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Full counting statistics of charge in quenched quantum gases
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Unless constrained by symmetry, measurement of an observable on an ensemble of identical quantum systems
returns a distribution of values which are encoded in the full counting statistics. While the mean value of this
distribution is important for determining certain properties of a system, the full distribution can also exhibit
universal behavior. In this paper we study the full counting statistics of particle number in one-dimensional
interacting Bose and Fermi gases which have been quenched far from equilibrium. In particular, we consider
the time evolution of the Lieb-Liniger and Gaudin-Yang models quenched from a Bose-Einstein condensate
initial state and calculate the full counting statistics of the particle number within a subsystem. We show that
the scaled cumulants of the charge in the initial state and at long times are simply related and, in particular, the
latter are independent of the model parameters. Using the quasiparticle picture we obtain the full time evolution
of the cumulants and find that although their end points are fixed, the finite-time dynamics depends strongly on
the model parameters. We go on to construct the scaled cumulant generating functions and from this determine
the limiting charge probability distributions at long time which are shown to exhibit distinct, nontrivial, and
non-Gaussian fluctuations and large deviations.
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I. INTRODUCTION

Symmetry and universality are two of the most powerful
concepts in theoretical physics. The former can dramatically
reduce the complexity of systems, places stringent constraints
on allowed physical processes, and gives rise to conservation
laws via Noether’s theorem. The latter instead explains why
vastly different systems can display near identical features and
how simple physical principles can underpin many seemingly
complex phenomena. These concepts have been extensively
studied in the context of closed quantum systems which
are close to equilibrium, leading to the discovery of many
ubiquitous properties and the development of numerous pow-
erful and widely applicable techniques of analysis. In recent
years, however, questions of universality and its emergence
in far-from-equilibrium systems have come to the fore and
in this context one-dimensional integrable models have been
widely studied [1–8]. These models possess special symmetry
properties endowing them with an infinite number of mu-
tually commuting conserved charges, thereby placing strong
constraints on their dynamics [9]. At the same time these
properties facilitate exact analytic solutions of the models
through Bethe ansatz techniques allowing in-depth analysis
of their thermodynamic properties [10].

Despite this analytic control, however, uncovering the
nonequilibrium properties of integrable models remains
challenging and is still a highly active area of research. Nev-
ertheless, many universal features have been established, in
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particular concerning the dynamics within a subsystem where
it has been shown that the system relaxes locally to a station-
ary state described by a generalized Gibbs ensemble (GGE)
[1–7]. Building upon this, a number of exact techniques have
been developed including the quench action method [11,12]
which allows one to determine this GGE explicitly and gener-
alized hydrodynamics (GHD) which describes the long-time
and large-scale dynamics of an inhomogeneous state [13–15].

A significant driver of interest in the nonequilibrium dy-
namics of integrable models has been the advent of numerous
experimental platforms which allow for the simulation of
isolated many-body quantum systems with a high degree
of accuracy and control [16–18]. Chief amongst these are
ultracold-atomic-gas setups which have the ability to faith-
fully simulate integrable systems. The Lieb-Liniger model
[19] of interacting bosons, the Gaudin-Yang model [20,21]
of interacting fermions, and the sine-Gordon field theory [22]
are all well-known integrable models which can be simulated
within cold-atom experiments [17,18,23–34]. The relaxation
of such models to GGEs [35] as well as the vailidty of GHD
[36–38] has been observed and tested extensively in such
experiments, ensuring that despite their apparent fine-tuned
nature integrable models are the appropriate description of
these systems.

In this work we shall study the interplay between nonequi-
librium dynamics of integrable models and the fluctuations of
their charge within a subsystem in the context of cold-atom-
gas experiments. We do this by calculating the full counting
statistics (FCS) of the particle number in the Lieb-Liniger
(LL) and Gaudin-Yang (GY) models. The systems shall be
taken out of equilibrium by quenching them from an initial
Bose-Einstein condensate (BEC) state, which is not only ex-
perimentally relevant and conceptually simple but also allows
us to characterize the dynamics exactly. We shall show that

2469-9926/2024/109(4)/043302(18) 043302-1 Published by the American Physical Society

https://orcid.org/0000-0002-5183-0907
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.043302&domain=pdf&date_stamp=2024-04-01
https://doi.org/10.1103/PhysRevA.109.043302
https://creativecommons.org/licenses/by/4.0/


DÁVID X. HORVÁTH AND COLIN RYLANDS PHYSICAL REVIEW A 109, 043302 (2024)

FIG. 1. The quasiparticle picture of charge fluctuations within a
region A. The quench causes pairs of correlated quasiparticles with
equal and opposite momenta k, −k to be emitted from the initial
state. The pairs propagate throughout the system, carrying with them
the charge. A quasiparticle pair’s contribution to charge fluctuation
differs depending on whether both members of the pair (solid lines)
or a single member (dotted lines) are inside A. At short times the
fluctuations inside A are given by pairs while times which are long
compare to the subsystem size only a single member of a pair can
contribute.

there exists a simple relationship between the cumulants of
charge in the initial state and the GGE to which these systems
relax at long times. This relationship is in fact universal,
relying only on the presence of integrability and not on details
of the model. However, while the cumulants in the final state
are fixed by the initial state, their decomposition in terms of
quasiparticle excitations differs from model to model, mean-
ing that the finite-time dynamics will differ. Specifically, we
find that the connected m-point function of the charge, N in
a subsystem, A at the initial and final times, are related by a
factor of 1/2m−1, that is

lim
|A|→∞

lim
t→∞

〈
Nm

A (t )
〉c〈

Nm
A (0)

〉c = 1

2m−1
. (1)

We provide a general derivation of this result below along with
an explanation in terms of the qusaiparticle picture [39,40]
(see Fig. 1) and explicit checks in our models of choice.
Moreover, since the leading-order (linear in subsystem size)
behavior of the cumulants of charge fluctuations in the GGEs
is the same in all cases they define the same limiting coarse-
grained or continuous probability distributions (PDs) which
can be explicitly determined. Nevertheless, the microscopic
PDs (retaining information about subleading corrections) can
be different. This fact arises from the transmutation of particle
statistics in the different parameter regimes of each model and
manifests in a simple and intuitive way. For example, in the
strongly attractive Fermi gas the fermions are bound into tight
pairs forming hard-core bosons with double the charge, a fact
which is reflected in vanishing probabilities for observing an
odd number of particles in a subsystem.

The rest of the paper is arranged as follows: In Sec. II
we review our object of study, the full counting statistics
and some basic properties of cumulant generating functions
and their associated probability distributions. We also briefly
recall some properties of integrable models and prove a gen-
eral relationship between the FCS calculated in a GGE and in
the diagonal ensemble. In Sec. III we introduce the models we
shall study as well as the particular initial states of interest. In

Sec. IV we determine the cumulants of charge in Lieb-Liniger
model for both repulsive and attractive regimes. In Sec. V
we carry out an analogous calculation in the repulsive and
attractive regimes of the Gaudin-Yang model. In the penul-
timate section we study the analytic properties of the scaled
cumulant generating functions for both our models. We use
this knowledge to determine the limiting charge probability
distributions in both the initial and final states. In the last
section we summarize our work and discuss open questions
and potential future directions.

II. NONEQUILIBRIUM FULL COUNTING
STATISTICS IN INTEGRABLE MODELS

A. Full counting statistics and charge probability distributions

We wish to characterize the fluctuations of the particle
number in the LL and GY models which have been quenched
from BEC states. While these charges are conserved quantities
for the full system, when we restrict to a subsystem they
exhibit nontrivial fluctuations and dynamics [41–61]. To study
this we calculate the full counting statistics of the charge
within a region A of length �. We take � to be large but
much smaller than the full system, 1 � � � L, where L is
the full system size and in the end take the thermodynamic
limit �, L → ∞. For a charge operator N̂ whose restriction to
the subsystem is denoted N̂A the FCS are defined as

Zβ (A, t ) = tr[ρA(t )eβN̂A ], (2)

where ρA(t ) = trĀ[ρ(t )] is the reduced density matrix of A
at time t and ρ(t ) = |�0(t )〉〈�0(t )| is the density matrix of
the full system which has been quenched from the intial state
|�0〉 → |�0(t )〉 = e−iHt |�0〉. While the FCS of charge and
related quantities like the work distribution have been studied
previously in certain interacting integrable models [52,62–
67], recent developments have allowed to study these quanti-
ties in far-from-equilibrium systems as well as their associated
current statistics [54,68–76].

From the FCS we can determine many properties of the
dynamics of the particle-number fluctuations within the sub-
system and its interplay with the relaxation of the system to its
long-time steady state. Specifically, we can calculate the con-
nected correlation functions of the charge via the cumulants
of the FCS, 〈

Nm
A (t )

〉c = ∂m
β ln Zβ (A, t )|β=0 (3)

for m ∈ N and where 〈·〉c means the connected part of
the correlation function, e.g., 〈N2

A (t )〉c = 〈N2
A (t )〉 − 〈NA(t )〉2.

Moreover, by continuing β → iβ we can obtain the charge
probability distribution P(n, t ),

P(n, t ) =
∫ π

−π

dβ

2π
e−iβnZiβ (A, t ), (4)

which gives the probability that a measurement of N̂A at time
t returns the value n. The latter is a natural quantity to study
from the experimental point of view and particularly so in the
case of cold-atom experiments. While the expectation value of
an observable such as an order parameter is a central quantity
to understand the nature of a system, the full distribution of
measurement outcomes is also enlightening and can unveil

043302-2



FULL COUNTING STATISTICS OF CHARGE IN … PHYSICAL REVIEW A 109, 043302 (2024)

universal behavior. In cold-atom experiments large numbers
of measurements are required to be performed and so the full
probability distribution is naturally obtained [77–80].

