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Non-Abelian quantum geometric tensor in degenerate topological semimetals
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The quantum geometric tensor characterizes the complete geometric properties of quantum states, with the
symmetric part being the quantum metric and the antisymmetric part being the Berry curvature. We propose a
generic Hamiltonian with globally degenerate ground states and give a general relation between the correspond-
ing non-Abelian quantum metric and unit Bloch vector. This enables us to construct the relation between the
non-Abelian quantum metric and Berry or Euler curvature. To be concrete, we present and study two topological
semimetal models with globally degenerate bands under CP and C2T symmetries. The topological invariants
of these two degenerate topological semimetals are the Chern number and Euler class, respectively, which
are calculated from the non-Abelian quantum metric with our constructed relations. Based on the adiabatic
perturbation theory, we further obtain the relation between the non-Abelian quantum metric and the energy
fluctuation. Such a nonadiabatic effect can be used to extract the non-Abelian quantum metric, which is
numerically demonstrated for the two models of degenerate topological semimetals. Finally, we discuss the
quantum simulation of the model Hamiltonians with cold atoms.
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I. INTRODUCTION

Geometry and topology play central roles in various fields
of modern physics and broaden our horizons about the classi-
fication of quantum phases. A representative example of this
is the discovery of the integer quantum Hall effect in the 1980s
[1], which goes beyond Landau’s theory of phase transitions
and can be understood as a topological effect characterized
by the Thouless–Kohmoto–Nightingale–den Nijs invariant
(also called the Chern number) [2–4]. Since then, topological
insulators and semimetals have been explored in condensed-
matter physics and engineered systems [5–10]. Classification
of topological quantum states in terms of antiunitary symme-
tries (e.g., time-reversal symmetry T ) and unitary symmetries
(e.g., reflection symmetry and Cn rotation symmetry) has been
widely studied. For instance, the classification of topological
semimetals was established with a unified theory in Ref. [11]
when the systems have PT - (P is inversion symmetry) and
CP-symmetry-protected nodal band structures.

The complete geometric properties of these Bloch func-
tions are fully encoded by the quantum geometric tensor
(QGT) [12–14]. Its imaginary part is the Berry curvature
[4,5], which is closely related to many interesting effects
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[15–24]. The integral of the Berry curvature over a closed
two-dimensional (2D) manifold defines the first Chern num-
ber. The real part of QGT is the so-called quantum metric,
characterizing the distance between two nearby quantum
states for both degenerate (non-Abelian) and nondegener-
ate (Abelian) systems [13]. The QGT is related to various
physical observables [25–42] and has been experimentally
measured in engineered quantum systems [43–57]. However,
most of these studies are limited to the Abelian QGT in non-
degenerate systems.

In recent years, the non-Abelian QGT in degenerate
quantum systems has been investigated, and some detection
schemes based on dynamical responses have been proposed
[53,58,59]. If a system’s Hamiltonian changes very slowly and
the system is prepared in one of the eigenstates of the system’s
Hamiltonian, then at time t , it will remain in the instanta-
neous eigenstate. This is known as the adiabatic theorem [60].
However, for the case in which the Hamiltonian is not varied
slowly enough, researchers have presented the adiabatic per-
turbation theory, i.e., perturbation theory in the instantaneous
basis [61–64], to describe the evolution of the quantum state.
For degenerate systems, when slowly ramping the system’s
parameters, in some cases, response coefficients of the time-
dependent quantum states can be related to the non-Abelian
QGT [13,26,65,66]. For example, the non-Abelian Berry cur-
vature related to the so-called generalized force and the corre-
sponding second Chern number have been measured [65,66].
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The aim of present work is twofold. On the one hand,
we propose a general Dirac Hamiltonian with globally
degenerate bands and establish relations between the non-
Abelian quantum metric and Berry curvature therein. On the
other hand, we show that the non-Abelian quantum metric
corresponds to the energy fluctuation, acting as a nonadia-
batic effect and providing an alternative method to extract all
the components of non-Abelian QGT. Concretely, we study
two three-dimensional (3D) lattice Hamiltonians with CP and
C2T symmetries [11,67]. Within certain parameter ranges, the
topological semimetal phases are exhibited with the monopole
charges characterized by the Chern number and Euler class
[67–72], respectively. We find that these two topological in-
variants can be calculated from the non-Abelian quantum
metric. When one of the momenta is fixed as a constant, the
3D models are reduced to 2D models with topological insula-
tor phases and symbolic gapless boundary modes, which are
characterized by corresponding topological invariants and the
Wilson loops. We reveal the intrinsic relations between the
non-Abelian quantum metric and Berry or Euler curvature.
These relations provide alternative methods to calculate the
Chern number and Euler class. We also numerically demon-
strate the measurements of the non-Abelian QGT with the
nonadiabatic effect in the two models of degenerate topo-
logical semimetals. Furthermore, we discuss the quantum
simulation of the model Hamiltonians in controlled ultracold
atomic platforms [73–86].

This paper is organized as follows. In Sec. II, we briefly re-
view the QGT and propose a generic Dirac Hamiltonian with
globally degenerate bands and intrinsic relations between the
real and imaginary parts of its non-Abelian QGT. In Secs. III
and IV, we apply the relations to the concrete CP-symmetric
and C2T -symmetric Hamiltonians, respectively, and study the
exotic properties of the degenerate topological semimetals.
In Sec. V, we derive the relation between the non-Abelian
quantum metric and the energy fluctuation from adiabatic
perturbation theory and numerically demonstrate the dynamic
scheme to extract the non-Abelian QGT. The experimental
schemes to simulate the two model Hamiltonians with ultra-
cold atoms are proposed in Sec. VI. Finally in Sec. VII, a short
conclusion is given.

II. NON-ABELIAN QUANTUM GEOMETRIC TENSOR

We consider a generic Hamiltonian H (λ) parame-
terized by λ = (λ1, λ2, . . . ) with N degenerate ground
states |ψ j (λ)〉 ( j = 1, 2, . . . , N ). One of the ground states
can be expanded as |�0(λ)〉 = ∑N

j=1 Cj (λ|ψ j (λ)〉, where∑N
j=1 |Cj (λ)|2 = 1. Then the distance between two nearby

quantum states [13,87] |�0(λ)〉 and |�0(λ + dλ)〉 is defined
as

dS2 = 1 − |〈�0(λ) | �0(λ + dλ)〉|2

=
∑
μν

⎡
⎢⎣(C∗

1 · · · C∗
N )Qμν

⎛
⎜⎝C1

...

CN

⎞
⎟⎠

⎤
⎥⎦dλμdλν

=
∑
μν

⎡
⎢⎣(C∗

1 · · · C∗
N )gμν

⎛
⎜⎝C1

...

