subsequently, Bogoliubov employed Landau’s
excitation spectrum tools to explicate the superfluidity in
BECs [29]. Experimentally, the realization of low-lying exci-
tations has been achieved in dilute gases of rubidium [30] and
sodium [31] atoms. For trapless spinor condensates, the study
of collective excitations involved considering equal Rashba
and Dresselhaus couplings. This investigation revealed the
presence of maxon-roton excitations [32,33]. Utilizing Bragg
spectroscopy, Khamehchi et al. provided experimental ev-
idence of collective excitations by realizing roton-maxon
modes in SO-coupled spinor systems [34].

Following the experimental realization of the collective
excitation mode for SO-coupled BECs in the laboratory, a
series of theoretical and numerical works was undertaken that
revealed the more complex nature of these excitations. For
instance, Chen et al. [35] demonstrated the collective exci-
tation spectrum of Raman-induced SO-coupled spinor BECs
confined in a quasi-one-dimensional (quasi-1D) harmonic
trap. By tuning the Raman coupling strength, they projected
the presence of three distinct phases: stripe, plane-wave,
and zero-momentum phases. Additionally, they identified the
spin-dipole and breathing modes of collective excitations,
indicating clear phase boundaries. Numerical confirmation
of these features was obtained through quench dynamics.
Few studies indicate the presence of the plane-wave, zero-
momentum, and stripe phases of the condensate as quadratic
Zeeman coupling is introduced in the SO-coupled spin-1
BECs [36,37]. Ozawa et al. [38] numerically analyzed the dy-
namical and energetic instabilities of quasi-one-dimensional
SO-coupled BECs. Ravisankar et al. [39] analytically and
numerically analyzed the stability of the spin-1/2 binary
SO-coupled BECs in quasi-two-dimensions using a col-
lective excitation spectrum and found the presence of a
phonon-maxon-roton mode in the spectrum for finite SO
and Rabi couplings. Katsimiga et al. [40] analyzed the non-
linear solitary-wave excitation that appears in the form of
different combinations of dark and bright solitons for the
trapped spin-1 condensate in the harmonic trap. Subsequently,
different sorts of vortex-bright-type excitations in the two-
dimensional harmonically confined spin-1 BECs were also
explored [41]. Rajat et al. [42] theoretically and numerically
analyzed the collective excitation of SO-coupled spin-1 BECs
in a cigar-shaped trap at both zero and finite temperature

and demonstrated the presence of density and spin excitation,
which exhibits qualitatively different features at finite temper-
ature than those at zero temperature.

So far, the studies of collective excitation in the spinor
BECs have been mainly restricted to a specified range of
coupling parameters. However, a comprehensive picture of
the instabilities arising as a result of the collective excita-
tion has been lacking. Moreover, from the dynamics point
of view, it has been demonstrated that in the presence of
finite detuning between the two spin states unstable avoided
crossing [43,44] between the low-lying and first-excited states
appears upon perturbation. Such a physical mechanism is
responsible for constructing a class of oscillatory patterns Io

for dynamically oscillatory nonequilibrium pattern formation
in quantum systems, which remains largely unexplored in the
SO coupled spin-1 BECs along with linear Rabi coupling. In
this paper we attempt to address these issues considering the
ferromagnetic SO coupled spin-1 BECs by scanning a wide
range of coupling parameters using analytical computation of
the eigenspectrum and eigenvectors. Based on the detailed
nature of the eigenspectrum, we divide the kL-� plane into
three regimes: (i) a stable region characterized by a phonon-
like mode, (ii) unstable regimes broadly divided into two
parts characterized by the presence of a gap (IIa) and gapless
(IIb) behavior between the low-lying and first-excited spec-
tra which also yields evidence of unstable avoided crossing
modes, and (iii) a system exhibiting a phononlike symmetric
maxon-roton mode for coupling values near � ∼ 0, which is
also a mode corresponding to no gap between the low-lying
and first-excited spectra. In the presence of a relatively small
imaginary frequency, we observe both a weak instability and
the emergence of a superstripe phase. In all the regions, we
corroborate the analytical observation of the eigenspectrum
with the real-time dynamics of the ground state using the
Gross-Pitaevskii (GP) equations.

The paper is organized as follows. In Sec. II we present our
theoretical model for investigating the collective excitations
and instabilities of SO-coupled spin-1 ferromagnetic BECs.
Section III illustrates the single-particle spectrum, followed
by the analysis of the collective excitation spectrum using
the Bogoliubov–de Gennes theory in Sec. IV. In Sec. V we
analytically and numerically report the collective excitation
spectrum, identifying various stability regions. Section V pro-
vides the excitation spectrum and corresponding dynamical
observations using the GP equations. Section VI summarizes
the findings.

II. MEAN-FIELD MODEL

We consider a quasi-1D spin-1 spinor SO-coupled BECs
realized by tight confinement in the transverse direction [45].
The nondimensional dynamical equations for quasi-1D SO-
coupled spin-1 BECs are given by [14,40,46,47]

i
∂ψ±1

∂t
=

(
−1

2

∂2

∂x2
+ V + c0ρ

)
ψ±1 ∓ kL√

2

∂ψ0

∂x

+ c±
2 ψ±1 + ψ2

0 ψ∗
∓1 + �√

2
ψ0, (1a)
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i
∂ψ0

∂t
=

(
−1

2

∂2

∂x2
+V + c0ρ

)
ψ0+ kL√

2

(
∂ψ+1

∂x
− ∂ψ−1

∂x

)

+ c0
2ψ0 + 2ψ∗

0 ψ+1ψ−1 + �√
2

(ψ1 + ψ−1), (1b)

where c±
2 = (ρ±1 + ρ0 − ρ∓1), c0

2 = (ρ+1 + ρ−1), and ψ j

( j = +1, 0,−1) are the spinor condensate wave functions that
satisfy the normalization condition

∫ ∞
−∞ ρ dx = 1, where ρ j =

|ψ j |2 and ρ = |ψ+1|2 + |ψ0|2 + |ψ−1|2. The dimensionless
equations (1a) and (1b) are obtained with nondimensionalized
time, length, and energy with respect to ω−1, l0 = √

h̄/mω,
and h̄ω, respectively, where ω = ωx is the trap frequency
along the x axis. The resulting condensate wave function takes

the form ψ j =
√

l0
N ψ̃ j , where N is the total number of atoms.

In addition, V (x) = x2/2 is the trap potential, c0 = 2Nl0(a0 +
2a2)/3l2

⊥ is the density-density interaction strength, and c2 =
2Nl0(a2 − a0)/3l2

⊥ is the spin-exchange interaction strength
with a0 and a2 the s-wave scattering lengths in the total spin
channels 0 and 2, respectively. The nature of the interaction
strength depends on the sign of c2: c2 < 0 represents the
ferromagnetic condensate, while c2 > 0 denotes the antifer-
romagnetic condensate [47,48]. Here l⊥ = √

h̄/mω⊥ is the
harmonic-oscillator length in the transverse direction with
ω⊥ = √

ωyωz. The SO- and Rabi-coupling strengths are given
by kL = k̃L/ωxl0 and � = �̃/h̄ωx, respectively. In the above
description, the quantities with a tilde represent dimensional
quantities.

One important entity that characterizes the miscibility of
different spin components is the magnetization of spin-1
spinor condensates defined by

M =
∫ ∞

−∞
[ρ+1(x) − ρ−1(x)]dx. (2)

The energy functional corresponding to the coupled GP equa-
tions (1a) and (1b) is given by [12,49]

E = 1

2

∫ ∞

−∞
dx

( ∑
j

|∂xψ j |2 + 2V (x)ρ + c0ρ
2

+ c2[ρ2
+1 + ρ2

−1 + 2(ρ+1ρ0 + ρ−1ρ0 − ρ+1ρ−1

+ ψ∗
−1ψ

2
0 ψ∗

+1 + ψ−1ψ
∗2
0 ψ+1)] +

√
2�[(ψ∗

+1 + ψ∗
−1)ψ0

+ ψ∗
0 (ψ+1 + ψ−1)] +

√
2kL[(ψ∗

−1 − ψ∗
+1)∂xψ0

+ ψ∗
0 (∂xψ+1 − ∂xψ−1)]

)
. (3)

In order to make the set of dimensionless parameters used
for our simulations viable for an experiment, here we outline
the dimensional experimental parameters. For the ferromag-
netic system, we consider 87Rb BECs with the number of
atoms N ∼ 2 × 104. The axial trap frequency is ωx = 2π ×
50 Hz, while the transverse trap frequencies are considered
to be ωy = ωz = 2π × 500 Hz. The spin-dependent and spin-
independent interactions can be achieved by controlling the
s-wave scattering lengths through Feshbach resonance; by
varying the magnetic field, we can tune the s-wave scattering
lengths [50–52]. We can achieve the SO-coupling strengths

in the range of kL = 0.1–5 by changing the laser wavelengths
from 68.86 µm to 1377.22 nm. Further, we can also control
the Rabi coupling strength in a similar range by changing the
frequency of the laser from 2π h̄ × 5 Hz to 2π h̄ × 250 Hz.

