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Rotating quantum droplets confined in an anharmonic potential
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We investigate the rotational properties of quantum droplets, which form in a mixture of two Bose-Einstein
condensates, in the presence of an anharmonic trapping potential. We identify various phases as the atom number
and the angular momentum or angular velocity of the trap vary. These phases include center-of-mass–like
excitation (without or with vortices), vortices of single and multiple quantization, etc. Finally, we compare our
results with those of the single-component problem.
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I. INTRODUCTION

It is well known that when a superfluid rotates, fascinating
effects arise, which constitute the collection of phenomena
that we call superfluidity [1]. Initial studies of superfluidity
focused on homogeneous superfluids, such as in liquid he-
lium, confined in a bucket. The great progress that has been
achieved in the field of trapped atomic superfluids in the past
25 years has introduced another very important aspect of this
study: the effect of the trapping potential on the rotational
response of these superfluid systems.

In the initial experiments [2–8] the trapping potential was
harmonic. Since the centrifugal potential scales also quadrat-
ically with the distance from the center of the trap, the
rotational frequency of the trap � is limited by the trap
frequency ω. Interestingly enough, as � approaches ω from
below, the gas enters a highly correlated regime. This is a
very interesting problem, which has attracted a great deal of
attention (see, e.g., the review article of Ref. [9]).

Eventually, other forms of confining potentials were de-
veloped and studied, with the most common one being the
anharmonic quartic potential. Such a potential was studied
both experimentally (see, e.g., Ref. [10]) and theoretically
(see, e.g., Refs. [11–19]). Contrary to the case of a harmonic
confining potential, in this case there is no bound on the value
of �. The study of this problem has shown that there is a
wide variety of phases, which include vortices of single and
multiple quantization, a vortex lattice with or without a hole,
etc.

Another interesting aspect in the more general problem of
confined superfluids under rotation is the problem of binary
mixtures and their dynamics and properties. These range, for
example, from the formation of magneticlike defects in binary
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mixtures [20], the dynamics of singly and doubly quantized
composite vortices [21], and the relative dynamics of vortices
and massive cores [22] to the precession inversion effect of
massive vortices [23] and the stability of quantized vortices in
binary condensates [24].

A recent and interesting development in the field of binary
superfluid mixtures has to do with the so-called quantum
droplets, whose existence was proposed by Petrov [25]. These
highly quantum objects form in binary mixtures of Bose-
Einstein condensed atoms. The basic idea that leads to the
formation of quantum droplets is that by tuning the inter- and
intra-atomic interaction strengths, the mean-field interaction
energy becomes comparable to the next-order correction of
the energy [26], which is essentially negligible in a single-
component system (due to the assumption that we deal with
dilute gases). Then the balance between the mean-field energy
and the beyond-mean-field correction to the energy gives rise
to self-bound quantum droplets.

This problem has recently attracted a great deal of at-
tention (see, e.g., the review articles in [27,28] as well as
Refs. [29–54]). Quantum droplets have also been observed
experimentally both in mixtures of Bose-Einstein condensed
gases [55–59] and in single-component gases with strong
dipolar interactions [60–65].

Being self-bound, quantum droplets exist in free space
and do not require the presence of any trapping potential.
On the other hand, it is both experimentally and theoretically
very interesting to investigate the rotational response of this
new superfluid system in the presence of an external trapping
potential.

Motivated by the remarks of the previous paragraphs, we
investigate in the present study the rotational response of a
quantum droplet under the action of an anharmonic potential
[49,66]. The results of Ref. [66], which studied the same
problem, are consistent with the ones presented below. On
the other hand, our study demonstrates the very rich structure
of this problem, since we have identified numerous distinct
phases. In addition, Ref. [49] has studied the same problem,
as well as the dynamics of a quantum droplet confined in an
anharmonic potential.
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An interesting aspect of our study arises from the com-
parison of the present problem, i.e., the rotational response
of an anharmonically trapped quantum droplet, with that of a
single-component condensate confined in the same potential.
For this problem we refer to, e.g., Refs. [11–18,67–69] for a
single-component condensate, as well as to Ref. [70] for the
case of a binary mixture (but not in the limit where droplets
form).