By our analytical methods which we shall introduce
shortly, the computation of the cumulants or the cumulant
generating function ln Zβ (A, t ) is only feasible if the length
of the subsystem � is also infinitely large. In particular, the
moment generating function for an extensive quantity in a
large subsystem can be generally written as

lim
�→∞

Zβ (A, t ) = e�Cs (β,t )+o(�), (5)

where Cs(β, t ) is the scaled cumulant generating function
(SCGF) defined as

lim
�→∞

�−1 ln Zβ (A, t ) = Cs(β, t ) (6)

and whose derivatives with respect to β are the scaled
cumulants

∂m
λ Cs(β, t )|λ=0 = κs

m(t ) (7)

denoted by κs
m. Therefore, it is the scaled cumulants and their

generating function, i.e., quantities with extensive scaling
with respect to the subsystem size, which can be computed.
From the SCGF, we can obtain the large � limiting probabil-
ity distribution (PD) for the charge fluctuations via the rate
function I (z) through

P(�z, �t ) � e−�I (z,t ), (8)

where � is understood as

a(�, x) � b(�, x) if lim
�→∞

ln a

ln b
= 1, (9)

and we assumed the same scaling for the time variable t .
Importantly, the rate function I (z) can be obtained as the
Legendre-Fenchel transform of the SCGF according to the
Gärtner-Ellis theorem. The rate function also governs
the large deviations of the limiting coarse-grained probability
distribution, which is a continuous distribution even if the
microscopic PD is discrete. Whereas in a strict sense our
methods allow for the computation of I (z) via the SCGFs, we
shall also use Eq. (4) and approximate Ziβ (A, t = 0,∞) at the
initial and the steady states by exp[�Cs(iβ, t = 0,∞)]. Doing
so retains the discrete nature of charge fluctuations and allows
for the onset of some interesting microscopic effects, which
vanish in the � → ∞ limit but are expected to be observed in
large but finite subsystems.

B. Review of integrable models
and the thermodynamic Bethe ansatz

In the subsequent sections we shall explicitly calculate
the scaled cumulants κs

m(t ) as well as SCGF Cs(β, t = 0,∞)
in the LL and GY models; however, before this we shall
derive some generic properties which will allow us to re-
late the scaled cumulants in the initial state, denoted by
κs

m(0), and in the GGE, denoted by κs
m(∞). To do this we

keep things general and recall briefly some basic properties
of integable models: Integrable models possess an extensive
number of conserved quantities charges whose associated op-
erators Q̂(k), k = 1, 2, . . . , commute with the Hamiltonian.
These imbue the model with a stable set of quasiparticle

excitations which are indexed by a discrete species index
n = 1, . . . , Ns and parametrized by a continuous rapidity λ

(n)
j ,

j = 1, . . . , Mn. An eigenstate of the model is specified by
the rapidities of the quasiparticles which are present, and we
denote it by

|λ〉 = ∣∣λ(1)
1 , . . . , λ

(1)
M1

; . . . ; λ(Ns )
1 , . . . , λ

(Ns )
MNs

〉
. (10)

These states are also simultaneous eigenstates of all the con-
served charges of the model, namely,

Q̂(k)|λ〉 =
Ns∑

n=1

Mm∑
j=1

q(k)
n

(
λ

(m)
j

)|λ〉. (11)

The first three conserved charges are chosen to coincide
with the particle number N̂ = Q̂(0), momentum P̂ = Q̂(1), and
Hamiltonian Ĥ = Q̂(2). For simplicity we shall denote the
charge, momentum, and energy of a quasiparticle of species n
and rapidity λ by qn = q(0)

n (λ), pn(λ) = q(1)
n (λ), and εn(λ) =

q(2)
n (λ). In the thermodynamic limit and at finite density

the model can be treated using the methods of the thermo-
dynamics Bethe ansatz (TBA) [10]. Within this approach,
the quasiparticle content of a stationary state of the model
can be encoded in the distributions ρn(λ), ρh

n (λ), ρt
n(λ), and

ϑn(λ) which are, respectively, the distribution of occupied
quasiparticles of species n, the distribution unoccupied quasi-
particles, the total density of states ρt

n(λ) = ρn(λ) + ρh
n (λ),

and the occupation function ϑn(λ) = ρn(λ)/ρt
n(λ). All of

these functions are related to each other by the Bethe-
Takahashi equations which take the form

ρt
n(λ) = p′

n(λ)

2π
−

∑
l

Tnl ∗ ρl (λ), (12)

where (·)′ denotes differentiation with respect to λ and ∗ is
the convolution f ∗ g(y) = ∫

dy f (x − y)g(y). Here Tnl (λ,μ)
is the scattering kernel which characterizes the scattering be-
tween quasiparticles of type n and l with rapidities λ and μ.
In the cases of interest this is symmetric in the species index
Tnl (x) = Tln(x).

When the state contains many excitations the bare quasi-
particle properties become dressed due to the interactions.
These dressed quantities are denoted by (·)dr and satisfy the
integral equations

f dr
n (λ) = fn(λ) −

∑
l

Tnl ∗ [
ϑl (λ) f dr

l (λ)
]
. (13)

Explicitly, the dressed charge is obtained from the solution of

qdr
n (λ) = qn −

∑
l

Tnl ∗ [
ϑl (λ)qdr

l (λ)
]
. (14)

The quasiparticle velocity, on the other hand, is given by the
ratio of dressed quantities vn(λ) = ε′dr (λ)/p′dr (λ). This can
be recast into the equation

ρt
n(λ)vn(λ) = ε′

n(λ)

2π
−

∑
l

Tnl ∗ [ρl (λ)vl (λ)], (15)

where we have used ρt (λ) = p′dr (λ). These sets of integral
equations typically need to be solved numerically but in cer-
tain cases can be solved analytically as is the case for the LL
model discussed below [81–83].
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C. Full counting statistics using TBA

Having reviewed these basic properties and set up our
notation we can now move on to determine the relationship
between the FCS at t = 0 and in the GGE. We begin with the
latter and define

lim
t→∞ tr[eβN̂AρA(t )] = tr[eβN̂AρGGE] ≡ exp

[
�Cs

GGE(β )
]
, (16)

where we have neglected the o(�) contributions and have
introduced the generalized Gibbs ensemble

ρGGE = 1

tr[e− ∑
k β (k)Q̂(k) ]

e− ∑
k β (k)Q̂(k)

. (17)

Herein it is necessary to include both local and semilocal
conserved charges in the GGE in order to obtain the cor-
rect description of the long-time state [84–88]. The Lagrange
multipliers above, β (k), are determined by matching the ex-
pectation values of Q̂(k) in ρGGE to those in the initial state. To
compute Cs

GGE(β ) with β ∈ R we utilize the result of Ref. [68]
(see also [59,89]) claiming that

Cs
GGE(β ) = fGGE(β (k) − β ) − fGGE(β (k) ), (18)

where fGGE denotes the free-energy density of a GGE charac-
terized by the chemical potentials β (k) and β shifts one of the
chemical potentials that corresponds to the conserved quantity
under investigation. We can rewrite the above equations in
the typical manner of the thermodynamic Bethe ansatz by
exchanging the trace for a path integral over the distributions
ρn(λ), ρh

n (λ) [10],

e�Cs
GGE(β ) =

∫
D[ρ(λ)]e−�

∑
n

∫
dλ[gn (λ)−βqn]ρn (λ)−SYY∫

D[ρ(λ)]e−�
∑

n

∫
dλgn (λ)ρn(λ)−SYY

, (19)

where gn(λ) = ∑
k β (k)q(k)

n (λ) and SYY is the Yang-Yang en-
tropy which is proportional to � as well and which counts how
many microstates |λ〉 correspond to the same macrostate given
by the distributions ρn(λ). Evaluating this functional integral
via a saddle-point approximation we obtain

Cs
GGE(β ) =

Ns∑
n=1

∫
dλ ρt

n

[
ln

(
1 + η−1

n,β

1 + η−1
n,0

)
+ ϑn ln

ηn,βeβqn

ηn,0

]

(20)

with ηn,β being given by

ln ηn,β = −βqn + gn(λ) +
∑

l

Tnl ∗ ln
[
1 + η−1

l,β (λ)
]
, (21)

while ηn,0 is evaluated in the same way at β = 0 and can be
related to the occupation function of the GGE via ϑn(λ) =
1/[1 + ηn,0(λ)]. In order to evaluate Cs

GGE(β ) explicitly one
must know the functional form of gn(λ) which can be done by
making use of the quench action method. Using this one can
show that it is obtained from the extensive part the squared
overlap between an eigenstate |λ〉 and |�0〉 in the thermody-
namic limit [90]. Namely,

lim
th

1

L
ln |〈λ|�0〉|2 = −1

2

Ns∑
n=1

∫
dλ gn(λ)ρn(λ) . (22)

For the states that we consider the left-hand side is known
explicitly and the function gn(λ) is simply extracted from this.