III. SINGLE-PARTICLE SPECTRUM

In this section we present the single-particle spectrum
[10,53,54] of the noninteracting spinor condensate for trapless
SO- and Rabi-coupled spin-1 spinor BECs. Following that, we
introduce the collective excitation spectrum for the interacting
systems.

For V (x) = 0 and c0 = c2 = 0, substituting ψ0,±1 =
φ0,±1ei(qxx−ωt ) in Eqs. (1a) and (1b), we obtain

Lsp

⎛
⎝ φ1

φ0

φ−1

⎞
⎠ = ω

⎛
⎝ φ1

φ0

φ−1

⎞
⎠, (4)

with

Lsp = 1
2

⎛
⎝q2

x L 0
S q2

x L
0 S q2

x

⎞
⎠, (5)

where L = −√
2(ikLqx − �) and S = √

2(ikLqx + �). Upon
diagonalizing Eq. (4), we obtain the single-particle spectrum
as

ω0 = q2
x

2
, (6a)

ω± = 1

2

(
q2

x ± 2
√

�2 + k2
Lq2

x

)
. (6b)

From Eqs. 6(a) and 6(b) it is quite evident that the single-
particle spectrum exhibits three branches, namely, ω0 and ω±.
Among them, ω0 is independent of SO and Rabi couplings, a
constant branch of the single-particle spectrum. However, the
detailed nature of the other two branches ω± depends on the
SO and Rabi couplings, which are designated as positive and
negative branches of the spectrum, respectively, throughout
the paper.

To start with, we consider both the SO (kL) and Rabi
(�)-coupling strengths as zero. We obtain the nondegenerate
parabolic spectrum of the SO-coupled spin-1 system as cou-
plings are set to zero [see Fig. 1(a)]. As ω0 of the spectrum
is independent of both the SO and Rabi couplings, it does not
show any change upon the variation of coupling strengths, as
shown in Figs. 1(a)–1(e) with the green dash-dotted line. To
understand the behavior of the positive branch ω+ and nega-
tive branch ω− of the single-particle spectrum, we introduce
the finite value of SO coupling in the absence of Rabi coupling
and vice versa. First, we introduce a finite value to the SO-
coupling strength kL = 0.7 in the absence of Rabi-coupling
strength � = 0.0. For this parameter, the negative branch of
the spectrum gets transformed from the parabolic to a double
minimum, which appears at qx = ±kL, as shown in Fig. 1(b).
Here the energy minima of ω− = −0.245 occur at qx = ±0.7.
As Rabi coupling is increased to a finite value � = 0.5 while
keeping kL = 0.0, we find a change from a double minimum
to a single minimum (� > k2

L), which leads to a gap between
the ω+ and ω0 branches. The magnitude of the gap between
the ω+ and ω0 branches and between the ω0 and ω− branches
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FIG. 1. Single-particle energy spectrum in momentum space
for different sets of SO- and Rabi-coupling strengths (kL, �): (a)
(0, 0), (b) (0.7, 0), (c) (0, 0.5), (d) (0.7, 0.5), (e) (0.7, 0.7), and (f)
(1.0, 0.5). The thick red solid, green dash-dotted, and thin blue solid
lines represent the energy eigenspectrum for the {−1, 0, +1} compo-
nents of the spin, respectively. Varying the coupling parameters leads
to the changes in the eigenspectrum of different components, that is,
ω− has only the lowest minimum for � > k2

L , whereas for � < k2
L

the ω− exhibits double minima of the plane-wave phase, indicating
the presence of the stripe phase.

is of the order of �. It appears to be of the order of 2� between
the ω+ and ω− branches, as shown in Fig. 1(c), which exhibits
a single minimum with ω− = −0.5 at qx = 0. Further, we
analyze the spectrum by introducing both couplings strengths,
i.e., kL = 0.7 and � = 0.5, for which we obtain the global
minima in the spectrum, which also satisfies the condition
� ≈ k2

L. Upon increasing the Rabi coupling value from � =
0.5 to � = 0.7, we obtain a similar kind of spectrum, but
the gap between the branches increases with an increase in
Rabi coupling, as shown in Figs. 1(d) and 1(e), with energies

ω− = −0.5 and ω− = −0.7 at qx ≈ 0.0. On the other hand,
upon increasing the SO coupling from kL = 0.7 to kL = 1.0,
we obtain the transition of single-minimum nature of ω− into
a double minimum, as shown in Fig. 1(f). At a later stage,
we will see that this feature (the occurrence of a double min-
imum) in the single-particle spectrum is responsible for the
appearance of the stripe phase in the situation when � < k2

L.
In Fig. 1(f) the lowest-energy minimum is ω− = −0.625 at
qx ≈ ±0.9. We observe that when � > k2

L the energy depends
on only the Rabi coupling, while if � < k2

L the energy de-
pends on the SO-coupling strength. Overall, we find that, upon
variation of SO coupling, the positive branch exhibits a single
minimum upon fixing the Rabi coupling at a finite value.
However, the negative branch exhibits a transition from the
single minimum to a double minimum upon varying the SO
coupling, keeping the Rabi coupling fixed. This typical feature
of the negative branch of the spectrum appears to indicate
the change in the phases of the condensate upon varying the
coupling parameters; therefore, for later discussion, we focus
on analyzing the typical features of the ω− branch.

In the next section we discuss the effect of both coupling
terms (SO and Rabi) on the collective excitation spectrum for
the interacting SO- and Rabi-coupled spin-1 BECs.

IV. BOGOLIUBOV–DE GENNES ANALYSIS OF THE
COLLECTIVE EXCITATION SPECTRUM

In the preceding section we discussed the single-particle
spectrum of SO-coupled spin-1 ferromagnetic BECs. In this
section we present the collective excitation spectrum of the
uniform condensate using the Bogoliubov–de Gennes (BdG)
analysis. The excitation wave function in terms of the pertur-
bation term δφ j and uniform ground-state wave function φ j

can be represented as [22,25]

ψ j (x, t ) = e−iμ j t [φ j + δφ j (x, t )], (7)

where

δφ j (x, t ) = u je
i(qxx−ωt ) + v∗

j e
−i(qxx−ω∗t ) (8)

is the ground-state wave function with φ j =
(1/2,−1/

√
2, 1/2)T . Here μ j denotes the chemical potential

and u j and v j are the Bogoliubov amplitudes, with j = +1,
0, and −1 corresponding to the three components of spinor
density of condensates. Substituting Eq. (7) in the dynamical
equations (1a) and (1b), we obtain

L(u+1 v+1 u0 v0 u−1 v−1)T = ω(u+1 v+1 u0 v0 u−1 v−1)T , (9)

where T represents the transpose of the matrix and L is 6 × 6 matrix given by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H+ − μ+ L12 L13 L14 L15 L16

L21 −H+ + μ+ L23 L24 L25 L26

L31 L32 H0 − μ0 L34 L35 L36

L41 L42 L43 −H0 + μ0 L45 L46

L51 L52 L53 L54 H− − μ− L56

L61 L62 L63 L64 L65 −H− + μ−

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10)
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FIG. 2. Stability phase diagram in the kL-� plane for the inter-
action parameters c0 = 0.5 and c2 = −0.1, which are considered
for all the simulation runs. Based on the different characteristics of
the eigenspectrum and ground state, the phase diagram is divided
into regions I, IIa, IIb, and III. While region I is stable, regions IIa,
IIb, and III are unstable. The white dotted line with green circles
represents the � = k2

L curve that separates region I from IIa. The
white solid line with blue circles represents � ≈ 0.1365k2

L − 0.0686,
which separates regions IIa and IIb. The horizontal line with rect-
angles for � ∼ 0 denotes the region III after the cutoff, kc

L = 0.68,
which is a tricritical point for regions IIa, IIb, and III, indicated by a
red triangle.

The matrix elements of L are given in Appendix A. Bogoli-
ubov coefficients follow the normalization condition∫ ( ∑

j

(|u j |2 − |v j |2)

)
dx = 1. (11)

The simplified form of the BdG excitation spectrum is ob-
tained by calculating the determinant of the matrix L and
equating it with zero, i.e., det(L − ωI ) = 0, where I is a 6 × 6
identity matrix. The characteristic equation can be written as

ω6 + bω4 + cω2 + d = 0, (12)

where the coefficients of b, c, and d are given in Appendix A.