CN

⎞
⎟⎠

⎤
⎥⎦dλμdλν, (1)

where Qμν is an N × N matrix, with the matrix element

Qi j
μν := 〈∂μψi(λ)|[1 − P(λ)]|∂νψ j (λ)〉. (2)

Here all derivatives are taken with respect to the parameters,
i.e., ∂μ = ∂λμ

, and P(λ) is a projection operator of ground
states,

P(λ) =
N∑

j=1

|ψ j (λ)〉〈ψ j (λ)|. (3)

The corresponding non-Abelian quantum metric gμν and
Berry curvature Fμν are

gμν = (Qμν + Q†
μν )/2, Fμν = i(Qμν − Q†

μν ), (4)

respectively. These two quantities are also N × N matrices,
with gμν = g†

μν = gνμ and Fμν = F †
μν = −Fνμ. The compo-

nents of gμν and Fμν are written as

gi j
μν = (

Qi j
μν + Qi j

νμ

)
/2, F i j

μν = i
(
Qi j

μν − Qi j
νμ

)
. (5)

For the case of N = 1, there is no degeneracy for the ground
state, and the corresponding non-Abelian QGT is simplified
to the Abelian QGT. In the rest of this paper, we focus on the
case of N = 2.

To meet the symmetry requirement discussed later, we
consider a Dirac Hamiltonian with the following form:

H (λ) = d1�1 + d2�2 + d3�3, (6)

where di (i = 1, 2, 3) are the components of Bloch vector d =
(d1, d2, d3) and real functions parameterized by λ = (λμ, λν )
and �i (i = 1, 2, 3) are 4 × 4 Clifford matrices that satisfy
the anticommutation relations {�i, � j} = 2δi j . Under proper
conditions, as given in Appendix A, the two valence bands of
the Hamiltonian in Eq. (6) are globally degenerate across all
parameter space, with the energy dispersion given by E± =
±|d| = ±

√
d2

1 + d2
2 + d2

3 . We consider the subspace spanned
by two degenerate ground states {|ψ1(λ)〉, |ψ2(λ)〉},

Tr(gμν ) = g11
μν + g22

μν = 1
2 (∂μd̂ · ∂ν d̂), (7)

where the unit Bloch vector d̂ ≡ d/|d| = (d̂1, d̂2, d̂3). Using
the method outlined in Ref. [88] and in Appendix B, we derive
the following general relation:√

det Gμν = |εαβγ d̂α∂μd̂β∂ν d̂γ |, (8)

where εαβγ is the Levi-Civita symbol, with {α, β, γ } =
{1, 2, 3}, and the matrix Gμν has the form

Gμν

2
=

(
Tr(gμμ) Tr(gμν )
Tr(gνμ) Tr(gνν )

)
. (9)

The relation in Eq. (8) can be easily extended to Hamiltoni-
ans composed of 2N × 2N Clifford matrices. In a two-band
model, the Abelian Berry curvature is given by Fμν =
εαβγ d̂α∂μd̂β∂ν d̂γ . In contrast, for the 4 × 4 Dirac Hamiltonian,
εαβγ d̂α∂μd̂β∂ν d̂γ can always be related to some components
of the non-Abelian Berry or Euler curvature. This relation
establishes a connection between the non-Abelian quantum
metric and the non-Abelian Berry or Euler curvature. Thus,
it provides an alternative approach to calculate topological
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invariants, the Chern number for the CP-symmetric Hamilto-
nian and the Euler class for the C2T -symmetric Hamiltonian,
as discussed in the following sections.

III. TOPOLOGICAL SEMIMETAL WITH CP SYMMETRY

Symmetries, such as time reversal (T ), particle-hole (C),
twofold rotation (C2), and inversion (P), play a fundamen-
tal role in topological physics. The combined symmetries of
CP and C2T are of particular importance. In Ref. [11], the
researchers developed a unified theory to describe the topo-
logical properties of nodal structures protected by CP and
C2T symmetries. Let us first focus on a Hamiltonian that is
symmetric under CP:

PH (k)P−1 = H (−k),

CH (k)∗C−1 = −H (−k),

(CP)H (k)∗(CP)−1 = −H (k), (10)

where P and C are unitary operators. We consider a concrete
lattice Hamiltonian

H (n)
CP /h̄0 = αx

2
(dn

− + dn
+)�x + i

αy

2
(dn

− − dn
+)�y + αzdz�z,

(11)

where dn
± = (dx ± idy)n, αx,y,z = ±1, dx = 2t sin kx, dy =

2t sin ky, and dz = 2t (Mz − cos kx − cos ky − cos kz). Mz is a
dimensionless and tunable parameter, t is the hopping energy,
and unless specifically mentioned, we simply set t = 1/2
for following calculations. �x = σx ⊗ sx, �y = σ0 ⊗ sy, and
�z = σx ⊗ sz. Here h̄0 is the irrelevant energy unit, the time
unit is given by 2π/0, and we set h̄ = 0 = 1 hereafter.
This model Hamiltonian belongs to the 2Z classification [11]
with CP = σz ⊗ s0K and (CP)2 = 1, where K is the conjugate
operator. The energy spectrum is obtained as

E± = ±
√(

d2
x + d2

y

)n + d2
z . (12)

This Hamiltonian exhibits multiple-Weyl monopoles at
fourfold-degenerate points E± = 0, and their topological
charges are characterized by the first Chern number. The dis-
tribution and separation of these multiple-Weyl points within
the first Brillouin zone (FBZ) are controlled by the parameter
Mz. When Mz = 0, there are four multiple-Weyl points located
at (π, 0,±π/2) and (0, π,±π/2). As Mz increases, these
monopoles start to move within the FBZ. For Mz = 1, three
monopoles exist at (π, 0, 0), (0, π, 0), and (0, 0, π ) with a
monopole charge Q = 0. When Mz = 2, only two monopoles
remain at (0, 0,±π/2) with opposite topological charges. The
two monopoles move toward (0,0,0) and eventually combine
when Mz = 3, opening a gap. After that, the system becomes
a topologically trivial insulator.