As we analyze below, there are some similarities but also
some serious differences between the two problems. One ma-
jor difference is that, while in the single-component problem
there is an unstable phase (when the effective interaction is at-
tractive), in the case of droplets such a phase is never present.
In addition, in the problem of a single component, for a suffi-
ciently small atom number, vortices of multiple quantization
are always energetically favorable, independently of the sign
of the effective interaction. On the other hand, in droplets,
for a small atom number the motion resembles center-of-mass
excitation, provided the absolute value of the energy due to
the nonlinear term is much larger than the energy due to the
anharmonic potential.

According to the results that we present below, there is a
wide variety of phases in the problem of an anharmonically
confined rotating droplet. These include center-of-mass–like
excitation, with a density distribution which varies from be-
ing almost axially symmetric to being largely distorted. In
addition, we find phases with vortices of single and multiple
quantization, as well as a mixed phase, which is, approxi-
mately, a combination of center-of-mass and vortex excitation.

The paper is organized as follows. In Sec. II we present
the model that we use. We choose to work with a fixed
total angular momentum L, minimizing the energy for some
fixed L, since this makes the problem more transparent. In
Sec. III we present the results of our study for some repre-
sentative values of the atom number of the droplet N and
of the angular momentum per particle � = L/N . We iden-
tify the various phases resulting from our analysis. We also
derive the function � = �(�) for the case where, instead of
�, the rotational angular velocity of the trap � is fixed. In
Sec. IV we present the general picture that results from our
analysis and derive an experimentally relevant phase diagram.
In Sec. V we investigate the experimental relevance of our
results, giving some typical values of the various parameters.
In Sec. VI we summarize the main results of our study.

II. MODEL

Assuming that there is a very tight confining potential
along the axis of rotation, we consider motion of the atoms
in the perpendicular plane, i.e., two-dimensional motion. We
also assume that the quantum droplet is confined in a two-
dimensional anharmonic potential

V (ρ) = M

2
ω2ρ2

(
1 + λ

ρ2

a2
0

)
. (1)

Here ρ is the radial coordinate in cylindrical-polar coordi-
nates, M is the atom mass, which is assumed to be the same
for the two components, ω is the frequency of the harmonic
potential, a0 = √

h̄/Mω is the oscillator length, and λ is a

(dimensionless) parameter which controls the strength of the
anharmonic part of the trapping potential.

We consider the symmetric case, where we have equal pop-
ulations of atoms N/2 in the two components, equal masses,
and the couplings between the same components are also
assumed to be equal. In this case the order parameter of the
two components �↑ and �↓ are equal to each other, �↑ = �↓.

We introduce � = √
2�↑ = √

2�↓ and also the unit of
density

�2
0 = e−2γ−1

π

ln(a↑↓/a)

aa↑↓
. (2)

Here a and a↑↓ are the two-dimensional scattering lengths for
elastic atom-atom collisions between the same species (as-
sumed to be equal for the two components) and for different
species, respectively, while γ is Euler’s constant γ ≈ 0.5772.
Also [29],

ln(a↑↓/a) =
√

π

2

(
az

a3D
− az

a3D
↑↓

)
. (3)

Here az is the width of the droplet along the axis of rotation
and a3D and a3D

↑↓ are the three-dimensional scattering lengths
for elastic atom-atom collisions between the same and differ-
ent species, respectively. The unit of length that we adopt is

x0 =
√

aa↑↓ ln(a↑↓/a)

4e−2γ−1
, (4)

while those of the energy E0 and of the frequency ω0 are

E0 = h̄ω0 = h̄2

Mx2
0

= h̄2

Maa↑↓

4e−2γ−1

ln(a↑↓/a)
. (5)

Finally, the number of atoms is measured in units of N0, where

N0 = �2
0 x2

0 = 1

4π
ln2(a↑↓/a). (6)

In the rest of the paper we work in dimensionless units (using
the units presented above), while we give some estimates for
the experimentally relevant quantities in Sec. V.