V. EFFECT OF RABI AND SO COUPLING ON THE
EXCITATION SPECTRUM

To better understand the stability of the ground-state phases
of the system, we plot the stability diagram of the system
in the kL-� plane with interaction parameters c0 = 0.5 and
c2 = −0.1 [55]. We obtain the stability phase plot by solving
the collective excitation spectrum. The real frequencies of the
BdG matrix imply the dynamically stable phase while the
imaginary frequency indicates a dynamically unstable phase
[25,38,39,47,56]. In Fig. 2 we show the stability diagram
in the kL-� plane. Based upon the eigenvalue, the plane is
divided mainly into three regions, viz., stable region I and
unstable regions II and III. The white dotted line with green

circles separates the stable and unstable regions, which have
the phase transition boundary, i.e., � = k2

L [39]. Further, we
divide the unstable region into two separate parts: regions
IIa and IIb. The white solid line with blue circles separates
regions IIa and IIb. The critical points for the phase tran-
sition from region IIa to region IIb can be obtained by a
polynomial fit given by � ≈ 0.1365k2

L − 0.0686. In region
IIa we obtain a clear gap between the low-lying (negative
branch) and first-excited (positive branch) branches of the
spectrum. Also, for a fixed value of the Rabi-coupling strength
�, upon increasing the SO-coupling strength kL, the number
of instability bands changes from 1 to 2 or vice versa. In
region IIb we obtain overlap among the low-lying (ll) and
first-excited (fe) branches of the eigenspectrum. Thus, the line
delineates regions IIa and IIb, encompassing points where
instability is present by means of multiple instability bands
and gap openings between low-lying and first-excited states.
Furthermore, in region IIb we observe a spectrum character-
ized by multiple instability bands. In this region for a fixed
value of the Rabi-coupling strength �, upon increasing the
SO-coupling strength kL, we achieve a mode corresponding to
no gap between the low-lying and first-excited branches of the
spectrum for some range of quasimomentum. By increasing
the Rabi-coupling strength with fixed SO coupling, we can
again achieve the gapped mode between the low-lying and
first-excited branches.

The transition from region IIa to region IIb can be ob-
tained after a certain critical coupling point. We obtain the
gapless behavior of the eigenspectrum by either increasing
SO coupling (kL > kc

L) for a fixed Rabi coupling (� > �c) or
decreasing Rabi coupling (�c < �) for a fixed SO coupling
(kL > kc

L), with the critical coupling parameters kc
L = 0.68

and �c = 0.001. This point is the origin of the line which
separates regions IIa and IIb. At the horizontal line where
the Rabi-coupling strength is approximately zero (� ≈ 0.0),
we realize the presence of a phonon mode in the low-lying
branch as well as in the first-excited branch of the spectrum,
along with the presence of an instability band. These features
in IIa and IIb are completely different from those obtained
for region I. The cutoff value of the SO-coupling strength to
obtain this behavior along the line is kc

L = 0.68. We analyze
the behavior of the system along the horizontal line separately
in region III. Here kc

L is the tricritical point for regions IIa, IIb,
and III, which is indicated by the red triangle in the phase plot
(see Fig. 2). Based on the above observations, we divide the
phase plot into three different regions: regions I, II (consisting
of parts IIa and IIb), and III. In Appendix C we show a similar
kind of phase diagram for two other different sets of interac-
tion strengths c0 = 5.0 and c2 = −0.1, and c0 = 885.72 and
c2 = 4.09. With these interactions, we obtain phase plots (see
Appendix B) similar to those in Fig. 2.

As we divide the phase diagram of the kL-� plane into
three regions, we discuss their behavior in each region indi-
vidually. The detailed structure of the presentation in different
regions is as follows. We perform collective excitation spec-
trum calculations to understand the stability of the system both
dynamically and energetically. Real but negative eigenfre-
quencies of the BdG matrix suggest an energetically unstable
nature of the condensate, while complex eigenfrequencies
indicate a dynamically unstable nature of the condensate
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FIG. 3. (a) Excitation spectrum and (b) and (c) eigenvectors for the coupling parameters kL = 0.5 and � = 2.0. (a) The magenta solid line
represents Re(ω−) and the green dash-dotted line represents |Im(ω−)|. Here solid and dash-dotted lines are the analytical results of the BdG
equation (12) and open circles are numerical results obtained by solving Eq. (9). (b) and (c) Eigenvectors corresponding to the eigenspectrum,
obtained by solving Eq. (9) numerically: |u+1|2 (open red circles), |u−1|2 (closed black diamonds), |u0|2 (open magenta hexagons), |v0|2 (open
cyan stars), |v+1|2 (open green squares), and |v−1|2 (closed magenta triangles). The presence of the phonon mode in the eigenspectrum is shown
in (a). It has no negative or complex eigenfrequency and thus it is energetically and dynamically stable.

[38,47,49]. To validate these claims, we perform numerical
simulations using the GP equations. We provide the eigen-
value spectrum, eigenvectors, and numerical simulation in
each section.

Following this, we corroborate the analytical results for the
excitation spectrum by numerically solving the BdG equa-
tion (10) from which we also obtain the eigenvectors as a
function of qx. First we consider a [−1000, 1000] grid in real
space with step size hx = 0.2. Then we use the Fourier col-
location method, where we numerically compute the Fourier
transform of the BdG equations and obtain a truncated re-
duced BdG matrix, which is subsequently diagonalized using
the LAPACK package [57]. In momentum space, we consider
[−700, 700] modes in the qx direction, with a grid step size of
hqx = 0.0157.

Further, we provide an analysis of the real-time dynam-
ics corresponding to the collective excitation spectrum by
solving the coupled GP equations (1a) and (1b) numerically.
We use the imaginary-time-propagation method to obtain
the ground state. Then we evolve the ground state in time
using the real-time-propagation method. For this purpose,
we adopt the split-step Crank-Nicholson scheme outlined in
Refs. [49,58,59]. We consider a grid of 1280 space points
with space step dx = 0.05 and time step dt = 0.000 25 for
imaginary-time propagation and dt = 0.0005 for real-time
propagation. Initially, we obtain the ground states according to
the regions in the phase plot (see Fig. 2) by using imaginary-
time propagation. After calculating the ground state, we
evolve it using real-time propagation by quenching the trap
strength.

A. Excitation spectrum in region I

1. Excitation spectrum

We present the collective excitation spectrum for the sta-
ble case and corresponding eigenvectors in Fig. 3. Here
we consider the coupling strengths kL = 0.5 and � = 2.0.
Figure 3(a) shows only the presence of Re(ω) in the eigen-
spectrum. The above suggests the presence of a phonon mode
[27]. The absence of negative and imaginary eigenfrequencies

in the spectrum indicates that the phase is energetically and
dynamically stable throughout region I.

We present the eigenvectors corresponding to the eigen-
spectrum in Figs. 3(b) and 3(c). We have three sets of
eigenvectors: |u+1|2 and |u−1|2, |u0|2 and |v0|2, and |v+1|2 and
|v−1|2. The eigenvectors exhibit in-phase behavior in all com-
ponents for all wave numbers, which means that |u+1(qx )|2 =
|u−1(qx )|2 and |v+1(qx )|2 = |v−1(qx )|2, indicating the pres-
ence of densitylike (in-phase) excitations [see Figs. 3(b) and
3(c)]. We demonstrate that both u and v eigenvectors are
in-phase. For qx ≈ 0, the eigenvector components approach
each other, and at qx = 0 they have equal values, signifying
the presence of a phonon mode, as mentioned earlier. As
anticipated, the eigenspectrum and eigenvectors exhibit the
same behavior for other sets of parameters (kL and �) in the
same region (region I of Fig. 2) of the kL-� plane. The critical
change in the eigenspectrum is that with increasing coupling
strengths, the real eigenspectrum widens, similarly to how the
eigenvectors also widen after the junction at qx = 0.

2. Dynamical stability

We consider the same coupling parameters (kL,�) =
(0.5, 2) to examine the dynamical behavior of region I, and the
interaction strengths are c0 = 0.5 and c2 = −0.1 by solving
the GP equations (1a) and (1b). Here we obtain the plane-wave
phase as a ground state of the condensate. To understand the
stability of the ground state, we quench the trap strength to
half and further evolve the condensate. The density of the
condensate shows stable breatherlike motion throughout the
dynamical evolution [see Figs. 4(a)–4(c)]. In addition, the
system density profile is symmetric in nature and does not
show any oscillations, as shown in Figs. 4(a)–4(c). Thus, it is
clear that the system is not showing polarization behavior, as
we expected from the in-phase nature of eigenvectors shown
in Figs. 3(b) and 3(c).

In Fig. 5 we plot the total energy of the condensate. In
real-time evolution, we quench the trap strength to one-half its
original value. Hence, in the beginning, the energy of the con-
densate starts decreasing. After a while, the energy stabilizes
and remains constant throughout the dynamical evolution.
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FIG. 4. Time evolution of ground-state density profiles illustrating dynamical stability of the (a) +1, (b) 0, and (c) −1 components of the
condensate, with the parameters similar to those in Fig. 3. All three components |ψ+1|2, |ψ0|2, and |ψ−1|2 depict stable breatherlike dynamics,
which validates the dynamical stability of the condensate.

