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Four-boson first excited state near two-body unitarity
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Near two-body unitarity, the three-boson system is characterized by an approximate discrete scale invariance
manifest in a geometric tower of bound states (the Efimov effect). In the absence of a strong four-body force, the
four-boson system has two states associated with each Efimov state, one very nearly unstable, the other several
times deeper. We study correlations between the excited- and ground-state properties, such as binding energies
and radii, up to next-to-leading order in an effective field theory for short-range forces. We obtain the parameters
in these correlations from similar correlations arising from existing precise calculations based on short-range
potentials. We also derive correlations among excited-state properties that emerge from the proximity of the
state to the break-up threshold into a boson and a three-boson bound state, using an effective field theory for
“halo” states.
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I. INTRODUCTION

Weakly bound systems display a range of remarkable prop-
erties stemming from their large size compared to the range
of interactions. Potential models with short-range interactions
have been deployed effectively to describe weakly bound sys-
tems [1], but are not always in agreement. Short-Range (or
Pionless in nuclear physics) Effective Field Theory (EFT) [2]
generalizes these models to highlight the universal behavior
of few-body systems near the limit of two-body unitarity, as
well as deviations from universality away from this limit.
As such, it can be used to connect and differentiate various
models. Here we deploy this framework to discuss the role
of a four-body scale, the analog of the three-body scale that
generates the Efimov effect [3].

Short-Range EFT consists of the most general short-range
dynamics allowed by spacetime symmetries. A crucial ingre-
dient is an a priori organization (“power counting”) of this
dynamics according to their expected impact on observables,
which is constrained by order-by-order renormalizability. At
leading order (LO), the unitary two-body system is at the
scale-invariant nontrivial fixed point of the renormalization
group (RG) [4]. Renormalization of the three-body system re-
quires a three-body force which lies on an RG limit cycle and
reduces the symmetry to discrete scale invariance (DSI) [5,6].
This LO three-body force is sufficient to guarantee the proper
renormalization of the four- [7,8] and more-body [9] systems.
As a consequence, properties of few-body systems near the

unitarity limit are determined by a single three-body-force pa-
rameter ��, up to perturbative corrections [10,11]. However,
this argument does not, by itself, prevent the appearance of a
four-body force, and thus a four-body scale, already at LO.

Because at each order only a finite number of interactions
enter, there exist correlations among observables which de-
pend only on a limited set of parameters. Moreover, which
parameters are relevant is a consequence of power counting.
In this paper, we study how well several existing calculations
conform to this framework, drawing, in particular, conclusions
about the importance of a four-body force and the conse-
quences of the extraordinarily large size of the first-excited
four-body state.

In the absence of a four-body force at LO, the energies of
all larger systems are correlated with the energy of the three-
body ground state. The form taken by this correlation depends
on the particle’s statistics. To the extent they remain within
the realm of applicability of the theory, bosonic systems form
quantum-liquid drops [12] and N-component fermionic sys-
tems tend to clusterize in N-body clusters [13,14]. In addition,
spectra display DSI in the form of geometric towers of excited
states. The first example was given by Efimov [15] in the
three-body system, where binding energies appear in a ratio
�515. It was found that each Efimov state is associated with
two states in the four-body system [8,16]: one very near the
three-body level and another �4.6 times more bound. Similar
towers have been detected in systems with more particles
[17–20].
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FIG. 1. Correlation between four-body binding energies: the
square root of the difference between the binding energies of the ex-
cited four-body state and the corresponding three-body state, namely,
B4,1 − B3, as a function of the square root of the binding energy B3

of the three-body state, both in units of the binding energy B4,0 of the
four-body ground state. Points stand for values from the literature:
Refs. [16,27] (squares), Refs. [28,29] (diamonds), Refs. [7,8] (cir-
cles), Ref. [30] (up triangle), Ref. [31] (down triangle), and Ref. [32]
(crosses). The solid line is the zero-range calculation from Ref. [25]
at unitarity. The dashed and dot-dashed lines are obtained from
Eqs. (17) and (19), respectively.

Deviations from unitarity appear at next-to-leading order
(NLO) in Short-Range EFT, in the form of a nonzero inverse
two-body scattering length, a two-body correction linear in
the energy (via the effective range) [21] and a four-body
force needed for renormalization of the four-body system
[22,23]. These corrections improve the description of few-
body systems away from unitarity [22]. For a discussion of
the implications of DSI and its breaking, see Ref. [24].