We choose to work with fixed L and N , minimizing the ex-
tended energy functional [71], which (in dimensionless units)
takes the form [29]

E (�,�∗) =
∫ [

1

2
|∇�|2 + 1

2
ω2ρ2

(
1 + λ

ρ2

a2
0

)
|�|2

+1

2
|�|4 ln

|�|2√
e

]
d2ρ

− μ

∫
�∗� d2ρ − �

∫
�∗L̂� d2ρ. (7)

In this equation � is normalized to the total number of atoms∫ |�|2d2r = N . Also, L̂ is the operator of the angular momen-
tum, while μ and � are Lagrange multipliers, corresponding
to the conservation of the atom number and of the angular
momentum, respectively. The corresponding nonlinear equa-
tion that �(ρ, θ ) satisfies is[
−1

2
∇2 + 1

2
ω2ρ2

(
1 + λ

ρ2

a2
0

)
+ |�|2 ln |�|2 − �L̂

]
�=μ�.

(8)
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Equation (8) is solved by minimizing numerically the
functional of Eq. (7), using the damped second-order-in-
fictitious-time method [71], which is a method for constrained
minimization. In our calculations, we use a square spatial
grid, with δx = δy = 0.1, which proves to be accurate enough,
in the sense that it produces results that are converged with
respect to the grid resolution. The size of the calculational
domain is larger than presented in the figures below, in order
to avoid boundary effects.

We use a variety of trial order parameters as the initial
condition for the calculations, namely, states that represent
center-of-mass excitation, surface-wave excitation, and vortex
excitation, as well as mixed states, which correspond to com-
binations of the aforementioned modes of excitation. The use
of multiple initial conditions in the calculation, for each value
of the angular momentum, and the comparison of the corre-
sponding energies of the solutions are necessary to verify that
we have reached the lowest-energy state and not some local
minimum of the energy functional, which would correspond
to an excited state.

III. RESULTS

Given that there are many parameters, in the derived re-
sults we consider the case where both the harmonic and the
anharmonic terms in the energy are smaller than the energy
that results from the nonlinear term. In the opposite limit the
droplet is squeezed by the trap and the physics is, at least
qualitatively, similar to the one-component system, with an
effective repulsive interaction.

We have performed extensive numerical simulations and
below we present some representative data for four values of
N = 50, 100, 150 and 200, for a fixed value of λ = 0.05,
and for a fixed value of ω = 0.05. For a free droplet in
the Thomas-Fermi limit, the radial size of the droplet ρ0 is√

N
√

e/π . For N ≈ 100, which is the typical N that we use,
ρ0 ≈ 10. On the other hand, the oscillator length a0 = 1/

√
ω

is approximately equal to 5, i.e., the two length scales are
comparable (as they should be). Finally, the anharmonic term
in the energy λρ2/a2

0 is on the order λωN , which is somewhat
less than unity.

A. Case N = 50

We start with a small (scaled) atom number N = 50.
In a purely harmonic potential the center-of-mass coordi-
nate separates from the relative coordinates and these two
degrees of freedom are decoupled. More specifically, R =
(1/N )

∑N
i=1 ri is the center-of-mass coordinate, where N is

the nonscaled atom number, and qi = ri − R are the coor-
dinates of each particle, relative to the center of mass. The
many-body state can be written in the form

�(r1, r2, . . . , rN ) = �c.m.(R) × �r (q1, q2, . . . , qN ). (9)

As a result, one way for the droplet to carry its angular mo-
mentum is via center-of-mass excitation, with no change in its
internal structure. This is actually what happens for N = 50
and λ = 0 [50].