Considering Mz = 2, there are two multi-Weyl points lo-
cated at K± = (0, 0,±π

2 ). The topological charges Q are
defined in terms of the Chern number on a sphere S2 enclosing
the multi-Weyl points, as shown in Fig. 1(a). The low-energy
effective Hamiltonian near the multi-Weyl points is given by

H(n)
CP,± = αx

2
(qn

− + qn
+)�x + i

αy

2
(qn

− − qn
+)�y ± αzqz�z,

(13)

FIG. 1. (a) The multi-Weyl monopoles of Hamiltonian H (n)
CP in

the FBZ for Mz = 2; the ellipses stand for monopoles, and ±Q
indicate their topological charges. Q = 2 for H (1)

CP , and Q = 4 for
H (2)

CP . (b) The first Chern number C for Hamiltonians H (1)
CP and H (2)

CP

against the parameter Mz for kz = 0. The bulk state and surface state
for Hamiltonians H (1)

CP and H (2)
CP . The energy spectra (c) for H (1)

CP for
Mz = 2 and kx = 0 and (d) for H (1)

CP for Mz = 2 and kz = 0. The
bulk state and surface state (e) for Hamiltonian H (2)

CP for Mz = 2 and
kx = 0 and (f) for Hamiltonian H (2)

CP for Mz = 2 and kz = 0. (g) θ (kx ),
the phases of the eigenvalues of the Wilson loops. θ1 and θ2 are for
Hamiltonian H (1)

CP in Eq. (19) with Mz = 2 (topological phase) and
Mz = 4 (trivial phase); kz = 0. (h) θ3 and θ4 are for Hamiltonian
H (2)

CP in Eq. (24) with Mz = 2 (topological phase) and Mz = 4 (trivial
phase); kz = 0. αx = αy = αz = 1 for all panels.

where qn
± = (qx ± iqy)n and q± = k − K±. The correspond-

ing energy spectrum is E± =
√

(q2
x + q2

y )n + q2
z . We can

parametrize the momentum space as

qx = (q sin θ )
1
n sin φ, qy = (q sin θ )

1
n cos φ, qz = q cos θ,

(14)

where q = E+ =
√

(q2
x + q2

y )n + q2
z and θ ∈ (0, π ] and φ ∈

(0, 2π ] are two spheral angles of an S2 sphere. For the multi-
Weyl points, the topological charge is

Q = 1

2π

∫
S2

Tr(Fθφ )dθdφ. (15)
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In Eq. (8), we found that there is a deep connec-
tion between the non-Abelian quantum metric and the
unit Bloch vector. For the effective Hamiltonian in
Eq. (13), Tr(Fθφ )± = ±εαβγ q̂α∂θ q̂β∂φ q̂γ [with q̂ ≡ q/|q| =
(q̂1, q̂2, q̂3)], and sgn[(TrFθφ )±] = ∓1. Then Eq. (8) can be
rewritten as √

det(Gθφ )± = ∓Tr(Fθφ )±; (16)

the corresponding topological charges are given by

Q± = ∓ 1

2π

∫ √
det(Gθφ )±dθdφ. (17)

The non-Abelian Berry curvature Fθφ is a 2 × 2 matrix;
Tr(Fθφ )± = ∓√

det(Gθφ )± = ∓n sin θsgn(αxαyαz ). We have

Q± = ∓2nsgn(αxαyαz ), (18)

which characterizes the 2Z nature of this Hamiltonian. With-
out loss of generality, we consider n = 1, 2 and αx = αy =
αz = 1 for the Hamiltonian in Eq. (11). For n = 1,

H (1)
CP = dx�x + dy�y + dz�z. (19)

When Mz = 2, there are two multi-Weyl points located at
K± = (0, 0,±π/2), with topological charges Q± = ∓2, as
shown in Fig. 1(a). The effective Hamiltonian near K± is
given by

H(1)
CP,± = qx�x + qy�y ± qz�z, (20)

where q± = k − K±. We plot the energy spectrum with an
open boundary along the y direction for Hamiltonian H (1)

CP
in Fig. 1(c). There Fermi arcs connect the monopoles, and
the dispersion E1,± near them is linear in the kx, ky, and kz

directions,

E1,± = ±
√

k2
x + k2

y +
(

kz − π

2

)2
. (21)

If we take a slice of this 3D model, e.g., fix kz = 0, it reduces
to a 2D model. For the reduced 2D Hamiltonian in Eq. (11),
the general relation in Eq. (8) transforms to√

det Gxy = |Tr(Fxy)|. (22)

The topological nature of this 2D four-band Hamiltonian is
captured by the Chern number

C = 1

2π

∫
BZ

Tr(Fxy)dkxdky

= 1

2π

∫
BZ

sgn[Tr(Fxy)]
√

det Gxydkxdky, (23)

which can be calculated by the non-Abelian QGT. Notably, a
similar relation between the Chern number and the Abelian
QGT for 2D two-band Chern insulators was obtained with the
same method in Refs. [36,88].

We plot the Chern number against Mz in Fig. 1(b); the
topological phase transitions occur at Mz = ±1, 3, where
there is only one fourfold-degenerate point in the FBZ. For
Mz ∈ (−1, 1) ∪ (1, 3), the Chern number is nonzero, indicat-
ing Chern insulator phases. The energy spectra and boundary
states with an open boundary along the y direction for Hamil-
tonian H (1)

CP are shown in Fig. 1(d). In this case, there are

gapless edge states that connect the conduction and valence
bands.

For n = 2 in Eq. (11), the Hamiltonian reads

H (2)
CP = (

d2
x − d2

y

)
�x + 2dxdy�y + dz�z. (24)

Like for H (1)
CP , the emergence and locations of multi-Weyl

points for H (2)
CP are controlled by the parameter Mz. For

Mz = 2, two monopoles locate at (0, 0,±π/2), and the cor-
responding topological charges are Q± = ∓4, as illustrated in
Fig. 1(a). The effective Hamiltonian near K± = (0, 0,±π/2)
reads

H(2)
CP,± = (

q2
x − q2

y

)
�x + 2qxqy�y ± qz�z, (25)

where q± = k − K±. The energy spectrum with an open
boundary along the y direction for Hamiltonian H (2)

CP is shown
in Fig. 1(e). Fermi arcs connecting the multi-Weyl points also
emerge, but the dispersions E2,± near them are quadratic along
kx,y and linear along kz, that is,

E2,± = ±
√(

k2
x + k2

y

)2 +
(

kz − π

2

)2
. (26)

For fixed kz = 0, a reduced 2D model can be derived. We show
the first Chern number of this 2D Hamiltonian in Fig. 1(b),
and it can also be calculated from Eq. (23). The Chern num-
ber of H (2)

CP is twice that of H (1)
CP . In Fig. 1(f), we show the

bulk and edge states for the topological insulator phase with
symbolic gapless boundary modes crossing the energy gap.
Alternatively, we can work out the transition function in terms
of the Wilson loop for 2D gapped subsystems:

W (kx ) = P exp
∫ π

−π

dkyAy(kx, ky), (27)

where P indicates the path order. In Figs. 1(g) and 1(h), we
numerically plot the phases of the eigenvalues of the Wilson
loop. The results show that the winding numbers equal half of
the corresponding Chern numbers.