We now turn to the calculation of the FCS in the initial
state. In this instance, as discussed further in Appendix, the
initial value can be obtained by considering the diagonal en-
semble. After expressing this as a path integral we find

e�Cs
0(β ) =

∫
D[ρ(λ)]e− �

2

∑
n

∫
dλ[gn (λ)−2βqn]ρn(λ)− 1

2 SYY∫
D[ρ(λ)]e− �

2

∑
n

∫
dλgn(λ)ρn(λ)− 1

2 SYY
, (23)

where the factor of 1
2 in front of SYY arises from the fact that

the overlap with our initial state is nonzero only for parity-
invariant eigenstates which have half the entropy contribution.
Here we have denoted Cs(β, 0) by Cs

0(β ), which we express
more explicitly as

Cs
0(β ) = 1

2

Ns∑
n=1

∫
dλ ρ̄t

n

[
ln

(
1 + η̄−1

n,β

1 + η̄−1
n,0

)
+ ϑ̄n ln

η̄n,βe2βqn

η̄n,0

]

(24)

with η̄n,β being given by

ln η̄n,β = −2βqn + gn(λ) +
∑

l

Tnl ∗ ln
[
1 + η̄−1

l,β (λ)
]
. (25)

Either comparing Eqs. (19) and (23) or the TBA systems
(20) and (24), we then find that

Cs
0(β ) = 1

2Cs
GGE(2β ), (26)

where Cs
GGE is given by (20). Therefore, comparing with (16)

we also find that the cumulants are related as

κs
m(∞) = 1

2m−1
κs

m(0). (27)

The above relations are one of the main results of this paper.
We note that while (27) is a technical result whose proof relies
upon the details of the TBA and quench action formalism,
it also admits a very intuitive interpretation based upon the
quasiparticle picture of entanglement dynamics [39,40], char-
acterized in Fig. 1, which proceeds as follows. The initial
state of the system can be expressed as a collection of cor-
related pairs of quasiparticles, of opposite momenta, which
are excited by the quench. A pair of quasiparticles can then
be viewed semiclassically as emerging from a single point
in space. Its constituents propagate ballistically in opposite
directions throughout the system, thereby spreading correla-
tions over a wider region. The fluctuations of charge within the
subsystem at t = 0 are therefore governed by the distribution
of pairs of quasiparticles which necessarily carry charge 2 and
are indexed by the absolute value of the momenta. At long
time, the quasiparticles have spread throughout the system
and it is not possible for both members of an initially corre-
lated pair to be inside the subsystem, thus the fluctuations of
charge in the subsystem are governed by single quasiparticles
of charge 1 and indexed by the momentum rather than its
absolute value. Nevertheless, since the quasiparticle occupa-
tion function is a constant of the dynamics the distributions
of pairs and unpaired quasiparticles are the same. Thus, we
arrive at the expression (26) where we can recognize the 2β

as originating from the charge of a pair of quasiparticles while
the factor of 1

2 comes from the fact that one sums over only
the absolute value of the momenta.
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A notable consequence of the relations is that since the
right-hand sides of (26) and (27) are a property solely of the
initial state, then the left-hand side is independent of the model
specifics. In the examples below we shall argue and then show
explicitly that for BEC initial states κs

m(0) = d ∀ m where d is
the average density, i.e., the charge is Poisson distributed and
accordingly

κs
m(∞) = d

2m−1
, (28)

which is exactly the same expression as the one obtained
from the steady-state GGE using (18) as we shall demonstrate
shortly.

Evidently, (27) does not tell us how the charge distribution
evolves between its initial value and the GGE value which
necessarily depends on the model. However, we can also
characterize this in integrable models using recently obtained
results on the charged moments and full counting statistics
using the method of space-time duality [59,60]. In particular,
as discussed above the scaled cumulants obey a quasiparticle
picture [39,40], meaning that charge fluctuations are spread
throughout the system via the ballistic propagation of pairs of
quasiparticles which are shared between A and Ā resulting in

〈
Nm

A (t )
〉c =

∑
n

∫
dλ min[2t |vn(λ)|, �]Km

n,∞(λ)

+ (� − min[2t |vn(λ)|, �])Km
n,0(λ), (29)

where we have introduced Km
n,x(λ) with x = 0,∞ being the

rapidity and species resolved scaled cumulant in the initial
state or GGE, i.e.,

κs
m(x) =

∑
n

∫
dλKm

n,x(λ). (30)

Additionally, min[2t |vn(λ)|, �] is the characteristic function
which counts the number of quasiparticle pairs shared be-
tween A and Ā, while � − min[2t |vn(λ)|, �] can be interpreted
as the number quasiparticle from pairs which are contained
solely within the subsystem. Thus, within the subsystem the
charge fluctuations are governed either by pairs of quasipar-
ticles both of whom are inside A and whose contribution is
given by Km

n,0(λ) or single quasiparticles which originated
from outside A or whose partner has exited A and which
contribute Km

n,∞(λ).
The first cumulant returns the expectation value of the

charge and is conserved which can be seen using (28) and (29)
at m = 1. The second cumulant gives the charge susceptibility
which has a compact expression

K2
n,∞(λ) = [

qdr
n (λ)

]2
ρn(λ)[1 − ϑn(λ)]. (31)

Higher cumulants become more complicated and involve
dressing of lower cumulants. For example, the third cumulant
is given by

K3
n,∞(λ)

K2
n,∞(λ)

= qdr
n (λ)[1 − 2ϑn(λ)] − 3

[ ∑
l Tnl ∗ K2

l,∞
]dr

(λ)

qdr
n (λ)

,

where we see that it depends also on the dressed second
cumulant. We omit higher expressions for cumulants which
can nevertheless be systematically computed.

Before moving on, we make two brief remarks on the pre-
ceding discussion. First, the result (27) relies upon the validity
of the diagonal ensemble for calculating the initial state value
which is discussed further in the Appendix. To check the
validity of (27) we shall compute the scaled cumulants in the
initial states by independent means and show that the results
of the diagonal ensemble, involving interaction-dependent
functions, yield the same result. This is not always the case,
however, and the diagonal ensemble cannot be applied to
initial states such that the subsystem is an eigenstate of the
charge and hence has no fluctuations. This is the case for the
magnetization of the GY model quenched from the BEC state.
However, for the models and initial states which we consider
the diagonal ensemble correctly reproduces the initial FCS of
the particle number. Second, although some analytic results
exist for the distributions functions which determine (20) and
(23), their explicit evaluation is feasible only in certain special
limits of our models. In spite of this, at generic interactions,
it is straightforward to numerically compute the (first few)
scaled cumulants and check the validity of (27). The numer-
ical computation of the SCGF is also possible but instead of
comparing the numerically obtained SCGFs against (26) on
a strictly finite interval, we shall rather construct the SCGFs
at arbitrary interactions as a Taylor series defined by the
cumulants, which is justified by the exponentially decaying
behavior of the scaled cumulants.

III. MODELS AND SETUP

A. Lieb-Liniger model

The standard model for describing one-dimensional inter-
acting bosons in the context of cold-atom experiments is the
Lieb-Liniger model. The Hamiltonian is given by

HLL =
∫ L

0
dx b†(x)

[
− ∂2

x

2m

]
b(x) + cb†(x)b(x)b†(x)b(x).

(32)

Here b†(x), b(x) are canonical bosonic operators satisfying
[b(x), b†(y)] = δ(x − y) that describe bosons of mass m which
interact via a density-density interaction of strength c on a
system of length L. We shall consider both the repulsive
c > 0 and attractive c < 0 cases. From here on we take m = 1

2
for simplicity and assume periodic boundary conditions. The
model has a single U(1) charge, the particle number N̂ =∫

dx b†(x)b(x).
In the repulsive case there is only one species of quasipar-

ticle with bare charge, momentum, and energy given by

q = 1, p(λ) = λ, ε(λ) = λ2. (33)

As outlined above, the properties of a stationary state of H
are encoded in the distributions ρ(λ), ρh(λ), ρt (λ), and ϑ (λ)
which are connected via the Bethe equations

ρt (λ) = 1

2π
+

∫ ∞

−∞
dμ a2(λ − μ)ρ(μ), (34)

where the scattering kernel is given by an(x) = 1
2π

n|c|
(nc/2)2+x2 .

In the attractive case the spectrum of the model is entirely
different and there are an infinite number of quasiparticle
species corresponding to bound states of n bosons. These
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quasiparticles have the following bare charge, momentum,
and energy:

qn = n, pn(λ) = nλ, εn(λ) = nλ2 + |c|
12

n(n2 − 1). (35)

We denote the distributions of the n-boson bound states by
ρn(λ), ρh

n (λ), ρt
n(λ), and ϑn(λ). The Bethe equations in this

case then take the form

ρt
n(λ) = n

2π
−

∞∑
m=1

Tnm ∗ ρm(λ), (36)

where for n > m the two-particle scattering kernel is

Tmn(λ) = an−m(λ) + an+m(λ) + 2
m−1∑
j=1

an−m+2 j (λ),

Tnn(λ) = 2
n∑

j=1

a2 j (λ), Tmn(λ) = Tnm(λ). (37)

We shall study the dynamics of the system quenched from
the BEC state of N particles given by

|�0,N 〉 = b†
0

N

√
N!

|0〉, (38)

b†
0 = 1√

L

∫ L

0
dx b†(x) (39)

which is the ground state of the model at c = 0 and is also
an eigenstate of N̂ . When considering just the subsystem,
however, ρA(0) contains states in all particle-number sectors
less than N and the charge probability distribution can be
determined by means of a simple argument. Since the wave
function is constant, the probability of measuring a charge
in A for the system with N = 1 is given by �/L. For higher
particle number since the state has no spatial correlations the
detection of a boson is an independent event with a constant
rate �N/L and therefore has a binomial distribution. In the
thermodynamic limit we take N, L → ∞ with d = N/L the
density held fixed and thus we end up with a Poisson distribu-
tion with rate �d and 〈Nm

A 〉c
0 = �d or κs

m(0) = d, ∀ m.
From this observation it is possible to construct the reduced

density matrix ρA(0). Introducing the boson on the restricted
space b̄†

0 = 1√
�

∫
x∈A dx b†(x) we have that

ρA(0) = e−�d
∞∑

n=0

(�d )2n

n!2
b̄†

0
n|0A〉〈0A|b̄0

n, (40)

where |0A〉 is the vacuum inside A. This has the required Pois-
son distribution of charge and also has the same correlation
within the subsystem as |�0〉〈�0|.