In the anharmonic potential that we consider here, the two
kinds of excitation are coupled. As seen in Figs. 1(a)–1(c), we

FIG. 1. (a)–(c) Density (left column) and phase (right column)
of the droplet order parameter for N = 50, ω = 0.05, λ = 0.05, and
(a) � = 0.0, (b) � = 4.0, and (c) � = 8.0. Here the density is mea-
sured in units of �2

0 and the length in units of x0. (d) Corresponding
dispersion relation as a function of L. Here the energy is measured in
units of E0 and the angular momentum in units of h̄.

still have a picture that resembles center-of-mass excitation;
however, the droplet is also distorted from being exactly axi-
ally symmetric. This is due to the presence of the quartic term
in the trapping potential, which implies that the separation
between center-of-mass and relative coordinates is no longer
an exact result. This coupling between the center-of-mass
coordinate and the relative coordinates also manifests in the
phase of the droplet, which, for � �= 0, exhibits discontinu-
ities, in contrast to the case of λ = 0. Here the discontinuities
correspond to phantom vortices, that is, vortices in regions of
space where the density is exponentially small.

Another effect of the quartic term in the confining po-
tential is that the effective potential, i.e., the trapping plus
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FIG. 2. (a)–(d) Density (left column) and phase (right column) of the droplet order parameter for N = 100, ω = 0.05, λ = 0.05, and
(a) � = 0.0, (b) � = 0.5, (c) � = 1.0, and (d) � = 3.5. Here the density is measured in units of �2

0 and the length in units of x0. (e) and (f)
Same as (a)–(d) but for � = 4.0, and 10.0, respectively. (g) Corresponding dispersion relation, in the rotating frame, i.e., Erot (�) − E (� = 0) as
a function of �, with � = 0.054. Here the energy is measured in units of E0 and the angular momentum in units of h̄.

the centrifugal,

Veff = V (ρ) − 1

2
�2ρ2 = 1

2
(ω2 − �2)ρ2 + λ

2
ω2 ρ4

a2
0

, (10)

takes the form of a sombrero for � > ω. Its minimum
occurs at

ρ0

a0
=

[
1

2λ

(
�2

ω2
− 1

)]1/2

. (11)

For the data shown in Fig. 1, when � = 4.0, � ≈ 0.060 24 and
Eq. (11) gives ρ0 ≈ 9.5, while for � = 8.0, � ≈ 0.065 56 and
ρ0 ≈ 12.0. These values of ρ0 coincide with the minimum of
the effective potential and this is what determines the location
of the droplet. As mentioned earlier, the presence of a quartic
term in the potential plays a crucial role. If this is not present,
for � > ω there is no restoring force and the droplet would
escape to infinity.

Let us turn to the dispersion relation E (L), which we
show in Fig. 1(d). Fitting the numerical data with a quadratic

polynomial, we find that

E (L) ≈ −10.6032 + 0.054 117L + 1.4911 × 10−5L2. (12)

We see that E (L) is almost a linear function, with a slope
that is higher than ω though. Also, the curvature is small and
positive. These results are analyzed below.

B. Case N = 100

The second value of N that we consider is 100. As seen in
Fig. 2, in this case the droplet carries its angular momentum
in a very different way. For values of the angular momentum
0 < � < 1, the droplet gets distorted due to the approach of a
vortex state [Fig. 2(b)]. For � = 1.0 there is a singly quantized
vortex state that is located at the center of the trap and of the
droplet [Fig. 2(c)]. For higher values of �, the droplet starts to
move away from the center of the trap, in a mixed state, which
resembles center-of-mass excitation of the vortex-carrying
droplet [Fig. 2(d)]. However, this mixed state again has a
density distribution that is axially asymmetric. Specifically,
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the inner half of the droplet, i.e., the half closer to the origin,
gets progressively more squeezed as the value of � increases.

As � increases even further, the situation changes com-
pletely, as shown in Figs. 2(e) and 2(f). For � = 4.0 it is no
longer energetically favorable for the droplet to accommodate
a vortex in the distorted mixed state. Rather, it takes advan-
tage of the sombrero shape of the effective potential, which
has a minimum at ρ0 ≈ 9.5 (for � ≈ 0.060 131), while ρ0

becomes approximately equal to 13.0 for � = 10.0 (where
� ≈ 0.067 842).

The corresponding energy, which is shown in Fig. 2(g)
in the rotating frame, i.e., Erot = E (�) − L� for � = 0.054,
develops some structure in this case, contrary to Fig. 1. More
specifically, we see that there is a minimum for � = 1.