Therefore, we find that the ground state of the condensate is
energetically and dynamically stable, as shown in the stability
phase plot in Fig. 2 corresponding to the excitation spectrum.
We also investigate the dynamical spin texture of this region,
which does not change its behavior during the dynamical
evolution.

B. Excitation spectrum in region IIa

1. Excitation spectrum

To investigate region II, we divide it into two parts, re-
gions IIa and IIb. In the first part we consider two points
with fixed SO- and Rabi-coupling strengths (kL,�) = (2, 2)
and (kL,�) = (2.35, 4), respectively. We plot the dispersion
relation of collective excitations and corresponding eigenvec-
tors at these values of the coupling parameters in Fig. 6.
Figure 6(a i) shows the presence of the imaginary part of
the eigenspectrum at larger values of quasimomentum qx hav-
ing two imaginary bands. As we increase the value of Rabi
coupling to larger extents than the SO-coupling strength, the
two imaginary eigenbands change into a single band [see
Fig. 6(a ii)]. It is also shown in Fig. 2, where the second point
falls on the boundary of regions I and IIa. Therefore, we can
state that the second point is approaching the stable regime.

The eigenvectors corresponding to the eigenenergy is pre-
sented in Figs. 6(b) and 6(c). Unlike the behavior observed in

FIG. 5. Energy variation in the time evolution for the stable re-
gion I. The parameters are similar to those in Fig. 3. During time
evolution, the energy of the condensate decreases in the beginning
and further shows stable behavior, which signifies that the condensate
is energetically stable due to the lack of negative eigenfrequency.

region I, we find complex behavior in the eigenvector com-
ponents here. The eigenvector shows in the momentum di-
rection the transition from densitylike (in-phase) excitations,
where |u+1(qx )|2 = |u−1(qx )|2 and |v+1(qx )|2 = |v−1(qx )|2, to
the spinlike (out-of-phase) excitations, where |u+1(qx )|2 =
|v−1(qx )|2 and |v+1(qx )|2 = |u−1(qx )|2. In Fig. 6(a i) the
eigenspectrum has double-band instability and corresponding
dual transitions from the densitylike mode to the spinlike
mode for ±1 components of eigenvectors. Still, the zeroth
component exists only in the densitylike mode. Also, there
is an amplitude difference among all three components of the
eigenvector; the ±1 components have half the amplitude value
of the zeroth component [see Figs. 6(b i) and 6(c i)]. For the
second point in the region [see Fig. 6(a ii)], the eigenspectrum
has only single-band instability and corresponding to this,
there is a constant transition from the densitylike mode to
the spinlike mode of the ±1 components of eigenvectors [see
Fig. 6(b ii)]. The amplitudes of ±1 and 0 appear to be the
same as for the previous point. It is observed from the above
discussion that whenever Im(ω−) appears, the densitylike
mode [where we have Re(ω−) = 0] changes into the spinlike
mode. From the transition point of view, when comparing
these two points in region IIa, we notice that the multiband
instability has mixed densitylike and spinlike mode behavior
in the eigenvectors. In detail, by comparing Figs. 6(b i) and
6(b ii), we see that only the latter figure has the densitylike
mode in the major portion of the momentum space. However,
the former has a mixed type of mode in the same range of
momentum space where imaginary eigenvalues appear at 0 <

qx < 2; it has a spinlike mode when 2 < qx < 3 eigenvalues
are real and then it exhibits a densitylike mode, for 3 < qx <

3.5 again a spinlike mode, and for qx > 3.5 a densitylike
mode (the behavior is symmetric about the momentum axis).
Such a complex mixed mode has not been explored in the
spinor SO-coupled system. We highlight that this study will
be helpful for the experimental researcher to achieve the stable
ferromagnetic spinor SO-coupled BEC experimentally.

2. Dynamical stability

We divide region II into two parts IIa and IIb. We focus on
the system’s dynamics in region IIa, specifically at two differ-
ent points within region IIa. We discuss the dynamic behavior
of the system for each point separately. We choose (kL,�) =
(2, 2). We obtain the ground state using imaginary-time
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(a i) (b i) (c i)

(a ii) (b ii) (c ii)

FIG. 6. Stability excitation spectrum eigenvalues and eigenvectors. The SO- and Rabi-coupling strengths are (a i), (b i), and (c i) (kL, �) =
(2.0, 2.0) and (a ii), (b ii), and (c ii) (2.35, 4.0). (a) Eigenenergy and (b) and (c) corresponding eigenvectors. The lines and symbols have the
same denotations as in Fig. 3. The eigenenergy spectrum shows the presence of complex eigenfrequencies in terms of (a i) two bands and (a ii)
one band, which indicates the system is dynamically unstable. The eigenvectors display the spin dipole along with the spinlike mode in the qx

momentum direction and are symmetric along the axis.

propagation, which is the stripe wave, and evolve the ground
state using real-time propagation. The dynamical evolution of
the state shows that the stripe wave phase holds up to t = 150.
Furthermore, the density profile of all three components frag-
ments into nonperiodic domains [see Figs. 7(a)–7(c)] [20]. If
the system has a nonvanishing zeroth component in the dy-
namical evolution, then the system tends to be less subjected
to instability. Conversely, if the zeroth component vanishes,
the system becomes more prone to instability [60]. In this

case, the appearance of the zeroth component in the dynamical
evolution confirms that the chosen coupling point has a lower
risk of instability. We plot the total energy of the condensate in
Fig. 8(a). The energy of the condensate starts with a value of
−2.471. It changes sign from negative to positive at t = 205,
due to the quench for which a similar kind of agitation hap-
pens, and further it shows stable behavior near t = 365. At
this point, as shown in Fig. 6(a i), the BdG excitation spectrum
has complex eigenfrequencies and the eigenvector shows the

FIG. 7. Temporal evolution of the ground-state density profile of (a) and (d) |ψ+1|2, (b) and (e) |ψ0|2, and (c) and (f) |ψ−1|2 depicted for
different (kL,�): (a)–(c) (2.0, 2.0) and (d)–(f) (2.35, 4.0). The density profile shows stripe wave behavior in both cases for (a)–(c) t < 150
and (d)–(f) t < 180. Further, it gets fragmented into several small domains. This behavior signifies the change in shape and amplitude of the
density profile, where in (d)–(f) the zeroth component loses density while the ±1 components gain density.
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FIG. 8. (a) and (b) Total energy of the condensate for the density
evolution in the upper and lower panel of Fig. 7 respectively. In both
cases the energy of the condensate increases at the beginning of the
dynamical evolution, but finally shows well-settled stable behavior;
such a sudden change happens due to the external perturbation. This
behavior validates the energetic stability of the condensate; however,
the system is dynamically unstable.

out-of-phase behavior for a certain range of quasimomentum.
The above indicates that the system is dynamically unstable
and generates nonlinear wave patterns, which matches well
with numerical simulation results. We choose another point in
region IIa at which we consider the value of the SO-coupling
strength kL = 2.35 and � = 4.0. We achieve the ground state,
which is a stripe wave phase. The excitation spectrum has
complex eigenfrequencies, as shown in Fig. 6(a ii). The pres-
ence of complex eigenfrequencies indicates that the system
is dynamically unstable. To verify this claim numerically, we
evolve the ground state of the system using the real-time-
propagation method as illustrated in Figs. 7(d)–7(f). The stripe
wave behavior of the condensate holds its shape for a while.
Then it fragments into several small domains [20]. In addition,
we observe that with time, the zeroth component of density
starts diminishing until it finally disappears [see Fig. 7(e)].
Other components of the condensate density (|ψ±1|2) boost
the magnitude after the zeroth component of the density dis-
appears [see Figs. 7(d) and 7(f)]. For the quadratic Zeeman
effect, such a dynamical disappearance does not take place
[60]. However, in this work we see this sort of dynamical
instability in the excitation of spin-1 BECs in the presence
of SO coupling alone. So far we have found that the den-
sity pattern of the system changes its shape and amplitude
with the disappearance of the zeroth component, which is a
signature of dynamical instability. Further, we show the total
energy of the condensate in Fig. 8(b). It starts from −4.182
and changes its sign from negative to positive at t = 1080,
which is higher for this point where the zeroth component
vanishes, and then the particles are shared by the spin-up
and -down components; there the energy gets settled. Such a
zeroth component vanishing behavior is not observed for the
previous case due to the appearance of spin and density-mixed
modes. Upon investigating the dynamical spin texture of this
region, we notice that the initial pattern does not maintain its
shape as time progresses and changes its spin texture during
the dynamical evolution (see Appendix C).