The entanglement entropy between A and Ā can also be de-
termined from this expression and originates solely from the
charge fluctuations in the subsystem. The von Neumann en-
tanglement entropy is given by Shannon entropy of the charge
probability distribution and so scales as SA � 1

2 + 1
2 ln 2π�d .

B. Gaudin-Yang model

For the case of interacting spinful fermions in one di-
mension we shall study the Gaudin-Yang model, which is

also widely used to describe cold-atom-gas experiments. The
Hamiltonian is

HGY =
∫ L

0
dx ψ†

σ (x)

[
− ∂2

x

2m

]
ψσ (x)

+ cψ†
↑(x)ψ↑(x)ψ†

↓(x)ψ↓(x), (41)

where ψ†
σ (x), ψσ (x) are two species of fermionic operators

with σ =↑,↓ which obey {ψ†(x)σ , ψσ ′ (y)} = δσσ ′δ(x − y).
These describe spin- 1

2 fermions of mass m interacting via
a local interspecies density-density interaction of strength c.
As before we shall take m = 1

2 and assume periodic bound-
ary conditions but we shall consider both repulsive c > 0
and attractive c < 0 interactions. In this case there are
two U(1) conservation laws corresponding to particle num-
ber N̂ = ∫

dx ψ
†
↑(x)ψ↑(x) + ψ

†
↓(x)ψ↓(x) and magnetization

M̂ = ∫
dx ψ

†
↑(x)ψ↑(x) − ψ

†
↓(x)ψ↓(x), however, we shall only

concentrate on the former.
The quasiparticle content of the model depends on whether

one is in the repulsive regime or attractive. In the repul-
sive regime there are an infinite number of species and
we denote their distributions by ρ(λ), ρh(λ), ρt (λ), ϑ (λ) and
σn(λ), σ h

n (λ), σ t
n (λ), ϑn(λ) where n ∈ N. The former types

of quasiparticles are associated to spin-up fermions, they
have unit charge and magnetization and momentum and en-
ergy p(λ) = λ, εn(λ) = λ2. The latter quasiparticle types, also
called strings, are associated to the spin degrees of freedom,
they carry zero charge, magnetization −2n, and have zero
energy and momentum. The integral equations for these dis-
tributions are

ρt (λ) = 1

2π
+

∞∑
n=1

an ∗ σn(λ), (42)

σ t
n (λ) = an ∗ ρ(λ) −

∞∑
m=1

Tnm ∗ σm(λ), (43)

where for Tnm(λ) was introduced above. In terms of these
distributions the U(1) charges of a state are given by N =∫

dλ ρ(λ) and M = N − 2
∑∞

n=1 n
∫

dλ σn(λ).
In the attractive regime there is an additional type of quasi-

particle which is a bound state of two fermions forming a spin
singlet. We denote its distributions by ρ̃(λ)ρ̃h(λ), ρ̃t (λ), ϑ̃ (λ).
They carry charge 2 and magnetization 0 while their
momentum and energy are p̃(λ) = 2λ, ε̃(λ) = 2λ2. The cor-
responding integral equations are

ρt (k) = 1

2π
− a1 ∗ ρ̃(λ) −

∞∑
n=1

an ∗ σn(λ), (44)

ρ̃t (λ) = 1

π
− a2 ∗ ρ̃(λ) − a1 ∗ ρ(λ), (45)

σ t
n (λ) = an ∗ ρ(λ) −

∞∑
m=1

Tnm ∗ σm(λ). (46)

For the fermionic model we shall again study the dy-
namics emerging from a BEC state wherein the bosons are
formed from pairs of fermions in a singlet at the same point
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in space,

|�0,N 〉 = c†
0

N

√
N!

|0〉, (47)

c†
0 = 1√

NL

∫ L

0
dx ψ

†
↑(x)ψ†

↓(x), (48)

where NL is a normalization factor. In contrast to the previous
case this is not an eigenstate of the model at any c but is
an eigenstate of particle number 〈�0,N |N̂ |�0,N 〉 = 2N and
magnetization 〈�0,N |M̂|�0,N 〉 = 0. Once again upon tracing
out Ā, particle number is no longer conserved; however, the
magnetization is still 0. In this instance the wave function is
not flat due to the Pauli exclusion of the fermions; however,
for large enough subsystem size and at finite density we can
apply the same arguments as before and determine that the
charge distribution is also Poisson. In particular, it is easy
to check analytically the first few cumulants, which, in the
thermodynamic limit, in fact yield κm(0) = 2d if d denotes
the density of singlet pairs. Furthermore, the initial reduced
density matrix has the form

ρA(0) = e−�d
∞∑

n=0

(�d )2n

n!2
c̄†

0
n|0A〉〈0A|c̄0

n, (49)

c̄†
0 = 1√

N�

∫
x∈A

dx ψ
†
↑(x)ψ†

↓(x) . (50)

In other words, we have again obtained constant cumulants,
which can be attributed to a Poisson distribution. It is, never-
theless, important to recall the fact that for any subsystem, the
total magnetization is zero, which means that the distribution
is only Poissonian for the effective “quasibosons.” There-
fore, the fermionic distribution is microscopically different,
namely, it has vanishing probabilities for odd-fermion num-
bers. In the thermodynamic limit, this distribution can have
the same cumulants and scales to the same limiting continuous
PD, determined by the rate function of the Poisson distribution
with density 2d . We shall revisit this feature in Sec. VI. The
von Neumann entanglement entropy can be obtained here
also and similarly coincides with the Shannon entropy of the
Poisson distribution.

IV. FCS IN THE LIEB-LINIGER MODEL

We now turn to the explicit calculation of the SCGF in
the Lieb-Liniger model treating the repulsive and attractive
regimes separately. The quench dynamics emerging from the
state (38) has been studied previously in both the repulsive
[81] and attractive cases [82,83] with many properties already
determined analytically and with thorough discussion on the
steady-state GGE in the repulsive case [91]. Following, we
shall make use of these exact results to obtain the FCS.

A. Repulsive interactions

The one remaining ingredient that is required to determine
the FCS is the overlap function (22). For the particular initial
state (38) this has been obtained in [92]. In the repulsive
case where there is only a single-quasiparticle species this is
given by

g(λ) = ln

[
λ2(λ2 + (c/2)2)

d2c2

]
. (51)

As a result, the function Cs
GGE(β ) is given by

Cs
GGE(β ) =

∫
dλ ρt

[
ln

(
1 + η−1

β

1 + η−1
0

)
+ ϑ ln

ηβeβ

η0

]
, (52)

where ηβ is given by the solution to

ln ηβ = ln

[
λ2(λ2 + (c/2)2

d2c2eβ

]
− a2 ∗ ln

[
1 + η−1

β (λ)
]

(53)

and as stated above ϑ = 1/(1 + η0). This type of integral
equation admits an analytic solution [81] which is given by

ηβ (λ) = e−β/2λ sinh(2πλ/c)

2πdI1−2iλ/c
(
4
√

deβ/2

c

)
I1+2iλ/c

(
4
√

deβ/2

c

) , (54)

where Im(x) is the modified Bessel function of the first kind.
From this we can determine exactly both the FCS in the
initial state and in the GGE. It can then be checked that in
the initial state we recover 〈Nm

A 〉c
0 = �d + o(�). This statement

holds true for arbitrary interactions c > 0 as can be confirmed
numerically, but the result can be particularly easily seen in
the Tonks-Girardeau limit of c → ∞ in which case ηβ =
e−βλ2/4d2. Accordingly, we have that for the initial state in
this limit

Cs
0(β )|c→∞ =

∫
dλ

4π
ln

[
λ2 + 4d2e2β

λ2 + 4d2

]
= d (eβ − 1) (55)

for β ∈ R, i.e., the SCGF of the Poisson distribution which
has cumulants all equal. That is, we have recovered the known
SCGF of the Poisson distribution at this limit. Switching now
to the long-time limit we have that the steady-state SCGF at
c → ∞,

Cs
GGE(β )|c→∞ =

∫
dλ

2π
ln

[
λ2 + 4d2eβ

λ2 + 4d2

]
= 2d (eβ/2 − 1),

(56)

but it is again easy to check numerically that the cumulants
are in fact predicted by (28) at arbitrary c > 0. This implies
that Eq. (20) actually gives the same function 2d (eβ/2 − 1)
for any c > 0 and for β ∈ R, which can also be confirmed by
numerical comparisons. Note that this way we confirmed the
predictions of (27) and (26) in the repulsive regime of the LL
model.