IV. TOPOLOGICAL SEMIMETAL
WITH COMBINED C2T SYMMETRY

The 3D topological Euler semimetals and 2D Euler insu-
lators are novel kinds of topological phases. Euler insulators
host multigap topological phases, which are quantified by
a quantized Euler class in their bulk and were recently ex-
perimentally realized in synthetic systems [89–91]. The C2T
symmetry implies the existence of a basis in which the C2T -
symmetric Bloch Hamiltonian is a real matrix. We consider a
concrete C2T -symmetric Hamiltonian

H (n)
C2T /h̄0 = αx

2
(dn

− + dn
+)�̃x + i

αy

2
(dn

− − dn
+)�̃y + αzdz�̃z,

(28)

where �̃x = σ0 ⊗ sz, �̃y = σy ⊗ sy, and �̃z = σ0 ⊗ sx. The

energy spectrum E± = ±
√

(d2
x + d2

y )n + d2
z . Without loss of

generality, we choose C2T = K̂. Under C2T symmetry, the
Hamiltonian and the Bloch wave functions can always be
constrained to real values by a unitary transformation, which
makes the first Chern number equal to zero. For the C2T -
symmetric Hamiltonian, the Euler class has been defined
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to characterize topological phase transitions. If |ψ1(λ)〉 and
|ψ2(λ)〉 are real Bloch states of a pair of globally degenerate
energy bands, their Euler curvature (also called the Euler
form) [67–69] is given by

Eu(λ) = 〈∇ψ1(λ)| × |∇ψ2(λ)〉. (29)

When the base manifold is 2D and parameterized by λ =
{λμ, λν}, the Euler curvature is

Eu(λ) = 〈∂μψ1(λ) | ∂νψ2(λ)〉 − 〈∂νψ1(λ) | ∂μψ2(λ)〉. (30)

The integral of the Euler curvature over a 2D manifold defines
the integer topological invariant, which is called the Euler
class,

χ = 1

2π

∫
Eu(λ)dλμdλν. (31)

Consider the corresponding dimensionless parameter mz =
−2; it is a topological Euler semimetal phase with the
monopole charges characterized by the Euler class. There are
two monopoles located at K̃± = (π, π,±π/2). The topolog-
ical charges q are defined in terms of the Euler class χ on
a sphere S2 enclosing the monopoles, as shown in Fig. 2(a).
The low-energy effective Hamiltonians near the monopoles
are given by

H(n)
C2T,± = −αx

2
(q̃n

− + q̃n
+)�̃x − i

αy

2
(q̃n

− − q̃n
+)�̃y ± αzq̃z�̃z,

(32)

where q̃n
± = (q̃x ± iq̃y)n and q̃± = k − K̃±. The energy spec-

trum Ẽ± = ±
√

(q̃2
x + q̃2

y )n + q̃2
z . By parametrizing the mo-

mentum space with spherical coordinates as in Eq. (14), with
λ = {θ, φ} in Eq. (31), the monopole charge is described by
the Euler class,

q = 1

2π

∫
S2

Eu(θ, φ)dθdφ. (33)

Here Eu(θ, φ) is the Euler curvature in spherical coordinates,

Eu(θ, φ) = 〈∂θψ1 | ∂φψ2〉 − 〈∂φψ1 | ∂θψ2〉, (34)

where |ψ1〉 and |ψ2〉 are the degenerate ground states of the
Hamiltonian. The Euler curvature for H(n)

C2T,± is

Eu± = ∓1

2
εαβγ

ˆ̃qα∂θ
ˆ̃qβ∂φ

ˆ̃qγ = ± i

2

(
F 12

θφ − F 21
θφ

)
, (35)

where ˆ̃q ≡ q̃/|q̃| = ( ˆ̃q1, ˆ̃q2, ˆ̃q3). From Eq. (8), we obtain the
relation between the non-Abelian quantum metric and Euler
curvature as√

det(Gθφ )± = |εαβγ d̂α∂θ d̂β∂φ d̂γ | = ±2 Eu± . (36)

Thus, the topological charges can also be extracted from the
non-Abelian quantum metric as

q± = ± 1

4π

∫ √
det(Gθφ )±dθdφ. (37)

From the Euler curvature Eu± = ±√
det(Gθφ )±/2 =

±n sin θ/2, we have

q± = ±nsgn(αxαyαz ), (38)

FIG. 2. (a) The monopoles of Hamiltonian H (n)
C2T in the FBZ for

mz = −2. The ellipses stand for monopoles, and ±q indicate their
topological charges; here q = n for H (n)

C2T . (b) The Euler class for

Hamiltonians H (1)
C2T and H (2)

C2T for kz = 0. (c) The energy spectra for

Hamiltonian H (1)
C2T with mz = −2 and kx = π ; this is a topological

Euler semimetal. (d) The energy spectra for Hamiltonian H (1)
C2T with

mz = −2 and kz = π ; this is a Euler insulator. The bulk state and
surface state (e) for Hamiltonian H (2)

C2T with mz = −2 and kx = π and

(f) for Hamiltonian H (2)
C2T with mz = −2 and kz = π . (g) θ5 and θ6 are

transition functions for Hamiltonian H (1)
C2T in Eq. (39) with mz = 2

(topological phase) and mz = 4 (trivial phase); kz = 0. (h) θ7 and θ8

are for Hamiltonian H (2)
C2T in Eq. (39) with mz = 2 (topological phase)

and mz = 4 (trivial phase); kz = 0. αx = αy = αz = 1 for all panels.

as shown in Fig. 2(a). Consider n = 1, 2 and αx = αy = αz =
1; we have the Hamiltonians

H (1)
C2T = dx�̃x + dy�̃y + dz�̃z,

H (2)
C2T = (

d2
x − d2

y

)
�̃x + 2dxdy�̃y + dz�̃z. (39)

The effective Hamiltonians near K̃± are given by

H(1)
C2T,± = −q̃x�̃x − q̃y�̃y ± q̃z�̃z,

H(2)
C2T,± = −(

q̃2
x − q̃2

y

)
�̃x − 2q̃xq̃y�̃y ± q̃z�̃z, (40)
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where q̃± = k − K̃±. In Figs. 2(c) and 2(d), we plot the
energy spectrum of H (1)

C2T and H (2)
C2T , with the open boundary

condition along the y direction. The Fermi arcs connect the
energy-degenerate points. They both are topological Euler
semimetal phases. Taking a slice with fixed kz = 0 for a re-
duced 2D model, we have the Euler curvature

Eu(kx, ky) = 1

2
εαβγ d̂α∂xd̂β∂yd̂γ = − i

2

(
F 12

xy − F 21
yx

)
, (41)

where
√

det Gxy = |εαβγ d̂α∂xd̂β∂yd̂γ |. The corresponding Eu-
ler class reads

χ = 1

2π

∫
BZ

Eu dkxdky = −i

4π

∫
BZ

(
F 12

xy − F 21
xy

)
dkxdky

= 1

4π

∫
BZ

sgn
[

Im
(
F 12

xy − F 21
xy

)]√
det Gxydkxdky. (42)