C. Case N = 150

The third value of N that we consider is 150. Here,
when 0 < � � 1, the picture is qualitatively the same as
for N = 100. However, for 1 < � < 2, a second vortex ap-
proaches, forming a doubly quantized vortex state for � =
2.0 [Fig. 3(a)]. For larger � values, in particular 2 < � � 4,
the droplet exists in a mixed state, which now resembles
center-of-mass–like excitation containing two singly quan-
tized vortices [Fig. 3(b)]. Finally, for � � 4.5, the droplet
forms again a localized state with center-of-mass–like exci-
tation [Figs. 3(c) and 3(d)].

The corresponding energy, which is shown in Fig. 3(e)
in the rotating frame, again develops some structure. More
specifically, we see that for � = 0.054 there is a global min-
imum for � = 1. For � = 0.058, the global minimum instead
shifts to � = 2.

D. Case N = 200

The fourth and final value of N that we consider is 200. In
this case, we observe in Fig. 4 that when � is sufficiently small,
i.e., up to � = 2.5, the droplet carries its angular momentum
via accommodating one or more singly quantized vortices
[Figs. 4(b)–4(f)]. For � = 3.0 we have a triply quantized
vortex state instead [Fig. 4(g)]. Essentially, as the angular
momentum increases, the droplet accommodates more and
more singly quantized vortices. However, as the vortices start
to overlap, it becomes energetically favorable for them to
merge into a multiply quantized vortex. Therefore, for � = 2.0
a doubly quantized vortex has higher energy compared to the
state with two singly quantized vortices, while the opposite is
true for integer values of � > 2. For � = 3.5 there are three
singly quantized vortices, with an asymmetric density distri-
bution [Fig. 4(h)]. This state belongs to the class of mixed
states, which combine vortex and center-of-mass–like excita-
tions. However, here this mode of excitation is energetically
favorable only for a small range of angular momentum values.
Specifically, for � = 4.0, there is again a multiply quantized
vortex state with winding number equal to 4 [Fig. 4(i)]. For
� = 4.5 we have phantom vortices, i.e., vortex states of single
quantization at the regions of space where the density is very
low, with a droplet density which is distorted [Fig. 4(j)].
For � = 5.0 there is a multiply quantized vortex state with
winding number equal to 5 [Fig. 4(k)]. Interestingly enough,

FIG. 3. (a)–(d) Density (left column) and phase (right column)
of the droplet order parameter for N = 150, ω = 0.05, λ = 0.05,
and (a) � = 2.0, (b) � = 3.5, (c) � = 5.0, and (d) � = 8.0. Here
the density is measured in units of �2

0 and the length in units of
x0. (e) Corresponding dispersion relation, in the rotating frame, i.e.,
Erot (�) − E (� = 0) as a function of �, with � = 0.054 (solid curve)
and � = 0.058 (dashed curve). Here the energy is measured in units
of E0 and the angular momentum in units of h̄.

for � = 5.5 the droplet density breaks the axial symmetry,
forming a localized blob [Fig. 4(l)]. For � = 6.0 we have a

043304-5



NIKOLAOU, KAVOULAKIS, AND ÖGREN PHYSICAL REVIEW A 109, 043304 (2024)

FIG. 4. (a)–(f) Density (left column) and phase (right column) of the droplet order parameter for N = 200, ω = 0.05, λ = 0.05, and
(a) � = 0.0, (b) � = 0.5, (c) � = 1.0, (d) � = 1.5, (e) � = 2.0, and (f) � = 2.5. Here the density is measured in units of �2

0 and the length in
units of x0. (g)–(l) Same as (a)–(f) but for � = 3.0, 3.5, 4.0, 4.5, 5.0, and 5.5, respectively.

multiply quantized vortex state with winding number equal
to 6 [Fig. 5(a)]. Finally, for values of � � 6.5 the droplet

forms again a localized blob along the minima of the effective
potential [Figs. 5(b) and 5(c)].
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FIG. 5. (a)–(c) Density (left column) and phase (right column) of
the droplet order parameter for N = 200, ω = 0.05, λ = 0.05, and
(a) � = 6.0, (b) � = 6.5, and (c) � = 8.0. Here the density is mea-
sured in units of �2

0 and the length in units of x0. (d) Corresponding
dispersion relation, in the rotating frame, i.e., Erot (�) − E (� = 0) as
a function of �, with � = 0.054. Here the energy is measured in units
of E0 and the angular momentum in units of h̄.