From these analytic results we can also write the full-time
dynamics of the cumulants in the Tonks-Girardeau limit and
find〈

Nm
A (t )

〉c ≈ �d +
∫

dλ min[4t |λ|, �]
[
Km

∞(λ) − Km
0 (λ))

]
,

Km
∞(λ) = Km

0 (λ)

2m−1
= ∂m

β ln

[
λ2 + 4d2eβ

λ2 + 4d2

]∣∣∣∣∣
β=0

, (57)

where we used the fact that in this limit v(λ) = 2λ.
At finite c since the function Km

∞(λ) and the quasiparticle
velocity depend on the interaction strength the same relations
do not hold. Instead, to analyze the finite-c and -t behavior
we plot the first four cumulants using as a function of the
scaled time ζ = t/� in Fig. 2 for c = 1 and d = 10. From
this we see that while the first two cumulants are monotonic,
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FIG. 2. (a) The scaled cumulants κ s
m(t ), m = 1, . . . 4, corre-

sponding to curves with decreasing values at the ζ = 0.2 intersection
as a function of rescaled time ζ = t/� for d = 1 and c = 1. The
dashed lines are the asymptotic GGE values. (b) The rapidity re-
solved scaled cumulants Km

0 (λ) as a function of λ for m = 1, . . . , 4
corresponding to curves with increasing values at the λ = −2 inter-
section for c = 1, d = 1.

the higher cumulants are not. To understand the nonmono-
tonicity we also plot the rapidity resolved cumulants Km

0 (λ)
for d = 1, c = 1. From this we see that Km�2

0 (λ) are positive
functions while Km>2

0 (λ) are negative for some rapidities. By
inspecting (29) and using (28) one sees that the positiveness
implies that the cumulant is monotonic in time while one
which is not can allow for nonmonotonic behavior. In addi-
tion, one can note that higher cumulants take longer to relax to
their GGE values (dashed lines). This also can be understood
by examining the behavior of the rapidity resolved cumulants.
For m > 1, Km

0 (λ) all vanish at the origin but have at least
one set of extrema close to it. These extrema are closer to the
origin at higher m, indicating that the slower quasiparticles
contribute more to the higher cumulants resulting in a slower
approach to their asymptote. Lastly, we note that for m > 1
the number of pairs of extrema present in Km

0 (λ), m − 1, is
related to the number of extrema in κs

m(t ) as a function of time,
namely, m − 2.

To investigate the effect of changing the interaction we plot
in Fig. 3 the second scaled cumulant κs

2(t ) as a function of
time for c = 1

2 , 1, 10. From this we can also see from these
plots that for lower interaction strength it takes longer to reach

FIG. 3. (a) The scaled second cumulant κ s
2(t ) as a function

of rescaled time ζ = t/� for d = 1 and c = 1
2 , 1, 10 correspond-

ing to curves with decreasing values at the ζ = 0.2 intersection.
(b) The rapidity resolved cumulant K2

0(λ) as a function of λ for
c = 1

2 , 1, 10 corresponding to curves with decreasing values at the
λ = −1 intersection.

the asymptotic value. This could be anticipated from the fact
that at c = 0 the initial state becomes the ground state of the
model. To understand this microscopically, however, we also
plot the corresponding K2

0(λ) as a function of λ and see that
they are peaked closer to the origin for smaller c. Thus, the
second cumulant is dominated by slower modes for lower
interaction strength c resulting in a slower approach to its
asymptote. In Fig. 4 we plot also the fourth cumulant and
see again that it approaches its asymptote slower for lower
interaction strength which is a consequence of the fourth
cumulant being dominated by slower modes. An analogous
effect occurs if one holds c constant and instead changes d .
This is related to the anomalous relaxation phenomenon called
the quantum Mpemba effect [93–95].

B. Attractive interactions

We turn now to the case of attractive interactions. Here
there are an infinite number of quasiparticle species and the
overlap function for these can be obtained from (51) via

gn(λ) =
n∑

j=1

g

(
λ + i

|c|
2

(n + 1 − 2 j)

)
. (58)
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FIG. 4. (a) The fourth scaled cumulant κ s
4(t ) as a function of

rescaled time ζ = t/� for d = 1 and c = 1
2 , 1, 10 corresponding to

curves with decreasing values at the ζ = 0.4 intersection. (b) The
rapidity resolved cumulant K4

0(λ) as a function of λ for c = 1
2 , 1, 10

corresponding to curves with increasing values at the λ = −1
intersection.

The resulting cumulant generating function is

Cs
GGE(β ) =

∑
n

∫
dλ ρt

n

[
ln

(
1 + η−1

n,β

1 + η−1
n,0

)
+ ϑn ln

ηn,βenβ

ηn,0

]
,

(59)

where ηn,β are determined by

ln ηn,β = gn(λ) −
∑

m

Tnm ∗ ln
[
1 + η−1

n,β (λ)
]
. (60)

These latter equations can be rewritten using some standard
TBA identities to a more convenient form [82,83]

ln ηn,β = s ln[1 + ηn+1,β ][1 + ηn−1,β ]

+ ln

[
tanh2

(
πλ

2|c|
)]

, (61)

where s(λ) = sech( πλ
2|c| ). As with the repulsive case these ad-

mit an analytic solution. It can be shown that

η1,β (λ) = λ2/4

|c|2d2eβ (λ2 + |c|2)
(4λ4 + λ2(5|c|2 + 16deβ/2|c|)

+ 12|c|2d2eβ + 4|c|3deβ/2 + |c|4) (62)

with the remaining functions obtained through

ηn,β (λ) = ηn−1,β (λ + i|c|/2)ηn−1,β (λ − i|c|/2)

1 + ηn−2,β (λ)
− 1 (63)

for n > 1 and where η0(λ) = 0.
These expressions become cumbersome to treat for n > 1

but simplify considerably, as does the SCGF in the infinite
interaction limit |c| → ∞. Taking this limit in the analytic
solution one can we find that η1,β = e−βλ2/4d2 while all other
ηn>1,β diverge, indicating that they do not contribute to (59).
The resulting expression for the SCGF is the same as in the
Tonks-Girardeau limit (55):

Cs
0(β )|c→−∞ = Cs

0(β )|c→∞, (64)

and so the cumulants also agree. This remains true also at
arbitrary time, meaning that κs

m(t )|c→∞ = κs
m(t )|c→−∞. The

lack of bound-state contribution in the infinite interaction
limit can be understood on energetic grounds, and the fixed
energy of the initial state cannot support the formation of
higher bound states. Interestingly, however, in the same limit
the local density-density correlation function only receives a
contribution from the two-particle bound states [82,83].

As the interaction strength is decreased, bound states of
increasing length contribute to the SCGF. In Fig. 5 we plot
the second cumulant κs

2(t ) as a function of time for different
interaction strengths. We see that in contrast to the repulsive
case the attractive system takes much longer to relax to its
asymptotic value. This is a result of the contribution of the
bound states to the cumulants being dominated by the slow-
est quasiparticles. This is seen also in Fig. 5 where we plot
K2

n,0(λ) for n = 1, 2, 3 at |c| = 2 and see that as n increases
the mode resolved cumulant becomes more peaked about
λ = 0. Similar behavior is also seen for the higher cumulants.

V. FCS IN THE GAUDIN-YANG MODEL

We now consider the FCS in the Gaudin-Yang model,
again splitting our analysis into two parts dealing with the
repulsive and attractive regimes separately. In both cases the
key component of our analysis, the overlap functions, have
been obtained previously by considering appropriate limits of
the integrable quenches in the Hubbard model [96,97].

A. Attractive interactions

We start by considering the attractive regime, and taking
into account the quasiparticle content of the model reviewed
in Sec. III B we find

Cs
GGE(β ) =

∫
dλ ρt

[
ln

(
1 + ζ−1

β

1 + ζ−1
0

)
+ ϑ ln

ζβeβ

ζ0

]

+
∞∑

n=1

∫
dλ σ t

n

[
ln

(
1 + η−1

n,β

1 + η−1
n,0

)
+ ϑn ln

ηn,β

ηn,0

]

+
∫

dλ ρ̃t

[
ln

(
1 + ζ̃−1

β

1 + ζ̃−1
0

)
+ ϑ ln

ζ̃βe2β

ζ̃0

]
,

(65)
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FIG. 5. (a) The scaled second cumulant κ s
2(t ) of the attractive

Lieb-Liniger model as a function of rescaled time ζ = t/� for d = 1
and |c| = 1, 2, 10 corresponding to curves with decreasing values at
the ζ = 1 intersection. (b) The rapidity resolved cumulant K2

n,0(λ)
for the first three quasiparticles (corresponding to curves with in-
creasing values at the λ = −0.2 intersection) as a function of λ for
c = 2.

where the functions ηn,β , ζβ, ζ̃β satisfy the integral
equations

ln ηn,β = ln

[
tanh2

(
πλ

2c

)]
− δn,1s ∗ ln

[
1 + ζ−1

β

]
+ s ∗ ln[1 + ηn+1,β ][1 + ηn−1,β ], (66)

ln ζβ = ln

[
coth2

(
πλ

2c

)]
+ s ∗ ln

[
1 + ζ̃β

1 + η1,β

]
, (67)

ln ζ̃β = ln

[
λ4(λ2 + c2)