Figure 2(b) shows the relation between the parameter mz and
Euler class χ1,2 for H (1,2)

C2T with χ2 = 2χ1. The topological
phase transitions occur when the energy band gap closes, e.g.,
mz = ±1, 3. For mz ∈ (−1, 1) ∪ (1, 3), Euler classes χ1 and
χ2 are nonzero; they are topological Euler insulator phases.
Figures 2(e) and 2(f) show the numerical results for H (1)

C2T

and H (2)
C2T with fixed mz = 2 and kz = 0. We exhibit the bulk

states and boundary states of the two Hamiltonians, and the
corresponding topologically metallic edge states emerge. We
can also calculate the transition function of the real bundles
for a 2D Euler insulator through the Wilson loops,

W (kx ) = P exp
∫ π

−π

dkyAR
y (kx, ky), (43)

where AR
y is a real Berry connection and the component

(AR
y )i j = 〈ψi | ∂yψ j〉, with |ψi〉 and |ψ j〉 being the degenerate

ground states. The transition function θ (kx ) as a function of
kx can be extracted from the Wilson loops e−iσ2θ (kx ) = W (kx ).
The numerical results of the transition functions are illustrated
in Figs. 2(g) and 2(h). It can be observed that the winding
numbers of the transition functions are equal to the corre-
sponding Euler classes.

V. SCHEME TO EXTRACT A NON-ABELIAN QUANTUM
GEOMETRIC TENSOR

We first consider the nonadiabatic response related to the
non-Abelian QGT. It has been shown that its imaginary part is
linked to the so-called generalized force [65,66]. Below we
show that the real part of the non-Abelian QGT is related
to the energy fluctuation. Thus, these nonadiabatic responses
provide a new method to extract all the components of the
non-Abelian QGT.

Consider a Hamiltonian H (λ) parameterized by λ. The
adiabatic perturbation theory regards the quantum adiabatic
approximation as the zeroth-order case and describes a pertur-
bation expansion in terms of the small changing velocity of the
parameter λ. This theory has been generalized to the case of
degenerate ground states [65,66]. If we start at one of the de-
generate ground states and ramp the parameter λ slowly with
time, λ̇ ≈ 0. Consider a path such that an adiabatic traversal
would yield a particular ground state |ψi(λ(0))〉 [66]. Tracing
the same path at a finite rate, the ground-state component of

the wave function remains unchanged up to order λ̇. At time
t , λ = λ(t ), and the quantum state can be written as [66]

|ψ (λ)〉 ≈ |ψi(λ)〉 + iλ̇μ

∑
n �=i

|ψn(λ)〉 〈ψn(λ) | ∂μψi(λ)〉
En − E0

.

(44)

We can always represent observables as generalized force op-
erators conjugate to some other coupling λν : Mν = ∂νH (λ).
At time t , the expectation value of Mν [66] is

Mν ≡ 〈ψ (λ)|Mν |ψ (λ)〉 ≈ M0
ν + λ̇μF ii

μν, (45)

with M0
ν = 〈ψi(λ)|Mν |ψi(λ)〉 and

F ii
μν = i

∑
n∈unocc

〈ψi|∂μH |ψn〉〈ψn|∂νH |ψi〉 − (μ ↔ ν)

(En − E0)2 . (46)

This relation shows that the leading nonadiabatic correc-
tion to the generalized force comes from the product of the
non-Abelian Berry curvature and the rate of change of the
parameter λ [13].

For the non-Abelian quantum metric, we find a related
observable as the energy fluctuation

�E2 = 〈ψ (λ)|H (λ)2|ψ (λ)〉 − 〈ψ (λ)|H (λ)|ψ (λ)〉2

≈
∑
αβ

λ̇αλ̇β

[ ∑
n∈unocc

〈ψi|∂αH |ψn〉〈ψn|∂βH |ψi〉
(En − E0)2

]

=
∑
αβ

gii
αβλ̇αλ̇β . (47)

Namely, the non-Abelian quantum metric defines the lead-
ing nonadiabatic correction to the energy fluctuation. In the
adiabatic evolution, the energy fluctuation is zero when the
system has a well-defined energy. This result is not limited to
degenerate ground states and applies to any initial eigenstate
[13,26,65,66,92,93].

The measurement of QGT can be observed experimentally
in optical lattices using ultracold atoms through Bloch-state
tomography [47]. We note that ramps are routinely achieved
in ultracold-atom systems, allowing us to set the parameter
λ = k = (kx, ky) in the following numerical calculations. For
simplicity, we consider the CP-symmetric lattice Hamiltonian
H (1)

CP and the C2T symmetric Hamiltonian H (1)
C2T with Mz =

mz = 2 and kz = 0 for 2D topological insulator phases. We
first consider the non-Abelian Berry curvature. By definition,
the non-Abelian Berry curvature is a 4 × 4 matrix,

F =
(

Fxx Fxy

Fyx Fyy

)
=

⎛
⎜⎜⎜⎜⎝

F 11
xx F 12

xx F 11
xy F 12

xy

F 21
xx F 22

xx F 21
xy F 22

xy

F 11
yx F 12

yx F 11
yy F 12

yy

F 21
yx F 22

yx F 21
yy F 22

yy

⎞
⎟⎟⎟⎟⎠. (48)

Fxx = Fyy = O2×2, Fxy = −Fyx, and F 12
xy = (F 21

xy )∗. Then the
non-Abelian Berry curvature simplifies to

F =

⎛
⎜⎜⎜⎜⎝

0 0 F 11
xy F 12

xy

0 0
(
F 12

xy

)∗
F 22

xy

−F 11
xy −F 12

xy 0 0

−(
F 12

xy

)∗ −F 22
xy 0 0

⎞
⎟⎟⎟⎟⎠. (49)

043305-6



NON-ABELIAN QUANTUM GEOMETRIC TENSOR IN … PHYSICAL REVIEW A 109, 043305 (2024)

FIG. 3. (a) The analytical result of F 11
xy for Hamiltonian H (1)

CP ,
with Im(F 11

xy ) = 0. (b) The numerical result of F 11
xy for Hamiltonian

H (1)
CP . (c) The analytical result of Im(F 12

xy ) for Hamiltonian H (1)
C2T .

(d) The numerical result of Im(F 12
xy ) for Hamiltonian H (1)

C2T . The
numerical results are obtained from full-time-dynamics simulations;
Mz = mz = 2, and kz = 0 for all panels.