The energy E (�) shown in Fig. 5(d) in the rotating frame
for � = 0.054 develops an even more interesting structure as
compared to Figs. 1 and 2. Depending on the value of �,
this function has minima for various values of �, as is clear
in Fig. 6(d).

E. Fixing � instead of L

Up to now, all the calculations that we have performed
are for fixed angular momentum. From the derived dispersion
relation E (�) one may also see how the droplet would respond
if � is fixed instead. This is done by considering the energy

FIG. 6. Function � = �(�) for the four values of (a) N = 50,
(b) N = 100, (c) N = 150, and (d) N = 200 that we consider. Dashed
vertical lines denote a transition from a mixed state to a localized
state (see the text for details). Here the angular momentum is mea-
sured in units of h̄.

in the rotating frame, i.e., Erot = E (�) − �L, and locating the
minimum. This is how Fig. 6 is derived, where we show the
function � = �(�) for N = 50, 100, 150, and 200.
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For the smallest value N = 50, we see that the droplet
undergoes center-of-mass–like excitation (see Fig. 1). As a
result, for fixed �, there is a critical value of this frequency
below which the droplet does not respond and is static. This
critical value is � ≈ 0.054 117 (equivalently, �/ω ≈ 1.08),
i.e., it is the coefficient of the linear term in Eq. (12), as
expected. When � exceeds this value, the angular momentum
starts to increase linearly with �, as seen in Fig. 6(a), accord-
ing to the classical expression L = I�, where I is the moment
of inertia of the droplet.

For N = 100 the picture changes (see Fig. 2), as seen in
Fig. 6(b). In this case, there is again a critical value of �

below which the droplet is static; however, when � exceeds
this value, the droplet undergoes a discontinuous (due to the
negative curvature of the dispersion relation for 0 < � < 1)
transition to a state with a vortex that is located at its center.
As � increases further, the droplet undergoes a transition to
a mixed state, where � = �(�) is a linear function. Finally,
the droplet transitions to a localized state, where we have
center-of-mass–like excitation. Again, in this case � = �(�) is
a linear function, according to the classical formula L = I�.
For N = 150 [Fig. 6(c)] the picture is essentially similar (see
Fig. 3), with the addition of an extra step in � = �(�), located
at � = 2.

It is important to note here that in the � = �(�) plot,
N = 100 and 150 each manifests two linear regions, i.e., with
different slopes, one corresponding to mixed excitation and
one corresponding to center-of-mass–like excitation. How-
ever, we stress that the difference between these two slopes,
for each value of N , is minuscule. As a result, the linear re-
gions for N = 100 and 150 appear to be uniform in Figs. 6(b)
and 6(c).

Finally, for N = 200, a richer picture, as compared to N =
100 and 150, emerges (see Figs. 4 and 5). One difference is
that the critical value of � for the entry of the first vortex
decreases. Another difference is that there are more steps in
� = �(�), before the droplet (again) gets to a localized state,
where (again) we have center-of-mass–like excitation. Here
there is no linear part corresponding to mixed excitation, i.e.,
no mixed state appears as an energy minimum in the rotating
frame. The formula L = I� also holds here.

A general observation about the center-of-mass–like exci-
tation is that, while the formula L = I� is always valid, with
increasing N , the value of I increases too. As a result, the
slope of the linear part of the plotted functions increases as
N increases, as seen throughout Figs. 6(a)–6(d).