(2d )4e2β (λ2 + (c/2)2)

]
+ a1 ∗ ln

[
1 + ζ−1

β

]
+ a2 ∗ ln

[
1 + ζ̃−1

β

]
. (68)

Unlike in the LL model these equations do not admit an
analytic solution that we are aware of and so must be treated
numerically. There are, however, two limiting cases of inter-
est. The first is the noninteracting limit c → 0− in which case
the dependence on the ηn,β functions drop out and we find [10]
ζ−1
β = (1 + ζ̃−1

β )2 − 1 = eβ (2d )2/λ2. As a result

Cs
0(β )|c→0− =

∫
dλ

2π
ln

[
λ2 + 4d2e2β

λ2 + 4d2

]
= 2d (eβ − 1) (69)

for β ∈ R, which is the SCGF of the Possion distribution
with rate 2d and is therefore twice the result we found in
the Tonks-Girardeau limit of the LL model (55). Accordingly,
we immediately find that the cumulants are κs

m(0) = 2d where
we recall that the total fermionic density is 2d . Additionally,
the model has a second analytically tractable limit of interest,
|c| → −∞. In this case, not only do ηn,β not contribute but
now neither does ζβ and the FCS are determined solely by
the two-fermion bound states. This results from the fact that
in the strongly attractive limit the fermion pairs in the initial
state which make up c†

0 form bound states which cannot be
broken apart. Thus, the long-time steady state consists only
of these quasiparticles and no others. For this we find ζ̃β =
e−2βλ4/4d4 and the corresponding initial-state FCS are

Cs
0(β )|c→−∞ =

∫
dλ

2π
ln

[
λ4 + 4d4e4β

λ4 + 4d4

]
= 2d (eβ − 1)

(70)

for β ∈ R, i.e., the same result as in the free-fermion limit,
namely, the SCGF of the Poisson distribution.

In these two limits the SCGF can similarly be computed at
the steady states, namely, we have

Cs
GGE(β )|c→0− =

∫
dλ

π
ln

[
λ2 + 4d2eβ

λ2 + 4d2

]
= 4d (eβ/2 − 1)

(71)

and

Cs
GGE(β )|c→−∞ =

∫
dλ

π
ln

[
λ4 + 4d4e2β

λ4 + 4d4

]
= 4d (eβ/2 − 1)

(72)

for β ∈ R, which equal the SCGF of the LL model at infinite
repulsion upon the substitution d → 2d .

To investigate the cumulants at finite interaction we nu-
merically integrate Eqs. (66)–(68) which requires that we
truncate the number of strings which are included, i.e.,
ηn,β (λ), σn(λ) = 0, ∀ n > Nstring, and also that we impose a
cutoff on the allowed rapidities, |λ| � �. Doing so we can
confirm that the cumulants of the steady state in fact do not
depend on the interaction strength. Similarly to the case of
the LL model, this implies that (65) yields 4d (eβ/2 − 1) with
d denoting the density of fermions, which can be confirmed
numerically.

Finally, the full time evolution of the cumulants in the non-
interacting limit can then be found using the previous result of
(57) and similarly for c → −∞ whereas at finite c we again
resort to numerical integration of the TBA system. In Fig. 6
we plot the second cumulant as a function of time for different
interaction strength. Here we note note that in contrast to
the LL model the initial state is never an eigenstate of the
model and so, regardless of interaction strength, the cumulant
relaxes at finite scaled time. Nevertheless, the approach to the
GGE value still depends upon the interaction strength with the
different dynamics being attributed to the changing role of
the quasiparticles. Specifically for large negative interaction
the two-particle bound states are dominant and as shown in
Fig. 6 their contribution is peaked nearer the slower quasi-
particles, leading to an almost linear initial decrease. As the
interaction strength is lowered, the unbound particles also start
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FIG. 6. (a) The scaled second cumulant κ s
2(t ) as a function of the

scaled time ζ = t/� for different values of the interaction strengths in
the attractive regime. The increasing interaction strengths correspond
to curves with increasing values at the ζ = 0.2 intersection. (b) The
rapidity resolved second cumulant for the two-particle bound states
(solid lines, increasing interaction values corresponding to higher
peaks) K̃2

0(λ) as a function of λ for different interaction strengths.
Also shown is the rapidity resolved second cumulant for the unbound
states (dashed lines) K2

0(λ). In the c = 0− case only unbound states
are present (sole dashed curve distinguishable from the λ axis) while
in the opposite limit |c| → ∞ only bound states are present. For any
finite interaction the unbound states are strongly suppressed and not
discernible on the same scale.

to contribute and their mode resolved cumulant is more spread
in rapidity space, leading to a faster initial decay. The string
contribution is negligible in all cases.

B. Repulsive interactions

As a final example we look at the repulsive GY model. In
this regime the spectrum of the model does not include the
two-particle bound states and we have that

Cs
GGE(β ) =

∫
dλ ρt

[
ln

(
1 + ζ−1

β

1 + ζ−1
0

)
+ ϑ ln

ζβeβ

ζ0

]

+
∞∑

n=1

∫
dλ σ t

n

[
ln

(
1 + η−1

n,β

1 + η−1
n,0

)
+ ϑn ln

ηn,β

ηn,0

]
,

(73)

where the functions ηn,β and ζβ satisfy a set of integral
equations of the form (25). After using some standard TBA
identities we find [10]

ln ηn,β = ln

[
tanh2

(
πλ

2c

)]
− δn,1s ∗ ln

[
1 + ζ−1

β

]
+ s ∗ ln[1 + ηn+1,β ][1 + ηn−1,β ] (74)

ln ζβ = ln

[
λ2 + (c/2)2

λ2eβ

]
− μc + s ∗ ln[λ2(λ2 + (c/2)2)]

+ s ∗ ln[1 + η1,β ] + sa1 ∗ ln
[
1 + ζ−1

β

]
, (75)

where μc is a Lagrange multiplier, introduced to fix the aver-
age density to be 2d and which behaves as limc→0 μc/c2 =
2d2. As in the attractive case we cannot find an analytic
solution to these equations, however, we can again consider
the noninteracting limit c → 0+. In this limit the dependence
on the ηn,β functions drops out and 1 + ζ−1

β = [1 + 4d2

λ2 eβ]2

[10]. From this we then find that

Cs
0(β )|c→0+ =

∫
dλ

2π
ln

[
λ2 + 4d2e2β

λ2 + 4d2

]
(76)

which agrees with the expression obtained from (69). Thus,
the noninteracting limits of the FCS approached from both
the repulsive and attractive sides agree.

Unlike the attractive case the opposite limit of c → ∞
presents some problems. Indeed, exactly in this limit the initial
state does not appear in the Hilbert space of the Hamiltonian
since it precludes the possibility of two fermions being at the
same position. By considering a lattice regularization of the
model and taking the limit of infinite repulsion prior to
the continuum limit it can be shown that the distribution
functions become constants [96]. Consequently, in the repul-
sive GY model, as one increases the interaction strength, the
distribution ρ(λ) becomes more and more spread in rapidity
space. In the absence of an analytic solution to (74) and (75)
must be treated numerically by first imposing some cutoff on
both the string number and the rapidity space as was done in
the attractive regime. However, the aforementioned spreading
in rapidity space of the distributions results in a strong depen-
dence on these truncation schemes, leading to unreliable data
except at small c where the results are qualitatively the same
as the noninteracting limit. Despite this, however, we expect
that the relationship between the cumulants remains valid.

VI. CHARGE PROBABILITY DISTRIBUTIONS

In the previous sections we demonstrated that the scaled
cumulants of charge fluctuations in the steady state are uni-
versal for BEC quenches in both the LL and GY models. That
is, they do not depend on the interaction strength of these
quantum gases and they are determined by scaled cumulants
in the initial states, which are essentially identical in both
models. We now address the characterization of the full charge
probability distribution in the steady state of the LL model and
in the initial and steady states of the GY model. The standard
way of achieving this task is using the Gärtner-Ellis theorem,
i.e., computing the Legendre-Fenchel transform of the SCGF
and using Eq. (8). During the previous analysis, nevertheless,
we also argued that the SCGF in the steady states of the LL
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FIG. 7. The probability distributions (large red dots and black
line) of charge fluctuations in the steady state of the LL model after
a BEC quench in a large but finite subsystem. The red dots were
obtained using Eq. (79), whereas the black continuous line corre-
sponds to the rescaled limiting PD obtained from the rate function
(78). The small blue dots show the Poisson PD of the initial state. The
subsystem size � equals 60 and the particle density is unity d = 1.

and GY models can be written by the analytic function

Cs
GGE(β ) = Cs

an(β ) =
∞∑

m=1

κs
mβm

m!
= 2d (eβ/2 − 1), (77)

independently of the interaction strengths, and where the den-
sity d denotes the density of bosons or the “quasibosons” in
the initial states of the LL and GY models, respectively. In
fact, Cs

an equals Eq. (56), that is, the Cs
GGE(β )|c→∞ expression

explicitly computed from the QA equations in the LL model.
Similarly, Cs

an(β ) equals (71) as well as (72) [that is, the
Cs

GGE(β )|c→0− and the Cs
GGE(β )|c→−∞ limits in the GY model]

apart from a factor of 2, which further underpins the validity of
Cs

an(β ) and Eqs. (77) at arbitrary interactions. Finally, we note
that the numerical solutions for the SCGF on a finite interval,
originating from the QA equations, also confirm (77).