The four-body force introduces a new scale and a new pa-
rameter in the correlation between excited- and ground-state
four-body energies. This correlation was discovered in the
context of short-range models by Hadizadeh et al. [25,26].
In this approach, a zero-range two-body potential is supple-
mented by subtractions at three- and four-body levels, with
two parameters. These three- and four-body parameters lead
to a calculable correlation between the two four-body energies
with respect to the three-body energy. It has been presented as
a line on the plane of two binding energies, the “Hadizadeh
plot” [25], see Fig. 1. The correlation shown in this plot was
found as a limit cycle computed using up to three tetramer
states, which come to be bound as the four-body parameter
is moved to large values with respect to the three-body pa-
rameter. This correlation is analogous to the one found for the
energies of two successive Efimov trimer states (see Fig. 9
from Ref. [1]).

In Fig. 1, other results for the energy correlation are
also summarized, which depend on the assumptions made in
various calculations [7,8,16,27–32]. For example, the author
of Refs. [16,27] used only short-range two-body potentials,

where the effects of a finite range were minimized by looking
at states up in the tower. The results obtained from differ-
ent states were close, but not indistinguishable, from the
Hadizadeh line. They can be compared to results from two-
and three-body Gaussian short-range potentials [28,29] and
realistic helium-helium interaction models [30–32]. Correla-
tions for the energies of the atomic He trimers and tetramers
for various potentials were presented in Ref. [32], where they
were compared to results from Ref. [7]. LO calculations in
Short-Range EFT [7,8] are also shown in Fig. 1.

Can we describe at least part of the correlation between
four-body energies with Short-Range EFT at NLO? An-
swering this question should clarify the relation between
approaches to few-body systems based on contact interactions
and renormalization. Presently, there is no complete NLO
calculation of the four-boson spectrum. In the pioneering
Short-Range EFT calculation of Ref. [8], the results from
finite values of the two-body scattering length have been
used to extrapolate to the unitarity point. The large but finite
scattering-length results are, of course, part of the full NLO
correlation around the unitarity limit. Here we consider also
correlations induced by the two-body effective range and the
leading four-body force.

Correlations among other four-body quantities exist as
well, again because at LO there is a single scale and three
others appear at NLO. Some of these correlations can be
related to energy correlations exploiting the “halo” nature of
the excited state. For unknown reasons, this state is very close
to the threshold for break-up into a three-body bound state and
a particle. A lower-energy EFT, Halo/Cluster EFT [33], can be
deployed in which the three-body bound state is considered
not a three-particle composite, but an “elementary” particle.
This reduction from four degrees of freedom to two results in
an additional expansion in the ratio between the characteristic
sizes of the three-body and the associated excited four-body
states. As an example, we apply this EFT to obtain informa-
tion about correlations involving the four-body excited state’s
size.

In addition to the four-body system being the simplest
system sensitive to a four-body scale, the surprising proximity
of the excited state to threshold and its extraordinarily large
size make it very sensitive to corrections to DSI. The purpose
of our paper is to exploit the consequences of the expected hi-
erarchy of interactions through the correlations they generate
at each order. A study of these correlations at LO and NLO
forms the thread of this paper, which is organized as follows.
In Sec. II, the energy correlations from scale symmetry break-
ing at LO and NLO are discussed for the excited four-body
state. In Sec. III we use existing calculations to obtain the
correlation parameters. We briefly discuss other correlations
in Sec. IV. In Sec. V we deploy Halo/Cluster EFT to estimate
correlation parameters involving the excited-state size. Details
about various radius definitions are relegated to Appendixes A
and B. Section VI presents our conclusions.

II. ENERGY CORRELATIONS

For nonrelativistic quantum systems governed by finite-
range forces, the two-body unitarity limit can be reproduced
by a nonderivative contact two-body force which contains
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no physical parameter. The presence of a single pole at zero
energy in the two-body T matrix determines the dependence
of the two-body force on the regulator parameter, and the two-
body system is scale invariant. As more particles (bosons or
multicomponent fermions) of the same species are considered,
renormalization requires a nonderivative contact three-body
force containing a dimensionful parameter �� [5,6]. Only a
discrete scale invariance remains, which implies that there is
a tower of three-body states with a geometric series of binding
energies [15]. If there are two four-body states associated to
the three-body ground state [8,16], then DSI requires that
there are two four-body states associated with each excited
three-body state.

Short-Range EFT captures the low-energy manifestation of
DSI, but can hold only up to a maximum momentum, which
we denote by Mhi, beyond which the details of the finite-range
interaction cannot be neglected. The existence of Mhi reflects
a partial breaking of DSI, which must appear in any physical
theory. Short-Range EFT contains only semi-infinite towers
of states on top of the ground states that, for a given number
of particles, have the largest binding momenta below Mhi.