An interesting observation regards the order of transition
to the mixed states. For N = 100, the transition from the
singly quantized vortex state to the mixed state is continuous.
Conversely, for N = 150, the transition from the doubly quan-
tized vortex state to the mixed state is discontinuous, i.e., first
order.1 The discontinuity here arises from the negative

1Here there also exists a continuous transition, from the doubly
quantized vortex state to a mixed state, with center-of-mass–like
excitation of the doubly quantized vortex. However, this particular
mixed state is an excited state, similar to the excited states identified
in Ref. [50] but with an axially asymmetric density distribution.

curvature of the dispersion relation for 2 < � � 3. We stress
that, when needed, we use a step in the � values that is
smaller than 0.5 (which is used in the plots of the dispersion
relations), down to 0.01, so that we can accurately determine
the curvature and therefore the order of transitions.

We can also comment on the order of transition to the
localized states with center-of-mass–like excitation. For N =
50, the transition from the static droplet to center-of-mass–
like excitation is continuous. However, for N = 100, 150,
and 200 the transition to a localized state is discontinuous.
In particular, for N = 100 and 150 there is a level crossing
between the branch of the mixed states and the branch of
center-of-mass–like excitation. This level crossing is located
at � ≈ 0.059 94 for N = 100 and at � ≈ 0.061 34 for N =
150, corresponding to the dashed vertical lines in Figs. 6(b)
and 6(c).

IV. GENERAL PICTURE OF THE PHASE DIAGRAM

From the results that are presented in the previous sections,
it is clear that the problem we have considered has a very rich
structure. In this section we give some general features of the
phase diagram that includes the rotational frequency of the
trap on the one axis and the atom number on the other axis,
concentrating on the states which minimize the energy in the
rotating frame.

As mentioned also earlier, we have considered the case
where both the harmonic and the anharmonic terms in
the energy are smaller than the energy that results from
the nonlinear term. In the opposite limit the droplet is
squeezed by the trap and the physics is, at least qualita-
tively, similar to the one-component system, with an effective
repulsive interaction. This is due to the fact that when
the density exceeds (sufficiently) the density of the droplet
in free space, the nonlinear term becomes (predominantly)
positive.

Figure 7 shows the phase diagram, where the data corre-
spond to the ones presented in Sec. III E. For a sufficiently
small atom number N , the only phase that is present, for
all values of �, is the one which resembles center-of-mass
excitation. This is due to the fact that for the assumed small
value of N the droplet size is also small and is not affected by
the presence of the trapping potential.

As N increases, i.e., as we move vertically in the phase di-
agram, the droplet expands radially and starts to get squeezed
by the external trapping potential. As a result, the nonlin-
ear term becomes predominantly repulsive. Furthermore, the
energy due to both the harmonic and the anharmonic parts
of the trapping potential increases. As a result, the sys-
tem no longer undergoes center-of-mass–like excitation, but
rather it supports vortex states, either of multiple or of single
quantization (for even larger values of N). Although not pre-
sented in this work, we have even identified another mixed
phase, for sufficiently large values of N , which contains a
hole, i.e., a multiply quantized vortex, at the center of the
droplet and singly quantized vortices around it. This phase
has also been identified in anharmonically confined, rotating
Bose-Einstein condensates with effectively repulsive contact
interactions [18].
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FIG. 7. Various phases that we have derived, on the �/ω − N
plane, which correspond to the absolute minima of the energy in the
rotating frame (see Sec. III E), for (a) slow and (b) rapid rotation. On
the horizontal axis is �/ω and on the vertical is N . Here different
phases are denoted by the following symbols: �, the nonrotating
ground state; ×, vortices of single quantization or vortex lattices; ,
vortices of multiple quantization; �, the mixed phase (see the text
for details); and �, the center-of-mass–like localized state.

For a fixed atom number and with increasing �, i.e., as
we move horizontally in the phase diagram, the physics of
the droplet is determined by the effective potential, which has
a sombrero shape for � > ω. Then the droplet forms either
vortices of multiple quantization or a localized blob around
the minimum of the effective potential, in a state which breaks
the axial symmetry of the Hamiltonian.