Given the explicit analytic expression for the SCGF of the
steady states, and focusing first on the LL model, the rate
function I (z) can be easily obtained, namely,

I (z) = [2d − 2z + 2z ln(z/d )], (78)

i.e., twice the rate function of the Poisson distribution and
thus P(�z,∞) has nontrivial and non-Gaussian fluctuations
and large deviations. The rate function above unambiguously
characterizes the limiting coarse-grained PD P(�z,∞) in the
asymptotic sense [cf. (9)].

Nevertheless, as we have anticipated, it is also instructive
to approximate the steady-state PD by using

P(n,∞) ≈
∫ π

−π

dβ

2π
e−iβne�Cs (iβ ) (79)

that is by neglecting the o(�) terms in the second cumulant
generating function. To use (79) the knowledge of the second
SCGF is required, but given the analytic nature of (77), we
can invoke that

Cs
an(iβ ) = 2d (eiβ/2 − 1). (80)

In Fig. 7 we display the rescaled limiting probability dis-
tribution P(z,∞) � const × e−�I (z/�) obtained from the rate

function and the discrete probabilities resulting from (79) to
demonstrate their agreement. It is important to stress that
although the PDs look Gaussian, this is not the case since
the cumulants and the asymptotics of the PDs are markedly
different. One main feature that can be observed is that the
variance of the PD in the steady state is 1/

√
2 times that of the

initial state or, in other words, the distribution gets squeezed
during the time evolution.

A remark can be made in connection with approximating
the steady-state PD of a large but finite system via (79).
Notably, the Fourier integral can be analytically computed
resulting in lengthy expressions of trigonometric functions
and exponential integrals. However, due to these expressions it
is easy to show that Cs

an(iβ ) does not define a PD in the strict
sense, as for small-� negative probabilities can occur. Nev-
ertheless, increasing �, as expected, the probabilities become
positive numbers sum up to one and the discrete probabilities
also reproduce the predicted results for the cumulants, which
we have checked explicitly focusing on the first four.

We now turn to the discussion of the PDs in the GY model
and first consider the PD in the initial state. Similarly to the LL
model, the scaled cumulants in the initial states are constant,
that is, κs

m(0) = 2d , where d in this case is the density of
fermion pairs. In the infinite subsystem size limit, the limiting
continuous PD is therefore described by the rate function
of the Poissonian, i.e., I0(z) = 2d − z + z ln[z/(2d )]. Nev-
ertheless, the microscopic, discrete PD is anticipated to be
different from a Poissonian, due the vanishing probabilities
of odd particle numbers. As already stressed, in a strict math-
ematical sense our TBA/QA based methods allow only for
the characterization of the continuous, coarse-grained limiting
probability distributions via the rate function. However, we
can provide an approximate discrete probability distribution
through (79) that takes into account vanishing probabilities
and scales to the coarse-grained PDF as well, in the following
way. Namely, when directly computing the second SCGF at
the free-fermion limit using explicitly the integral in (69)
at imaginary β, the function denoted by Cs

0,GY turns out to
have the following properties. It is a nonanalytic function,
equals 2d (eiβ − 1) in the [−π/2, π/2] interval, and outside
this interval it is defined by the relations Cs

0,GY(iπ − iβ ) =
Cs

0,GY(iβ )∗ and Cs
0,GY(−iπ + iβ ) = Cs

0,GY(−iβ )∗, which are
the consequence of a particular choice for the branches of
the logarithm. Despite the uncontrolled treatment of these
branches, these symmetry properties ensure that the Fourier
integrals (79) vanish for every odd number. In addition, the
integrals can again be explicitly evaluated in terms of analytic
expressions and hence it can be checked that for large enough
subsystems, the probabilities are positive, sum up to one, and
the scaled cumulants match the expected value 2d . That is,
real physical behavior is correctly predicted by Cs

0,GY and
(79). We again stress that such a microscopic effect, i.e., the
vanishing of probabilities for odd numbers, shall not affect
the limiting and continuous PD P(�z, 0); however. in large
but finite subsystems, this feature is anticipated to be present
and the corresponding discrete PD is assumed to be well
approximated by Cs

0,GY(iβ ) via (79).
Finally, we discuss the charge probabilities in steady state

of the GY model after the BEC quench. The coarse-grained
PD P(�z,∞) � e−�I (z) can be simply obtained by specifying
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FIG. 8. The real and imaginary (inset) parts of the second scaled
cumulant generating functions Cs(iβ ) in the steady state of the
Gaudin-Yang model with a fixed density d = 2.4 and various inter-
action strengths. The functions are obtained from the solution of the
QA equations and performing numerical integration (c = −1.8, red
dashed line) or using exact expression for the integral (20) (c = 0
and c → −∞ indicated by black ticks and blue continuous line,
respectively). The function for c = 0 coincides with Cs

an(iβ ), i.e., the
analytic function defined by a Taylor series via the cumulants.

that I (z) equals (78) upon the d → 2d substitution. In the
following, we again attempt to focus on some microscopic
features of the discrete charge distribution in a finite sub-
system. Specifically, we are interested in whether vanishing
probabilities for odd particle numbers can occur in the steady-
state PD as it occurred for the PD of the initial state where it
was expected based on physical considerations, but was indi-
cated by the numerically computed second SCGFs as well.

In particular, the feature of vanishing odd probabilities
does take place in the c → −∞ limit, as in this case, only
the fermion, spin-singlet bound states have nonvanishing den-
sities in the steady state. That is, the unit charge is two, hence,
probabilities for odd numbers must vanish [98].

Indeed, when taking a look at the second SCGFs orig-
inating from the QA equations and plotted in Fig. 8, it
can be seen that in the c → 0−, i.e., the free-fermion limit,
the analytically computed function Cs(iβ ) obtained from
the integral in Eq. (71) performing the β → iβ substitution
equals Cs

an. Nevertheless, for nonzero interaction strengths
including the case of infinite attraction, we obtain collaps-
ing nonanalytic functions. This function can be computed
using the integral in (72) after substituting β with iβ. The
function Cs

∞,GY one obtains this way equals 4d (eiβ/2 − 1)
on the [−π/2, π/2] interval, and outside this interval it is
given by the properties Cs

∞,GY(iπ − iβ ) = Cs
∞,GY(iβ )∗ and

Cs
∞,GY(−iπ + iβ ) = Cs

∞,GY(−iβ )∗. Although the nonanalytic
behavior may again be attributed to the improper treatment
of the branches of the logarithm, interestingly, together with
the symmetry properties of the function they capture the
aforementioned microscopic physical effect, and provide an
approximate discrete PD via (79). That is, similarly to the
fermionic BEC state, the nonanalytic second SCGF with the
particular symmetry properties imply vanishing probabilities
for odd-fermion numbers, when the charge fluctuations in
large but finite subsystem are considered via (79), which is

the physically anticipated behavior at c = −∞. Moreover,
just like in the case if the free-fermion BEC initial state,
the Fourier integral (79) involving Cs

∞,GY can be computed
analytically and when the subsystem size � is large, the PD
consists of positive probabilities summing up to one, and
increasing � the scaled cumulants converge to the prescribed
value κs

m(∞) = 2d/2m−1 as we have explicitly checked for
the first four cumulants.

The situation is less understood at finite interaction
strengths in the attractive regime. Although the numerically
obtained second SCGFs collapse to Cs

∞,GY(iβ ), in this case
it is not clear whether or not the symmetry properties of the
second SCGF can be associated with a microscopic effect.
Namely, it is not obvious why the probabilities for observ-
ing an odd number of particles in a subsystem should be
zero since at finite c, the root densities for the species as-
sociated with charge 1 are nonvanishing. Their contribution
to the cumulants is, however, strongly suppressed for any
nonzero interaction (see Fig. 6) and so it is possible that in
the thermodynamic limit the odd probabilities are vanishing.
Unfortunately, this question cannot be definitively answered
within the framework of the QA techniques we are using,
therefore, we leave it open for further investigations. In the
repulsive regime of the model, however, we do not anticipate
ambiguities and the presence of such microscopic effects due
the lack of fermion bound states.

To conclude this section, we again wish to stress that by our
methods we are able to give precise predictions for the contin-
uous limiting PD P(�z) via the rate function I (z) for all the
nontrivial cases, that is, for the steady state of the LL and
the GY models. Going beyond the continuous description of
the limiting PD or, eventually the � → ∞ limit, is never-
theless out of the range of the methods we have. Therefore,
we find it worthwhile to note that despite this, in many in-
stances we could still approximate discrete and microscopic
PDs describing the charge fluctuations in large but finite sub-
systems via (79). In particular, by enhancing the periodicity
of 4d (eiβ/2 − 1) as explained above, physical microscopic
structures can be recovered in PDs of the fermionic BEC
initial states as well as of the steady state of the GY model
at infinite attraction which manifest in vanishing probabili-
ties for odd charges. This periodicity property of the second
SCGF can emerge naturally when the function is numerically
computed from the QA equations and is a result of evaluating
the logarithm at complex values and hence it may be purely
accidental. In fact, when the derivative of the second SCGF
with respect to β is computed at infinite attraction in the GY
model, an analytic function with period 4π is obtained and
hence the second SCGF is assumed to inherit the same proper-
ties. Therefore, such indications of the numerically computed
second SCGFs are always to be reconciled with additional
physical considerations, which nevertheless are lacking at the
moment for the case of the steady-state fluctuations of the GY
model at finite attractive interactions.