Now we briefly show how to measure the non-Abelian
Berry curvature. We assume the initial state at |ψi(k(0))〉
and ramp the parameter k along the kμ direction as follows:
kμ(t ) = kμ(0) + v2t2

2π
; the ramping velocity is k̇μ(t ) = v2t

π
. The

initial state will evolve with the time-dependent Hamiltonian
until the final time t f = π

v
(in units of 2π/0), with the final

velocity k̇μ(t f ) = v. From Eq. (45), we can directly get

F ii
μν = (

Mν − M0
ν

)
/v. (50)

The component F i j
μν has following relation [66]:

F i j
μν = 2iF mm

μν + 2F nn
μν − (1 + i)

(
F ii

μν + F j j
μν

)
2i

, (51)

with |ψm(k)〉 = [|ψ1(k)〉 + |ψ2(k)〉]/√2 and |ψn(k)〉 =
[|ψ1(k)〉 + i|ψ2(k)〉]/√2. F mm

μν and F nn
μν can be extracted

from Eq. (50); we should prepare only the initial states
at |ψm(k(0))〉 and |ψn(k(0))〉, respectively. So F i j

μν can
be extracted. That is to say, all the components of the
non-Abelian Berry curvature can be detected from the
nonadiabatic effects. In Fig. 3, we show some numerical
results compared to analytical results. Here we set
kx(t ) = kx(0) + v2t2

2π
, v = 0.1, and t f = π

v
. This kind of

ramp can make the initial ramping velocity vanish, and initial
evolution is adiabatic, which will lift the oscillation caused
by the initial state, as discussed in Refs. [94,95]. For H (1)

CP ,
F 11

xy �= 0, F 22
xy �= 0, and F 12

xy = F 21
xy = 0. However, for H (1)

C2T ,
F 12

xy �= 0, F 21
xy �= 0, and F 11

xy = F 22
xy = 0. So we show the

numerical result of F 11
xy for the Hamiltonian H (1)

CP and the

numerical result of F 12
xy for H (1)

C2T in Fig. 3. For comparison,
we also show analytical results. These two results agree well
with each other.

We further dynamically extract the non-Abelian quantum
metric

g =
(

gxx gxy

gyx gyy

)
=

⎛
⎜⎜⎜⎜⎝

g11
xx g12

xx g11
xy g12

xy

g21
xx g22

xx g21
xy g22

xy

g11
yx g12

yx g11
yy g12

yy

g21
yx g22

yx g21
yy g22

yy

⎞
⎟⎟⎟⎟⎠. (52)

From the definition of the non-Abelian quantum metric, gxy =
gyx. First, the initial state is prepared at |ψi(k(0))〉, and the
parameter k is driven along the λμ direction as follows:
kμ(t ) = kμ(0) + v2t2

2π
, and at the final time t f = π

v
, the ramp-

ing velocity equals v. From the relation in Eq. (47)

gii
μμ = �E2/v2. (53)

The energy fluctuation in the final instantaneous state can
be measured through fluorescence detection during optical
excitation [94]. For example, in order to measure the energy
fluctuation, we can determine the population of the instanta-
neous Hamiltonian in repeated experiments; then the energy
fluctuation can be measured, and so can the non-Abelian
quantum metric. To extract gii

μν , the initial state is prepared
at |ψi(k(0))〉, and the parameter ramps along the kμ and kν

directions simultaneously until t f = π
v

,

kμ(t ) = kμ(0) + v2t2

2π
,

kν (t ) = kν (0) + v2t2

2π
. (54)

Then gii
μν is obtained as

gii
μν = (

�E2 − gii
μμv2 − gii

ννv
2
)
/2v2. (55)

From the definition, we derive the following relation:

gi j
μμ = 2igmm

μμ + 2gnn
μμ − (1 + i)

(
gii

μμ + gj j
μμ

)
2i

. (56)

Using the above scheme, we can extract gi j
μμ from gmm

μμ, gnn
μμ,

gii
μμ, and gj j

μμ. For gi j
μν ,

gi j
μν = 2igmm

μν + 2gnn
μν − (1 + i)

(
gii

μν + gj j
μν

)
2i

. (57)

If we have already extracted gii
μν , gj j

μν , gmm
μν , and gnn

μν by us-

ing the method mentioned above, then we can extract gi j
μν .

So all the components of the non-Abelian quantum metric
can be extracted in experiments using this method. Some
numerical results are also presented in Fig. 4. Here we con-
sider quadratic ramps [96] with kx(t ) = kx(0) + v2t2

2π
, ky(t ) =

ky(0) + v2t2

2π
, v = 0.1, and t f = π

v
. For H (1)

CP and H (1)
C2T , g11

xy �= 0,

and g12
xy = 0; here we show only g11

xy for H (1)
CP and g12

xy for H (1)
C2T .

The numerical results coincide with the analytical results.
The discussions above can naturally be extended to low-

energy effective Hamiltonians, and we take H(1)
CP,+ in Eq. (20)

and H(1)
C2T,+ in Eq. (40) as examples. In these cases, parameter

λ = (θ, φ). We set v = 0.1 and final time t f = π
v

. With the
numerically extracted non-Abelian Berry curvature, we ob-
tain the Chern number C+ = −1.9952 ≈ −2 and the Euler
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FIG. 4. (a) The analytical result of g11
xy for Hamiltonian H (1)

CP .

(b) The numerical result of g11
xy for Hamiltonian H (1)

CP . (c) The ana-

lytical result of g12
xy for Hamiltonian H (1)

C2T ; it approaches zero over the

entire BZ. (d) The numerical result of g12
xy for Hamiltonian H (1)

C2T . The
numerical results are obtained from full-time-dynamics simulations,
with Mz = mz = 2 and kz = 0.

class χ+ = 1.0364 ≈ 1. Alternatively, these two topological
invariants can also be extracted from the non-Abelian quan-
tum metric through the measurement of energy fluctuation. In
these two cases, we set θ (t ) = θ (0) + v2t2

2π
and φ(t ) = φ(0) +

v2t2

2π
, with v = 0.01. By extracting the non-Abelian quantum

metric from full-time-dynamics simulations, we obtain the
numerical results for the Chern number and Euler class as
C+ = −1.9988 and χ+ = 0.9994.