C. Excitation spectrum in region IIb

1. Excitation spectrum

In this part of region II, we choose two different points
at which we consider the coupling strengths kL = 3.1 and
� = 1.17, and kL = 5.0 and � = 2.5, respectively. The col-

FIG. 9. Excitation spectrum for the coupling strengths (a)
(kL, �) = (3.1, 1.17) and (b) (kL, �) = (5.0, 2.5) depicting the low-
lying and first-excited branches of the spectrum, respectively. The
magenta solid line represents Re(ω−) and the green dashed line
represents |Im(ω−)|, which is the low-lying branch of the spec-
trum, while the blue dash-dotted line represents Re(ω+) and the
black dotted line represents |Im(ω+)|, corresponding to the first-
excited branch of the spectrum, which is obtained from Eq. (12).
The eigenspectrum in (a) and (b) shows multiple instability bands
as we obtained in Fig. 6(a i); however, (a) and (b) show one and
two modes, corresponding to no gap existing between the lower
branch and the first-excited branch. Insets show close-ups of the
no-gap mode between the lower and first-excited state branches. The
y-axis scale on the right represents the magnitudes of the imaginary
eigenfrequencies.

lective excitation spectrum of the condensate for these sets
of parameters is given in Fig. 9. We obtain complex eigen-
frequencies for both points [see Figs. 9(a) and 9(b)]. Still,
the number of instability bands in the quasimomentum direc-
tion and its amplitude differ for both points. In Fig. 9(a) the
number of low-lying instability bands is 3 and the positions
and amplitudes are {qx, ω} = {0.27, 0.29}, {1.48, 0.11}, and
{5.75, 0.11}, respectively. Further, we show the first-excited
(ω f e) and low-lying (ωll ) branches of the eigenspectrum,
which overlap with each other, where we also find that the
complex eigenfrequency is not similar to the eigenspectrum
of the previous case of region IIa. This results in modes corre-
sponding to no gap between the first-excited and the low-lying
spectrum. However, we find three complex eigenfrequencies
in which the overlapping point shows complex eigenfrequen-
cies for both spectra. The phenomenon that is observed in
the spinor BECs is related to the unstable avoided crossing
between spin and charge modes by considering θ = π , the
phase difference between the perturbed wave fields, which
also provides the class Io of oscillatory patterns as a result of
the dynamical instability [43,44]. However, in this work we
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(a i)

(b i)

(a ii)

(b ii)

FIG. 10. Eigenvectors in (a) and (b) corresponding to
Figs. 9(a) and 9(b), respectively: |u+1|2ll (closed red circles),
|u−1|2ll (open black hexagons), |u0|2ll (open magenta hexagons),
|v0|2ll (open cyan stars), |v+1|2ll (open green squares), |v−1|2ll (closed
magenta triangles), |u+1|2f e (open blue pentagons), |u−1|2f e (closed
orange stars), |u0|2f e (open olive pluses), |v0|2f e (open red crosses
on dotted lines), |v+1|2f e (open cyan diamonds), and |v−1|2f e (closed
maroon circles). For qx the eigenfrequencies and eigenvectors
are symmetric about the axis. Here we find that the eigenvectors
show the spinlike mode when the complex frequency exhibits the
densitylike mode only when it is real.

realize the same phenomenon only for the symmetric case θ =
0, even though we consider only SO and Rabi couplings with-
out Raman detuning. Due to the Io dynamical instability, we
find out-of-equilibrium dynamics in the density patterns and
it is the route to the formation of nonlinear patterns, which we
discuss later in this section. In Fig. 9(b) the number of instabil-
ity bands is 4 and the positions and amplitudes are {qx, ω} =
{0.27, 0.33}, {1.39, 0.18}, {3.48, 0.16}, and {9.45, 0.11} (not
shown in figure), respectively. The appearance of instability
bands for both points is symmetric about the momentum (qx)
axis. In addition to this, we show the first-excited state in the
same plot. Here the first-excited and low-lying branches over-
lap twice, where we observe two unstable avoided crossings
in SO-coupled spinor ferromagnetic BECs. For this case, the
first-excited spectrum also has two complex eigenfrequencies
for the unstable avoided-crossing points.

The eigenvectors corresponding to the eigenspectrum in
Figs. 9(a) and 9(b) are shown in Figs. 10(a) and 10(b), re-
spectively. For the choice of parameters (kL,�) = (3.1, 1.17),
we observe no overlap between the low-lying and the first-
excited spectrum eigenvectors. However, the gap between
them closes and the overlap happens for certain values of
quasimomentum qx. In the interval qx = (−0.4, 0.4), where
the low-lying spectrum exhibits imaginary eigenvalues, the
eigenvectors correspond to the spinlike mode, as we see from
the out-of-phase behavior between the low-lying eigenvec-
tors. Further, when qx > ±0.4 up to the gapless point, we
notice that the low-lying eigenvectors display the densitylike
(in-phase) mode. However, the first-excited state only has a

densitylike mode up to this gapless point. Nevertheless, in the
region of the spectrum where the low-lying and first-excited
branches overlap, we see that the eigenvectors of both the low-
lying and first-excited states are out of phase. When the mode
corresponding to no gap between the low-lying branch and the
first-excited-state branch transforms as a gapped mode, all the
eigenvectors are in phase [see Fig. 10(a i)], where the zeroth
component shows only a densitylike mode [see Fig. 10(a ii)].

For the second point of this region, all eigenvector compo-
nents have the same amplitude value. Choosing the coupling
parameters (kL,�) = (5, 2.5) reveals a substantial difference.
With these parameters, we observed double overlaps between
the low-lying and the first-excited spectrum, closing the gap
between them. These overlaps occur for certain values of
quasimomentum qx. The first two eigenvectors exhibit behav-
ior similar to that observed at the previous point.

As the mode corresponding to no gap between the low-
lying and first-excited-state branch transforms into a gapped
mode, all the eigenvectors become in phase. We also observe
a similar feature for the next no-gap mode and further mo-
mentum directions. Additionally, we find that when the real
eigenvalues fall to zero and then increase, the eigenvectors
are flipped but remain in phase, as shown in Fig. 10(a i). The
obvious change in the spectrum from the gapped mode to the
mode corresponding to no gap between the low-lying and the
first-excited-state branch of the eigenvectors demonstrates the
transition from a constant densitylike mode to a hybridized
spinlike-density mode [61] [see Figs. 10(b i) and 10(b ii)].

2. Dynamical stability

We consider the points (kL,�) = (3.1, 1.17), with inter-
action parameters c0 = 0.5 and c2 = −0.1. The collective
excitation spectrum corresponding to this point is shown in
Fig. 9(a), which has complex eigenfrequencies in terms of
multiple bands. The presence of complex eigenfrequencies
makes the system dynamically unstable. To verify that the
system is dynamically unstable, we perform numerical simu-
lation. We obtain the ground state, which is the stripe wave
phase. We evolve the ground state by quenching the trap,
and during dynamical evolution, the density profile initially
maintains a stripe wave behavior. After a while, the ±1 com-
ponents fragment into small domains and show nonperiodic
oscillation in space-time evolution, shown in the density pro-
files in Figs. 11(a) and 11(c). On the other hand, the zeroth
component of density starts diminishing as time progresses
[see Fig. 11(b)]. Thus, we state that the density pattern of
the condensate changes its shape and amplitude during dy-
namical evolution, which confirms the dynamical instability
as the zeroth component disappears due to the instability of
the system [60]. We investigate the second point by choos-
ing (kL,�) = (5, 2.5). For this we obtain the ground state
as the stripe wave and evolve the ground state numerically.
The dynamical evolution of this phase shows that the stripe
wave phase holds for a while. Further, the density profile
of all three components fragments into nonperiodic domains
[see Figs. 11(d)–11(f)] [20]. Also, the density of the zeroth
component starts diminishing, explicitly showing that the
system maintains dynamical instability. We also observe that
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FIG. 11. Dynamics of the ground-state density profile of (a) and (d) |ψ+1|2, (b) and (e) |ψ0|2, and (c) and (f) |ψ−1|2 components for
different (kL, �): (a)–(c) (3.1, 1.17) and (d)–(f) (5.0, 2.5). The density profile has stripe wave behavior in both cases for (a)–(c) t < 100
units and (d)–(f) t < 50 units. For t > 100, (a)–(c) show nonperiodic oscillation and nonuniform density in space-time, whereas the zeroth
component disappears. For t > 50, (d)–(f) show that the density profile further fragments into several small domains. This behavior signifies
the change in shape and amplitude of the density profile, along with the disappearance of the zeroth component, which confirms the dynamical
instability.

the density pattern of the system changes its shape and ampli-
tude during dynamical evolution.