VII. CONCLUSIONS

In this paper we analyzed out-of-equilibrium charge fluc-
tuations in two paradigmatic models of one-dimensional
quantum gases. In particular, we investigated the Lieb-Liniger
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model which describes interacting bosonic particles, and the
Gaudin-Yang model in which the interacting particles are
fermions and explored their entire parameter space by consid-
ering generic repulsive and attractive interactions. We focused
on two particular initial states, the Bose-Einstein conden-
sate state and its fermionic analog for the Lieb-Liniger and
Gaudin-Yang models, respectively. These choices allowed for
a rather complete characterization of nontrivial charge fluc-
tuations over the course of the entire time evolution. This
achievement is due the applicability of powerful methods
relying on the integrability of the physical systems and the
peculiar structure of the initial states.

In particular, using analytical techniques [59,60,68] and
inspired by the quench action method [11], we determined
all the scaled cumulants of charge fluctuations in the steady
state as well their time evolution. These quantities character-
ize the fluctuations in a very large subsystem by keeping the
leading-order (linear in subsystem size) behavior. Whereas the
time evolution of the scaled cumulants generically depends
on the interaction strength of the models, surprisingly, their
value in the steady state was found to be independent of it.
Moreover, it was also revealed that the scaled cumulants in the
steady state are uniquely characterized by the corresponding
scaled cumulants in the initial state in a remarkably simple
fashion. In particular, the scaled cumulants κs

m(0) in both the
conventional and the fermionic BEC states are κs

m(0) = d
and 2d , respectively, where d is the density of bosons and
fermion pairs in the two states. In the steady states the scaled
cumulants κs

m(∞) are instead given by the universal relation
κs

m(∞) = κs
m(0)/2m−1. This relation was established based on

the explicit determination of the scaled cumulants in the initial
and steady states. A formal derivation of this relationship was
also provided based on comparing the full counting statistics
in the diagonal ensemble and in the generalized Gibbs ensem-
ble and by showing that the former can capture the fluctuations
in the initial state.

Thanks to the exponential decay of the scaled cumulants
in the steady states we could naturally invoke the scaled
cumulant generating function whose determination, based on
only the knowledge of the cumulants, in general, might not be
straightforward. Nevertheless, the analytic function obtained
this way also agrees the generating functions obtained di-
rectly from the quench action method at specific interaction
strength, when analytic computations are feasible or at generic
interaction strengths, when the agreement can be checked
numerically. Computing the Legendre-Fenchel transform of
this function we obtained an explicit expression for the rate
function which characterizes the limiting continuous probabil-
ity distribution in an infinitely large subsystem. In accordance
with the scaled cumulants in the steady state, this function
predicts nontrivial and non-Gaussian fluctuations and large
deviations for the charge. Additionally, we also considered the
probability distributions in large but finite subsystems, where
their discrete nature is still visible. An interesting feature
occurs in the fermionic BEC initial state as well as in the
steady state of the Gaudin-Yang model at infinite attraction.
In these cases the probabilities of observing an odd number
of charge in a subsystem identically vanish. Nevertheless,
resolving such discrete and microscopic features in strictly
finite subsystems is beyond the scope of our current methods

and hence was accomplished by relying on additional physical
input.

Our work admits several pathways for further investi-
gations. A surprising finding is the universal relationship
between the scaled cumulants of the initial and steady states,
which is a consequence of the integrability of both the models
and the initial states [99]. It would be important to identify
the precise conditions for the onset of this phenomenon and
to give a more rigorous explanation than what is presented in
this work. A noteworthy remark is that, for initial states with
vanishing scaled cumulants, such predictions clearly cannot
hold. However, universality was manifest in our examples in
another way as well, namely, by the lack of dependence on the
interaction strength of the models. It is an interesting ques-
tion whether such interaction independence can be observed
in other, possibly nonintegrable, models or in other quench
protocols, or it again requires the integrability of both the
postquench Hamiltonian and the initial state. By applying the
semiclassical arguments of the quasiparticle picture it may
be possible to go beyond initial states which have a pure
pair structure at least for free models as has been carried out
already for entanglement dynamics [100,101].

Finally, we would like to highlight that similarly to the
fluctuations of the charge, other conserved quantities can be
investigated as well. This may require some care in the partic-
ular case of the Lieb-Liniger model, as some charges can have
divergent expectation values and suitable linear combinations
have to be considered [91]. Nevertheless, the methods applied
in this work can be applied for other charges, at least for
the ones with extensive initial cumulants like the energy in
a subsystem. Last but not least, it would be worthwhile to
accomplish the challenging task of developing analytic or
semianalytic methods that can capture the subleading behav-
ior of fluctuations. This would be important to characterize
certain microscopic effects, such as the fluctuations of con-
served quantities in a subsystem for which the cumulants
admit subextensive scaling, e.g., those associated with the
Kardar-Parisi-Zhang universality class [102].
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APPENDIX: A FORMAL DERIVATION OF THE SCGF
OF THE INITIAL STATE

FROM THE DIAGONAL ENSEMBLE

A main finding of this paper is the simple relationship
between the scaled cumulants of the initial and the steady
states. This reads as κs

m(∞) = κs
m(0)/2m−1 or when promoted

onto the level of the scaled cumulant generating functions
Cs

0(β ) = 2Cs
GGE(β/2). These relations were obtained by com-

paring the FCS in the diagonal ensemble (DE) and in the GGE
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of the quench problem in Sec. II and were justified in the fol-
lowing subsections by explicitly computing the corresponding
cumulants in the initial and steady states. While our explana-
tion for these relationships at its present form shall remain
formal, in this Appendix we intend to comment more on the
nontrivial bit therein, namely, why and how the diagonal en-
semble can describe the FCS in the initial and not in the steady
state.

First of all, let us recall the result of Ref. [68], which claims
that in a (G)GE, the SCGF of a conserved charge can be
obtained by

Cs
GGE(β ) = fGGE(β (k) − β ) − fGGE(β (k) ), (A1)

where fGGE denotes the free-energy density of a GGE char-
acterized by the chemical potentials β (k) and β is associated
with the particular conserved quantity of interest. We shall use
this relation as a guideline in what follows. Let us now specify
the FCS in the initial state denoted by |�0〉,

〈�0|eβN̂A |�0〉 = 1

〈�0|�0〉
∑
�,�′

e−ε∗
�−ε�′ 〈�|eβN̂A |�′〉, (A2)

where A denotes the subsystem whose length is �, ε� =
− ln 〈�〉�0 are the logarithmic overlaps, and in Eq. (A2)
we merely expanded the initial state in the eigenbasis of the
postquench Hamiltonian. For simplicity and transparency, we
assume only one particle species. Following the logic of the
QA method, we can replace one summation by a functional
integral over root distributions assuming that the size of the
entire system L is very large and is eventually sent to infinity.
This way we may write

〈�0|eβN̂A |�0〉 =
∑
�

∫
D[ρ]eSYY[ρ][e−ε∗

�−ε[ρ]〈�|eβN̂A |ρ〉

+� ↔ ρ]
1

〈�0|�0〉 , (A3)

where SYY is the Yang-Yang entropy of the root distribution
whose exponential gives the number of microstates with the
same root distribution. Note that up to this point we have
two length scales � associated with the length of the subsys-
tem and L with the total length of the system. The essential
next step is the following: we extend the support of the
subsystem A and consider the charge operator in the entire

system. This is formal step since when L = � no charge fluc-
tuations are expected. The step is rather based on the analogy
with the treatment of FCS, more precisely, the SCGF in GGEs.
Namely, one can relate the SCGF of a very large subsystem
(� → ∞) with free-energy densities in which the conserved
quantity is regarded in the entire system. Performing this
extension, it can immediately be seen that we can get rid of
the second summation since N̂ is a conserved quantity and can
have only diagonal matrix elements. That is, we can rewrite
Eq. (A3) as

〈�0|eβN̂ |�0〉 = 1

〈�0|�0〉
∫

D[ρ]eSYY[ρ]−2 Re ε[ρ]〈ρ|eβN̂ |ρ〉,
(A4)

where we keep in mind that we changed the way of sending
L and � to infinity by essentially equating these lengths. This
expression can be further rewritten as

〈�0|eβN̂ |�0〉 =
∫

D[ρ]eSYY[ρ]−2 Re ε[ρ]+�
∫

dλ βqρ(λ)

×
[∫

D[ρ]eSYY[ρ]−2 Re ε[ρ]

]−1

, (A5)

which is equivalent to Eq. (23), if the pair structure of the
initial state is imposed. The right-hand side of (A5) is the
rewriting of 〈�0|eβN̂ |�0〉 in the diagonal ensemble. Using
the saddle-point approximation and taking the logarithm of
(A5) we can write the SCGF as a difference of two effective
free-energy densities, i.e.,

ln〈�0|eβN̂ |�0〉 = �Cs
0(β ) + o(�)

= −�

2

∫
dλ[g(λ) − 2βq)]ρ̄sp(λ)−1

2
SYY[ρ̄sp]

+ �

2

∫
dλ g(λ)ρsp(λ) + 1

2
SYY[ρsp] + o(�),

(A6)

where we adapted the notation of the logarithmic overlaps
from Sec. II, took into account the 1

2 factors due to the pair
structure of the initial state, and ρ̄sp and ρsp are the two saddle-
point root distributions of the nominator and the denominator
of (A5).
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