V. EXPERIMENTAL RELEVANCE

So far we have been working with dimensionless units for
convenience. Here we give some numbers which relate to the
physical units and allow one to make a connection with actual
experiments.

For a typical value of az = 0.1 µm, a3D = 10.1 nm, a3D
↑↓ =

−10.0 nm, and ln(a↑↓/a) ≈ 25. Then, according to Eq. (6),
N0 ≈ 50. Therefore, the range of N that we consider (50 up
to 200) corresponds roughly to approximately 2500, up to
approximately 10 000 atoms in an experiment.

Also, the unit of length x0 turns out to be on the order of
1 µm. This implies that, for, e.g., 104 atoms, the size of a
(nonrotating) droplet in the Thomas-Fermi limit, which was
evaluated in Sec. III, is approximately equal to 10 µm. A
typical value of the two-dimensional density is approximately
equal to 109 cm−2, a typical value of the three-dimensional
density is 1013 cm−3, the unit of time t0 is on the order of

milliseconds, and the typical value of ω is hundreds of hertz.
Finally, a typical value of the anharmonicity parameter λ is
approximately equal to 10−2 [10].

Although the Hamiltonian of the problem we consider is
axially symmetric, many of the solutions that we find break
this axial symmetry, which is an example of spontaneous
symmetry breaking.

The case where � is fixed is probably more relevant
experimentally. In this case one makes the implicit as-
sumptions that there is an infinitesimally weak asymmetry
in the trapping potential and that the system has enough time
to equilibrate in the rotating frame. We stress that such weak
asymmetries in the trapping potential are essentially unavoid-
able. Regarding the equilibration in the rotating frame, this is
mainly related to the timescale of the lifetime of the atoms in
the trap.

As long as the asymmetry in the trap is infinitesimally
weak, the phases that we derive will remain unaffected. In
this case, the only effect of the asymmetry is to “assist” the
system reach the state that breaks the axial symmetry. On
the other hand, in the presence of a strong asymmetry the
problem is very different and is beyond the scope of the
present work.

VI. SUMMARY

In the present paper we investigated the rotational prop-
erties of a mixture of two Bose-Einstein condensates, which
consists of equal populations of distinguishable atoms having
equal masses. Under the further assumption that the mean-
field energy of this binary mixture is sufficiently small, the
next-order correction to the energy is non-negligible (as op-
posed to most other cases) and the balance between the two
terms results in the formation of quantum droplets.

The presence of an (even weak) anharmonic term in the
potential has very serious consequences on the rotational re-
sponse of the gas. First of all, for a fixed rotational frequency
�, while in a harmonic potential � cannot exceed ω, here
there is no such restriction. Furthermore, while in a harmonic
potential the center-of-mass coordinate separates from the
relative coordinates, here this is no longer true.

Given that droplets are self-bound states, for a sufficiently
weak trapping potential and/or a sufficiently small atom num-
ber N , the nonlinear term is attractive. The droplet then carries
its angular momentum in a state that resembles center-of-
mass excitation (with some distortion, though, since, as we
mentioned in the preceding paragraph, the center-of-mass co-
ordinate does not separate from the relative coordinates). As
the trapping potential becomes stronger and/or the atom num-
ber N increases, the nonlinear term becomes (predominantly)
repulsive. In this case, it becomes energetically favorable for
the droplet to accommodate vortices either of multiple or of
single quantization.

The above results are in contrast to the case of a single
component, where in the limit of a weak trapping potential
and/or a sufficiently small atom number N one always has
vortices of multiple quantization (and this is actually true for
both signs of the effective interaction). For a fixed atom num-
ber and with increasing �, the droplet forms either vortices of
multiple quantization or a localized blob around the minimum
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of the effective potential, in a state which breaks the axial
symmetry of the Hamiltonian (depending on the actual value
of the atom number).

We conclude by stressing that, given that in actual experi-
ments there are always deviations from a perfectly harmonic

trap, the assumption of an anharmonic potential is probably
more realistic and more experimentally relevant as compared
to a model of rotating quantum droplets in a purely harmonic
potential. Clearly, this adds more value to the results of the
present study.
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