We plot the total energy of the condensate in Fig. 12. The
ground-state energy of the condensate starts with the values
E0 = −4.845 [Fig. 12(a)] and E0 = −12.593 [Fig. 12(b)]. It
changes sign from negative to positive (and then is stable)
after the sudden change in the parameter during time evolu-
tion. We observe that the second point is more energetic than
the first point in both the ground state and the excited state,
i.e., Eex ≈ 0.432 [Fig. 12(a)] and Eex ≈ 1.708 [Fig. 12(b)].
Further, we investigate the dynamical spin texture, where the
initial pattern is not observed and at the final time it changes
its spin texture in the dynamical evolution (see Appendix C).

D. Excitation spectrum in region III

1. Excitation spectrum

In region III we choose points along the horizontal axis
to understand the system’s behavior in the absence of Rabi-
coupling strength � = 0 and we consider the SO-coupling
strength as kL = 5.0. The collective excitation spectrum for

FIG. 12. Total energies of the condensate for the dynamical evo-
lution from Fig. 11. From the energy saturation, we understand that
the system is energetically stable but dynamically unstable.

this is demonstrated in Figs. 13(a) and 13(b), where, dif-
ferently from the previous cases, in region III we observe
the presence of roton-maxonlike modes. As demonstrated in
previous studies [34,36,62], when � → 0 the roton-maxon

FIG. 13. (a) Low-lying and (b) first-excited branches of the exci-
tation spectrum for the coupling strengths kL = 5.0 and � = 0.0. The
lines and symbols have the same denotations as in Fig. 9. Insets show
close-ups of the complex frequency modes. The mode corresponding
to no gap between the low-lying- and first-excited-state branches
appears along with the symmetric roton mode.
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(a i)

(b i)

(a ii)

(b ii)

FIG. 14. Eigenvectors in (a) and (b) corresponding to
Figs. 13(a) and 13(b), respectively. The lines and symbols
have the same denotations as in Fig. 10. In this region, both the
low-lying and first-excited states assume the value ω = 0 for
qx = 0 with eigenvectors that are in phase with the low-lying and
first-excited states, which indicates the existence of the phonon
mode for these branches.

modes appear and the roton mode subsequently softens when
� approaches zero. The softening of the roton mode favors
the appearance of superstripe structures. The low-lying exci-
tation has complex eigenfrequencies along with the phonon
and symmetric rotonlike modes, indicating that the system
is dynamically unstable due to the presence of the imag-
inary eigenfrequencies. Further, the first-excited state also
shows similar behavior, i.e., the presence of the phonon mode
along with the complex eigenfrequencies but no symmetric
rotonlike structure. However, the unstable avoided cross-
ing is noticed at qx ≈ 4.8499, between the first-excited and
low-lying states. After that point, the real eigenfrequency
decreases and reaches zero, where it exhibits the imagi-
nary eigenfrequency. Beyond this point, the real frequency
grows. Based on this observation, one has to understand such
behavior using the eigenvectors. Additionally, the complex
eigenfrequency presents multiple instability bands along the
quasimomentum axis. The positions of the instability bands
of the low-lying excitation spectrum are qx = 0.06, 4.91, 9.97
and the corresponding complex eigenfrequencies are ω− =
0.1037, 0.1404, 0.0993, respectively. The first-excited state
has two instability bands and its position and complex eigen-
frequency are the same as those of the low-lying state.
Notably, the instability bands are symmetric about the x axis.

Figure 14 represents the eigenvector components; in this
region, the low-lying excitation eigenvectors exhibit an in-
phase mode between |u+1|2ll and |u−1|2ll and between |v+1|2ll
and |v−1|2ll . This feature continues up to the point of real
eigenvalues, when the imaginary eigenvalues exhibit an out-
of-phase mode between them (|u+1|2ll − |u−1|2ll 
= 0). Even
though at qx = 0 the eigenvalues become zero ω = 0, a
phonon mode is observed, which is explicitly shown in the
form of sharp spikelike eigenvectors appearing in |u+1|2ll

and |v+1|2ll . However, in this complex eigenvalue regime, we
have both the phonon mode and the complicated spinlike
mode. In addition to this, the zeroth component eigenvec-
tors show a mixed-mode behavior; as a result, we observe
different dynamical phases from the ground state. Also, the
first-excited state exhibits ω = 0 for qx = 0, where all the
eigenvectors meet at a single point, as before. The first-excited
state behaves like a spinlike mode with an asymmetric nature,
indicating the existence of the superstripe phase. Further, the
density mode appears while the real eigenfrequency is present,
which is also evident from the zeroth component eigenvector
behavior.

2. Dynamical stability

We consider a case with SO-coupling strength kL = 5.0
and Rabi-coupling strength � = 0.0. The corresponding BdG
excitation spectra in Figs. 13(a) and 13(b) reveal the presence
of phonon-gapless complex eigenfrequencies, indicating the
dynamical unstable nature of the condensate. To investigate
this numerically, we obtain the ground state of the condensate,
which falls within the unpolarized stripe wave phase. We
then evolve this state in time using a real-time-propagation
method. The density profile initially maintains its unpolarized
stripe wave behavior but subsequently breaks into two parts at
t = 85. Following this, the density of ±1 components oscil-
lates around the trap center, exhibiting accumulated breather
behavior for a period. Ultimately, the fragmented oscillating
waves merge and form several small domains [see Figs. 15(a)
and 15(c)] [20], while the zeroth component of the density
disappears [see Fig. 15(b)]. This behavior signifies that the
dynamical instability also changes its shape and size [60].
We examine the energy during its dynamic evolution, which
eventually stabilizes, indicating energetic stability. This find-
ing is consistent with the analysis of the excitation spectrum,
suggesting that the numerical simulation accurately reflects
the theoretical predictions.

E. Effect of coupling strength on the band gap

So far, we have discussed the nature of collective ex-
citations, eigenvectors, and the dynamical behavior of the
condensate in different regions of the kL-� plane. Next we
consider the effect of the SO- and Rabi-coupling strengths on
the band gap �g between the positive and negative branches
of the spectrum, where we define the band gap as �g. In
Fig. 16(a i) we show the band-gap variation upon varying
the Rabi-coupling strength � for a fixed kL. In what follows
we discuss band-gap variation for two distinct SO coupling
strengths, for instance, kL = 1.14 and 3.10. The gap closes at
a certain value of � for these SO couplings. For kL = 1.14,
�g = 0 for � = 0.107 and similarly for kL = 3.10, it closes
at � = 1.218 for the quasimomentum values q = 0.521 and
1.486, respectively. Starting from the point �g = 0, upon in-
creasing the �, we observe that the gap becomes nonzero even
for a relatively small increment in the Rabi-coupling strength
and the magnitude of the band gap increases with an increase
in �. Also, we provide the logarithmic scale plot correspond-
ing to Fig. 16(a i), where we show the fitting curve �g = a�b

with the maroon and orange dotted lines for kL = 1.14 and
3.10, respectively. The coefficients for the fitting function are
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FIG. 15. Time evolution of superstripe ground-state density profiles of the (a) |ψ+1|2, (b) |ψ0|2, and (c) |ψ−1|2 components of the
condensate. The coupling strengths are kL = 5.0 and � = 0.0 with interaction parameters c0 = 0.5 and c2 = −0.1. Throughout the dynamics,
the unpolarized superstripe wave holds its behavior for t < 30. Further, it breaks into two domains and oscillates on either side of the
condensates of ±1 components. The zeroth component disappears, where ±1 components gain density, which shows the change in the density
profile confirms the dynamical instability.

a = 0.981 and b = 0.997, and a = 1.083 and b = 1.026 for
the SO-coupling strengths kL = 1.14 and 3.10, respectively.
Here we wish to highlight that the band gap increases upon
increasing � for fixed kL. For higher kL, the gap attains a
sudden maximum even for the lesser � for small kL, which
is evident where the red dashed line crosses the green dash-
dotted line in Fig. 16(a i). Moreover, for higher kL the gap
closes at higher �; compare starting points in Fig. 16(a i).

(a i)

(b i)

(a ii)

(b ii)

FIG. 16. Variation of the band gap �g between negative and
positive branches of the spectrum for (a i) the fixed value SO cou-
pling strength upon variation of the Rabi-coupling strength and (b i)
vice versa. (a i) The green dash-dotted line and the red dashed
line represent gap calculations for kL = 1.14 and 3.10, respectively.
(b i) The blue dash-dotted line and the black dashed line represent
gap calculations for � = 1.3 and 3.1, respectively. The interaction
parameter strengths are c0 = 0.5 and c2 = −0.1. (a ii) and (b ii) Log-
arithmic scale plots corresponding to (a i) and (b i), respectively. In
(a ii) and (b ii) the maroon (orange) dotted lines represent the fitting
curve �g = a�b with the parameters a = 0.9811 and b = 0.9974
(a = 1.0825 and b = 1.0258) and a = 126.2992 and b = −4.9568
(a = 46.4438 and b = −2.2146), respectively.