VI. SCHEMES FOR SIMULATING
MODEL HAMILTONIANS

In this section, we first propose concrete experimental plat-
forms for simulating the CP-symmetric and C2T -symmetric
Hamiltonians H (1)

CP and H (1)
C2T with ultracold atoms in the pa-

rameter space, following the manipulation of four-level 87Rb
atoms in Ref. [97]. These Hamiltonians can be realized using
a four-level atomic system as shown in Fig. 5. In a 87Rb
atomic system, we can choose the following four atomic
levels: |a〉 = |F = 2, mF = −1〉, |b〉 = |F = 1, mF = −1〉,
|c〉 = |F = 2, mF = 0〉, and |d〉 = |F = 1, mF = 0〉. Using
the bare-state basis {|a〉, |b〉, |c〉, |d〉}, the Hamiltonian H (1)

CP is

FIG. 5. Diagrammatic sketch of a four-level atomic system for
simulating the Hamiltonians H (1)

CP and H (1)
C2T .

given by

H ′
CP = ωa|a〉〈a| + ωb|b〉〈b| + ωc|c〉〈c| + ωd |d〉〈d|

+ (1eiω1t eiϕ1 |a〉〈b| + 2eiω2t eiϕ2 |a〉〈c|
+ 3eiω3t eiϕ3 |a〉〈d| + 4eiω4t eiϕ4 |b〉〈c|
+ 5eiω5t eiϕ5 |b〉〈d| + 6eiω6t eiϕ6 |c〉〈d| + H.c.),

(58)

where ωi (i = a, b, c, d ) are the energy frequencies of
|i〉 and l , ωl , and ϕl (l = 1, 2, 3, 4) correspond to
the Rabi frequencies and frequencies and phases of the
controlling microwaves, respectively. We can tune the
Hamiltonian to the reference frame to obtain the effec-
tive Hamiltonian H′

CP = U †H ′U + i(∂tU †)U, where U =
|a〉〈a| + e−iω1t |b〉〈b| + e−iω2t |c〉〈c| + e−iω3t |d〉〈d|:

H′
CP =

⎛
⎜⎜⎜⎝

�1 i1 2 3

−i1 �2 4 5

2 4 �3 i6

3 5 −i6 �4

⎞
⎟⎟⎟⎠, (59)

where �1 = ωa, �2 = ωb − ω1, �3 = ωc − ω2, �4 =
ωd − ω3, ϕ1 = ϕ6 = π/2, and ϕ2 = ϕ3 = ϕ4 = ϕ5 = 0.
The Hamiltonian is time independent. The Hamil-
tonian in Eq. (19) can be derived if we set �1 =
�2 = �3 = �4 = 0 and {1,2,3,4,5,6} =
{dy, dz, dx, dx,−dz, dy}. On the other hand, the cor-
responding parameterized Hamiltonian in spherical
coordinates can be constructed if the parameters become
�1 = �2 = �3 = �4 = 0 and {1,2,3,4,5,6} =
{sin θ cos φ, cos θ, sin θ sin φ, sin θ sin φ,−cos θ, sin θ cos φ}.

Using the same scheme, here we present a concrete exper-
imental platform to simulate a Hamiltonian with the form of
Eq. (39). As shown in Fig. 5, this Hamiltonian can be realized
with the same four-level atomic system and 5 = 6 = 0,
which is given by

H ′
C2T = ωa|a〉〈a| + ωb|b〉〈b| + ωc|c〉〈c| + ωd |d〉〈d|

+ (1eiω1t eiϕ1 |a〉〈b| + 2eiω2t eiϕ2 |a〉〈d|
+ 3eiω3t eiϕ3 |b〉〈c| + 4eiω4t eiϕ4 |c〉〈d| + H.c.).

(60)

Under the reference frame, we obtain the effective Hamil-
tonian H′

C2T = U †H ′U + i(∂tU †)U, where U = |a〉〈a| +
e−iω1t |b〉〈b| + e−i(ω1+ω3 )t |c〉〈c| + e−i(ω1+ω3+ω4 )t |d〉〈d|, as

H′
C2T =

⎛
⎜⎜⎜⎝

�1 1 0 2

1 �2 3 0

0 3 �3 4

2 0 4 �4

⎞
⎟⎟⎟⎠, (61)

where �1 = ωa, �2 = ωb − ω1, �3 = ωc − ω1 − ω3,
�4 = ωd − ω1 − ω3 − ω4, and ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0. The
Hamiltonian is time independent. The Hamiltonian in Eq. (39)
is achieved by setting {�1,�2,�3,�4} = {dx,−dx, dx,−dx}
and {1,2,3,4} = {dz,−dy, dy, dz}. The parameterized
Hamiltonian can be constructed for {�1,�2,�3,�4} =
{sin θ sin φ,− sin θ sin φ, sin θ sin φ,− sin θ sin φ} and {1,

2,3,4} = {cos θ,− sin θ cos φ, sin θ cos φ, cos θ}.
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Last, we briefly discuss an experimental scheme for realiz-
ing the four-band Dirac Hamiltonians with ultracold atoms in
optical lattices based on the recent advances in the synthetic
gauge field and spin-orbit coupling for engineering topolog-
ical phases [5]. We take the Hamiltonian H (1)

CP in Eq. (19) as
an example (the other Hamiltonian can also be realized in a
similar way). To realize the Hamiltonian H (1)

CP , one can use
noninteracting fermionic atoms loaded in a three-dimensional
optical lattice and choose four atomic internal states in the
ground-state manifold. Like what was proposed in Ref. [98],
one can choose four Zeeman-split ground hyperfine levels
in the ground-state manifold S1/2: |e↑,↓〉 = |F + 1, mF = ±1〉
and |g↑,↓〉 = |F, mF = ±1〉. In real space, the corresponding
tight-binding Hamiltonian is given by

Ĥr =
∑

r

(t Ĥx + t Ĥy + t Ĥz + ĤM ) + H.c.,

Ĥx = â†
e,↑,r(iâg,↓,r−ex −iâg,↓,r+ex −âg,↑,r+ex −âg,↑,r−ex )

+ â†
e,↓,r(iâg,↑,r−ex −iâg,↑,r+ex +âg,↓,r+ex +âg,↓,r−ex ),

Ĥy = â†
e,↑,r(âe,↓,r−ey − âe,↓,r+ey − âg,↑,r+ey − âg,↑,r−ey )

+ â†
g,↓,r(âg,↑,r+ey − âg,↑,r−ey + âe,↓,r+ey + âe,↓,r−ey ),

Ĥz = â†
g,↓,r(âe,↓,r−ez +âe,↓,r+ez) − â†

e,↑,r(âg,↑,r+ez +âg,↑,r−ez),

ĤM = Mz(â†
e,↑,râg,↑,r − â†

e,↓,râg,↓,r ). (62)

Here â†
τ,σ,r (âτ,σ,r ) is the fermionic creation (annihilation)

operator at lattice site r, with τ = {e, g} and σ = {↑,↓}, and
ex(y,z) is the unit vector along the x (y, z) direction. Ĥrx(y,z)

represents the hopping along the x (y, z) direction, and ĤM

denotes an effective on-site Zeeman term. The hopping terms
with synthetic gauge potentials and spin-orbit couplings can
be realized by applying two-photon Raman coupling with
the laser beams in the proper configurations, similar to the
configurations proposed in Refs. [98,99]. The term ĤM can be
achieved by applying a radio-frequency field or Raman beams
for coupling proper atomic internal states [98]. Furthermore,
the band structures of topological semimetals can be detected
by the Bragg spectroscopy or Bloch-Zener oscillations of ul-
tracold atoms in optical lattices [5]. The QGT and the related
topological invariants can be measured and extracted from the
tomography of Bloch bands, as experimentally demonstrated
in Ref. [47].