Further, we discuss the variation of the band gap upon
varying the SO coupling for fixed Rabi-coupling strength.
We choose two different values of Rabi-coupling strength
� = 1.3, 3.1. Since the Rabi-coupling strength is responsible
for opening the gap among the branches of the collec-
tive excitation spectrum (as discussed above), the band-gap
value �g is higher for a lesser value of kL at fixed � [see
Fig. 16(b i)]. Upon increasing kL, the �g starts decreasing,
and further it reaches zero at the quasimomentum values qx =
1.5325, 2.3381 with kL = 3.20, 4.86 for the Rabi-coupling
strengths � = 1.3, 3.1, respectively. We find that the band gap
�g decreases upon increasing kL at fixed �. In Fig. 16(b ii)
we show the fitting function �g = c�d with the maroon and
orange dotted lines for � = 1.3 and 3.1, respectively. The co-
efficients of fitting functions are c = 126.30 and d = −4.96,
and c = 46.44 and d = −2.22 for the SO-coupling strengths
� = 1.3 and kL = 3.1, respectively.

VI. CONCLUSION

In this paper we have investigated the collective excita-
tion spectrum of SO-coupled spin-1 ferromagnetic BECs with
Rabi coupling in quasi-one-dimension using the Bogoliubov–
de Gennes theory and numerical simulation. We analyzed the
single-particle spectrum for different sets of SO- and Rabi-
coupling strengths. Upon increasing the strength of coupling
parameters, we noticed separation among different negative
(ω−) and positive (ω+) branches of the eigenspectrum, with
ω− having the lowest minimum. However, for � < k2

L, the
negative branch of the spectrum shows a double minimum,
indicating the presence of a stripe phase.

Based upon the collective excitation calculation, we ob-
tained the phase diagram in the kL-� plane which was broadly
divided into three regions: region I (a stable phase) and
regions II and III (unstable phases). We divided the unsta-
ble region II into two parts according to the nature of the
eigenspectrum, which is based upon the appearance of the
gapped and gapless (unstable avoided-crossing) modes. In
region I, the excitation spectrum exhibits solely real posi-
tive eigenvalues with the presence of a phonon mode. The
eigenvectors corresponding to these eigenvalues substantiate
the existence of the phonon mode by exhibiting the den-
sitylike mode in the wave-number space. The absence of
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negative and complex eigenfrequencies in the spectrum con-
firms a dynamically and energetically stable condensate in
this region.

As the coupling strengths increase, we found a transition
from region I to the unstable region II, attributed to the rela-
tion � < k2

L. In this region, complex eigenfrequencies emerge
throughout the spectrum, accompanied by a gapped mode and
a mode corresponding to no gap between the low-lying (ω−)
and first-excited (ω+) branches. Based on the presence of a
gapped mode and a mode corresponding to no gap between
the low-lying- and first-excited-state branches, region II is
divided into two parts IIa and IIb, respectively. The eigenspec-
trum in region IIa exhibits gapped behavior across the entire
region. Notably, the presence of complex eigenfrequencies
is reflected in the corresponding eigenvectors, indicating a
transition from a spin-mode nature to a density-mode nature
of the eigenvectors as the eigenfrequency shifts from complex
to real. This phenomenon is evident in the ±1 components
of the eigenspectrum, while the zeroth component exclusively
displays a densitylike mode. The combined analysis of eigen-
vectors and dynamic behavior reveals a mixed spin-density
mode.

Region IIb is separated from region IIa by a line; the latter
region exhibits a multi-instability band across its entirety.
Upon increasing the SO coupling for a point along the sepa-
ration line, we observe gapless behavior in the eigenspectrum
for a particular range of quasimomentum among the low-lying
and first-excited branches of the spectrum. Similarly, decreas-
ing the Rabi-coupling strength for any point on the separation
line will also yield gapless behavior. Similar to the previous
region, we also identify the mixed spin-density eigenvector
mode in this region. For the gapless region, the eigenvector
of the low-lying and first-excited branches exhibits a spinlike
mode for all its components. We also characterize the mode
corresponding to no gap between the low-lying- and the first-
excited-state branch as an unstable avoided crossing between
the low-lying and first-excited spectrum. This instability man-
ifests as the emergence of complex eigenfrequencies when
the two branches come into contact. The corresponding
dynamical evolution also exhibits an unstable stripe state,
which we examined numerically. We observed that the ze-
roth component is nonzero in region IIa but disappears in
region IIb. This suggests that a nonzero zeroth component
tends to be less susceptible to dynamical instability, while
a vanishing zeroth component tends to be higher than the
previous one.

In addition to these two regions, we identified region III,
which corresponds to the � = 0 line. In this region, both
the low-lying and the first-excited states assume the value
ω = 0 for qx = 0 with eigenvectors in phase with the low-
lying state. This indicates the existence of a phonon mode.
The low-lying and first-excited spectra also exhibit gapless,
unstable avoided-crossing behavior between them. Further
analysis of the eigenvectors reveals not only the phonon char-
acter but also the presence of a spinlike mode in both states.
Numerical simulations for this case reveal the presence of a
superstripe ground state, and their respective dynamics ex-
hibit unstable dynamical nonlinear patterns. Our observations
suggest that this work would be a valuable resource for ex-
perimental researchers seeking to achieve stable and unstable
SO-coupled spinor ferromagnetic BECs. Here we have pro-
vided a comprehensive numerical simulation of regions with
diverse dynamical behaviors.

In this work we found the absence of the plane-wave phase
in the excitation spectrum. In recent studies it was shown that
in the presence of the Zeeman coupling the double degen-
eracy in the excitation spectrum is eliminated and hence the
plane-wave phase appears [36,37]. We would be interested in
extending the present work in the presence of the Zeeman field
to explore the effect of the field on the nature of the overall
eigenspectrum and eigenvectors. Another interesting feature
that has emerged in the SO-coupled BECs is the appearance
of a self-bound quantum droplet in the binary BECs [63,64]
in which the repulsive nature of the mean-field interaction
is balanced by the beyond-mean-field quantum fluctuation
in one dimension [64,65]. It would be interesting to extend
the present work of SO-coupled spin-1 BECs considering
the effect of quantum fluctuation on different phases of the
collective excitation modes along similar lines as presented
for spin-1/2 SO-coupled BECs [66].
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APPENDIX A: RELEVANT TERMS OF THE BDG MATRIX OF COLLECTIVE EXCITATIONS

In this Appendix we provide an explicit form of the matrix elements of the BdG matrix (10) used in Sec. V. The matrix
elements of Eq. (10) read

H+ = q2
x

2
+ c0

(
2φ2

+1 + φ2
0 + φ2

−1

) + c2
(
2φ2

+1 + φ2
0 − φ2

−1

)
, (A1a)

H0 = q2
x

2
+ c0

(
φ2

+1 + 2φ2
0 + φ2

−1

) + c2
(
φ2

+1 + φ2
−1

)
, (A1b)

H− = q2
x

2
+ c0

(
φ2

+1 + φ2
0 + 2φ2

−1

) + c2
(
2φ2

−1 + φ2
0 − φ2

+1

)
, (A1c)
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μ+φ+1 = c0
(
φ2

+1 + φ2
0 + φ2

−1

)
φ+1 + c2

(
φ2

+1 + φ2
0 − φ2

−1

)
φ+1 + c2φ

2
0φ

∗
−1 + �√

2
φ0, (A1d)

μ0φ0 = c0
(
φ2

+1 + φ2
0 + φ2

−1

)
φ0 + c2

(
φ2

+1 + φ2
−1

)
φ0 + 2c2φ

∗
0φ+1φ−1 + �√

2
(φ+1 + φ−1), (A1e)

μ−φ−1 = c0
(
φ2

+1 + φ2
0 + φ2

−1

)
φ−1 + c2

(
φ2

−1 + φ2
0 − φ2

+1

)
φ−1 + c2φ

2
0φ

∗
+1 + �√

2
φ0, (A1f)

L12 = C+φ2
+1, L13 = C+φ∗

0φ+1 − kL√
2

iqx + 2c2φ0φ
∗
−1 + �√

2
, L14 = C+φ0φ+1, L15 = C−φ∗

−1φ+1,

L16 = C−φ−1φ+1 + c2φ
2
0 , L21 = −C+φ∗2

+1, L23 = −C+φ∗
0φ∗

+1, L24 = −C+φ0φ
∗
+1 + kL√

2
iqx − 2c2φ

∗
0φ−1 − �√

2
,

L25 = −C−φ∗
−1φ+1∗ − c2φ

∗2
0 , L26 = −C−φ−1φ

∗
+1, L31 = C+φ∗

+1φ0 + 2c2φ
∗
0φ−1 + kL√

2
iqx + �√

2
, L32 = C+φ+1φ0,

L34 = c0φ
2
0 + 2c2φ+1φ−1, L35 = C+φ∗

−1φ0 + 2c2φ
∗
0φ+1 − kL√

2
iqx + �√

2
, L36 = C+φ−1φ0, L41 = −C+φ∗

+1φ
∗
0 ,

L42 = −C+φ+1φ
∗
0 − kL√

2
iqx − 2c2φ0φ

∗
−1 − �√

2
, L43 = −c0φ

∗2
0 − 2c2φ

∗
+1φ

∗
−1, L45 = −C+φ∗

−1φ
∗
0 ,

L46 = −C+φ−1φ
∗
0 + kL√

2
iqx − 2c2φ0φ

∗
+1 − �√

2
, L51 = C−φ∗

+1φ−1, L52 = C−φ+1φ−1 + c2φ
2
0 ,

L53 = C+φ∗
0φ−1 + kL√

2
iqx + 2c2φ0φ

∗
+1 + �√

2
, L54 = C+φ0φ−1, L56 = C+φ2

−1, L61 = −C−φ∗
+1φ

∗
−1 − c2φ

∗2
0 ,

L62 = −C−φ+1φ
∗
−1, L63 = −C+φ∗

0φ∗
−1, L64 = −C+φ0φ

∗
−1 − kL√

2
iqx − 2c2φ

8
0φ+1 − �√

2
, L65 = −C+φ∗2

−1.

Also,

C+ ≡ c0 + c2, C− ≡ c0 − c2.

The coefficients for the BdG characteristic equation (12) are

b = − 5�2 − 4c2
2 − (

2k2
L + 3� + c0

)
q2

x − 3
4 q4

x + c2
(
8� + q2

x

)
, (A2)

c = 4�4 + �
[
2�

(
k2

L + 3�
) − (

k2
L − 5�

)
c0

]
q2

x + 4c3
2q2

x + 1
2

[
2k4

L + 9�2 + (
k2

L + 6�
)
c0

]
q4

x + 1
2

(
3� + c0

)
q6

x

+ 3
16 q8

x + 4c2
2

[
�2 + (

k2
L − � + c0

)
q2

x

] − 1
2 c2

[
16�3 + 2�

(
7k2

L + 5� + 8c0
)
q2

x + (
k2

L + 6� + 4c0
)
q4

x + q6
x

]
, (A3)

d = − 1
64 q2

x

[(
4k2

L − 4� − q2
x

)(
2� + q2

x

) + c2
(−8k2

L + 8� + 4q2
x

)]{ − 4c0
[
8�2 − 2

(
k2

L − 3�
)
q2

x + q4
x − 4c2

(
2� + q2

x

)]
+ (

2� + q2
x

)[ − 16�c2 + 16c2
2 − q2

x

(−4k2
L + 4� + q2

x

)]}
. (A4)

APPENDIX B: PHASE DIAGRAM FOR DIFFERENT
INTERACTION STRENGTHS

Here we present a detailed phase diagram in the kL-� plane
for interaction strengths other than c0 = 0.5 and c2 = −0.1,
as considered in this work. For c0 = 0.5 and c2 = −0.1 we
have mainly observed three different regions, on the basis of
the collective excitation spectrum. Based on the above obser-
vations, here we show such a phase diagram for two other
different sets of interaction strengths c0 = 5.0 and c2 = −0.1,
and c0 = 885.72 and c2 = −4.09. In Fig. 17(a) we show the
stability phase diagram in the kL-� plane for the interaction
strengths c0 = 5 and c2 = −0.1. The stability phase diagram
has been obtained by solving Eq. (10) and analyzing the
collective excitation spectrum for these set of parameters. The

phase diagram shows the presence of a stable region (region
I) and an unstable region (region II), which is given using the
relation k2

L = �. Region II has been divided into two parts:
region IIa and region IIb. The transition line that separates
regions IIa and IIb is given using the relation � = 0.134k2

L −
0.0668, where we observed that only the boundary can be
changed; otherwise three regions are found. The gapless
behavior emerges after the points kc

L = 0.72 and �c = 0.001,
which is also the origin of the line that separates regions IIa
and IIb. At the horizontal line at which � = 0.0, we obtain a
phonon mode in the low-lying and in the first-excited branch
of the spectrum, along with the presence of an instability band,
which is different from previous regions. The cutoff value of
SO-coupling strength to obtain this behavior along the line is
kL = 0.96.
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FIG. 17. Phase diagram in the kL-� plane for interaction pa-
rameters (a) c0 = 5.0 and c2 = −0.1 and (b) c0 = 885.72 and c2 =
−4.09. Based on the different characteristics of the eigenspectrum
and ground state, the phase diagram is divided into regions I, IIa, IIb,
and III. Region I is stable, while regions IIa and IIb are unstable. The
line � = k2

L is drawn, separating region I from II. Blue dots separate
regions IIa and IIb. The horizontal line with � ∼ 0 denotes region
III. The behavior of all the regions remains the same as for c0 = 0.5
and c2 = −0.1.

Figure 17(b) illustrates a similar stability phase diagram
for the kL-� plane, featuring a very high interaction parameter
strength for the interaction parameters c0 = 885.72 and c2 =
−4.09. Both real and complex eigenfrequencies coexist with
a gapped mode and a mode corresponding to no gap between
the low-lying- and first-excited-state branches for this set of
interaction strengths. Varying the strengths of the spin-orbit
and Rabi couplings allows us to observe the transition from
the stable region (region I) to the unstable region (region II)
in the phase diagram. The relationship k2

L = � defines the
boundary between region I and region II. The transition line
that separates regions IIa and IIb is given by the relation
� = 0.1317k2

L − 2.8512. The origin points of the line are
kc

L = 4.65 and �c = 0.02. We treat the horizontal line along
which the Rabi-coupling strength is zero as region III, where
the cutoff value of SO coupling to achieve this behavior is
kL = 8.1.

APPENDIX C: SPIN-MAGNETIZATION
DENSITY VECTORS

The spatial distribution (or orientation) of spin magnetiza-
tion density vectors can be referred to as spin texture [67].
Comparing the spin textures at the initial and finite times,
we have characterized the dynamical behavior of the stable
(region I) and unstable regions (IIa, IIb, and III) in a systemic
way. The relevant quantities for the characterization, that is,
the spin magnetization density vectors, are defined as

mx = Re[
√

2(ψ+1 + ψ−1)∗ψ0], (C1a)

my = Im[
√

2(ψ+1 − ψ−1)∗ψ0], (C1b)

mz = |ψ+1|2 − |ψ−1|2. (C1c)

In Fig. 18 we show the components of the magnetization
vector computed using Eqs. (C1a)–(C1c) for two sets of cou-
pling parameters of the dynamically unstable region IIa of the
kL-� plane as depicted in Fig. 2. We show the magnetization
profile at two instants of time t = 0 (for the ground state)
and at later instant t = 1000 for kL = 2.0 and � = 2.0 [see
Figs. 18(a i), 18(b i), and 18(c i)] and the same for other
parameters kL = 2.35 and � = 4.0 [see Figs. 18(a ii), 18(b ii),
and 18(c ii)]. For both cases, the entire magnetic component
profile exhibits significant changes at a later time (t = 1000)
compared to those for the ground state, confirming the dy-
namical instability of the condensate for these sets of coupling
parameters in region IIa. This trend continues for another set
of points in region IIa. A similar trend of the magnetization
vector component profile has been observed for the two sets
of coupling parameters kL = 3.1 and � = 1.17, and kL = 5.0
and � = 2.5 of region IIb, as depicted in the Figs. 19(a i),
19(b i), and 19(c i) and Figs. 19(a ii), 19(b ii), and 19(c ii),
respectively.

(a i)

(b i)

(a ii)

(b ii)

(c i) (c ii)

FIG. 18. Spin-magnetization density components (mx, my, mz ) for the ground state at initial time t = 0 (solid line) and later time t =
1000 (dashed line) in the dynamically unstable region IIa in the kL-� plane for different sets of coupling parameters of the condensate with
ferromagnetic interactions c0 = 0.5 and c2 = −0.1: (a i), (b i), and (c i) kL = 2.0 and � = 2.0 and (a ii), (b ii), and (c ii) kL = 2.35 and
� = 4.0. Owing to the dynamical instability, the spin texture deviates from its initial state during the time evolution.
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(a i)

(b i)

(a ii)

(b ii)

(c i)
(c ii)

FIG. 19. Spatial profile of the spin-magnetization density components (mx, my, mz ) for the ground state at initial time t = 0 (solid line)
and later time t = 1000 (dashed line) in the dynamically unstable region IIb in the kL-� plane for different sets of coupling parameters of the
condensate with ferromagnetic interactions c0 = 0.5 and c2 = −0.1: (a i), (b i), and (c i) kL = 3.1 and � = 1.17 and (a ii), (b ii), and (c ii)
kL = 5.0 and � = 2.5. Owing to the dynamical instability, spin texture shows a deviation from the initial behavior during the time evolution.
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