VII. CONCLUSION

In summary, we derived a general relation between the
non-Abelian quantum metric and the unit Bloch vector in
a generic Dirac Hamiltonian with degenerate bands. Addi-
tionally, we established a relation between the non-Abelian
quantum metric and the Berry (Euler) curvature, providing
alternative methods for calculating the topological Chern
number (Euler class). We presented and investigated two
specific classes of Hamiltonians with the CP and C2T sym-
metries. The topological invariants characterizing the phase
transitions are the Chern number and Euler class, which were
obtained through integration of the QGT over the parameter
space. For the reduced 2D insulator phases, we computed the

corresponding Wilson loop. Through adiabatic perturbation
theory, we demonstrated the connection between the non-
Abelian quantum metric and the energy fluctuation, as well as
the connection between the Berry curvature and generalized
force. These nonadiabatic effects can be used to extract all
components of the QGT, as numerically demonstrated for
the CP and C2T symmetric Hamiltonians. We also proposed
experimentally feasible schemes for quantum simulation of
the model Hamiltonians in ultracold atomic platforms.
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APPENDIX A: CONSTRUCTION OF THE GLOBALLY
DEGENERATE HAMILTONIAN

In this paper, we denote 16 Clifford matrices

{σ0, σx, σy, σz} ⊗ {τ0, τx, τy, τz} (A1)

and set

�0 = σ0τ0, �1 = σzτx, �2 = σ0τy, �3 = σ0τz,

�4 = σxτx, �5 = σyτx, �12 = σzτz, �13 = −σzτy,

�14 = σ2τ0, �15 = σxτ0, �23 = σ0τx, �24 = −σxτz,

�25 = −σyτz, �34 = −σxτy, �35 = σyτy, �45 = σzτ0,

(A2)

where

�ab = 1

2i
[�a, �b]. (A3)

The matrices �i (i = 1, 2, 3, 4, 5) are the generators of the
Clifford algebra. �i satisfy the anticommutation relations

{�a, �b} = 2δab, (A4)

where a, b = {1, 2, 3, 4, 5}. There are also some other anti-
commutation relations,

{�ab, �c} = εabcde�de,

{�ab, �cd} = 2εabcde�e + 2δacδbd − 2δadδbc. (A5)

Here we show how to build a general four-band Hamiltonian
with global twofold degeneracy with five Dirac matrices �i

and 10 commutators �i j . The total Hamiltonian can be written
as

H (k) =
5∑

i=1

Bi(k)�i +
∑
i< j

Bi j (k)�i j . (A6)
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Bi(k) and Bi j (k) are real functions. If this system is twofold
degenerate, H (k) satisfies

H (k)2 = f (k)I4, (A7)

where f (k) is a function of parameter k and I4 is 4 × 4 identity
matrix. The eigenenergies of the Hamiltonian H (k) are E± =
±√

f (k). From Eq. (A6), H (k)2 is

H (k)2 =
⎛
⎝∑

i

B2
i +

∑
i< j

B2
i j

⎞
⎠I4 +

∑
i

k<l

BiBklεklimn�mn

+
∑
i< j

k<l,i �=k, j �=l

Bi jBklεi jklm�m. (A8)

To satisfy Eq. (A7), the last two terms on the right-hand side
should equal to zero: ∑

i
k<l

BiBklεklimn�mn = 0,

∑
i< j

k<l,i �=k, j �=l

Bi jBklεi jklm�m = 0. (A9)

This restricts the general Hamiltonian, so that it can take only
the following two forms:

H (k) =
5∑

i=1

Bi�i,

H (k) = Bi�i +
∑

j

Bi j�i j . (A10)

APPENDIX B: DERIVATION OF EQUATION (8)

For two globally degenerate eigenstates |ψi〉 (i = 1, 2), the
non-Abelian quantum geometric tensor is

Qii
μν =

∑
m

〈∂μψi|ψm〉〈ψm|∂νψi〉. (B1)

|ψm〉 are excited states. The trace of matrix Qμν is

Tr(Qμν ) =
∑

i

Qii
μν

= 1

4E2+

∑
i

∑
m

〈ψi|∂μH |ψm〉〈ψm|∂νH |ψi〉. (B2)

Here we use the relation 〈ψi | ∂μψm〉(Em − Ei ) =
〈ψi|∂μH |ψm〉. The trace of gμν equals

Tr(gμν ) = [Tr(Qμν ) + Tr(Qνμ)]/2, (B3)

where

Tr(gμν ) =
∑

i

gii
μν

=
∑3

r=1 ∂μdr (k)∂νdr (k) − ∂μd∂νd

2d2

= 1

2

3∑
r=1

∂μd̂r∂ν d̂r . (B4)

Here d̂r = dr (λ)/d . For the Hamiltonian in Eq. (6), we define
the matrix Gμν as

Gμν ≡
(

2Tr(gμμ) 2Tr(gμν )

2Tr(gνμ) 2Tr(gνν )

)

=
(

∂μd̂r∂μd̂r ∂μd̂r∂ν d̂r

∂ν d̂r∂μd̂r ∂ν d̂r∂ν d̂r

)
, (B5)

where the Einstein summation convention is used for the
index r. The determinant of Gμν equals the determinant of
the following matrix, say, G′

μν :

G′
μν ≡

⎛
⎜⎝

1 0 0

0 2Tr(gμμ) 2Tr(gμν )

0 2Tr(gνμ) 2Tr(gνν )

⎞
⎟⎠. (B6)

det(Gμν ) = det(G′
μν ), and G′

μν can be decomposed into the
product of a matrix, say, A, and its transpose matrix, AT :

G′ ≡ AAT

=

⎛
⎜⎝

d̂1 d̂2 d̂3

∂μd̂1 ∂μd̂2 ∂μd̂3

∂ν d̂1 ∂ν d̂2 ∂ν d̂3

⎞
⎟⎠

⎛
⎜⎝

d̂1 ∂μd̂1 ∂ν d̂1

d̂2 ∂μd̂2 ∂ν d̂2

d̂3 ∂μd̂3 ∂ν d̂3

⎞
⎟⎠. (B7)

The determinant of the matrix A is

det A = det AT = εαβγ d̂α∂μd̂β∂ν d̂γ . (B8)

Thus, we have√
det Gμν = |εαβγ d̂α∂μd̂β∂ν d̂γ |, (B9)

which is just Eq. (8).
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