The single LO parameter �� determines all low-energy
observables. It can be determined from one three-body ob-
servable such as the three-body ground-state binding energy
B3. This observable may be obtained experimentally, or from
the underlying theory, if that is known. (For a recent example
of matching to an underlying theory with large, negative ef-
fective range, see Ref. [34].) All other observables calculated
at LO are then correlated to B3. In particular, we can write for
the LO four-body ground and first-excited binding energies
[7,8]

B(0)
4,0 = κ0B3, (1)

B(0)
4,1 = κ1B3. (2)

The universal numbers κ0 > κ1 are obtained by solving the
Schrödinger equation for a regularized contact potential fol-
lowed by removal of regulator effects. They were calculated
precisely, κ0 � 4.6108 and κ1 � 1.00228 [16] (similar val-
ues with errors were given in Ref. [27]). Equation (1) is a
correlation known as the Tjon line, observed away from two-
body unitarity with phenomenological potentials in nuclear
[35] and atomic systems [36]. These potentials can be very
different, but amount effectively to a three-body force with
a single parameter once the two-body effect is reduced to a
single contact interaction. Equation (2) is a correlation that
can be expressed in terms of the four-body ground state as

B(0)
4,1 = κ1

κ0
B(0)

4,0, (3)

where κ1/κ0 � 0.21738.
The same relations hold at LO in EFT when binding en-

ergies refer to any three-body state in the geometric tower
and its associated four-body states. By force, the ground and
first-excited states are stable. However, states up the two four-
body towers can decay into a particle plus a three-body state
of lower energy. They are thus “unstable bound states” (in the
terminology of Ref. [37]) with a nonzero imaginary compo-
nent of the energy, which is the negative of the half-width. The

half-width also has to be proportional to B3 of the associated
Efimov trimer,

�
(0)
4,0

2
= γ0B3 = γ0

κ0
B(0)

4,0, (4)

�
(0)
4,1

2
= γ1B3 = γ1

κ0
B(0)

4,0. (5)

The universal numbers γ0,1 associated with the four-body
states high in the tower were also calculated in Ref. [16]:
γ0 � 1.484 × 10−2 and γ1 � 2.38 × 10−4 (again, similar val-
ues can be found in Ref. [27]). These small numbers reflect
the mismatch in size between a four-body state and a deeper
three-body state. In fact, γ0 is within a factor of ∼1/3 of
the momentum ratio ∼(22.7)−1 between adjacent three-body
states. Thus, it is not surprising that as three-body states are re-
moved below the physical three-body ground state by making
them deeper and deeper, the widths of the two lowest physical
four-body states vanish.

These correlations represent the consequences of DSI.
However, in a physical system DSI is broken by deviations
from point interactions. When these deviations are small, they
can be incorporated as perturbations in Short-Range EFT.
New forms of the correlations arise which are distortions of
the LO correlations. At NLO, the DSI-breaking interactions
are included in first-order perturbation theory. The matrix
elements of the perturbing interactions are calculated with
respect to the LO wave functions, and thus are also universal
and governed by DSI. We look here at the NLO modifications
to the correlation (3); analogous considerations to those below
apply for the width (5).

One source of deviation from unitarity at NLO is a finite
two-body S-wave scattering length. The towers of three-body
states are frequently presented in the so-called “Efimov plot”
where energies (determined by the strength of the LO non-
derivative three-body contact force) are plotted as a function
of the two-body scattering length (determined by the strength
of a nonderivative two-body contact force). The plot can be
generalized to include in addition to three-body energies also
the four-body energies, which appear as two lines associated
with every three-body line.

At NLO in Short-Range EFT we need two more dimen-
sions to incorporate the two additional NLO parameters: the
S-wave effective range (determined by the strength of a two-
derivative two-body contact force) and the four-body scale
(determined by a nonderivative four-body contact force). The
effects of the first can, in principle, be included in a four-body
calculation just like the effect of a finite scattering length,
but the stronger singularity of the interaction breaks RG in-
variance unless a four-body force is also present [22,23]. The
appearance of a four-body scale means a four-body datum is
needed. This single four-body parameter leads to a correlation
among four-body observables which cannot be determined in
a model-independent way from fewer-body physics.

We first focus on the effect of the four-body scale by
keeping the two-body system at unitarity. As a following step
we incorporate finite two-body inverse scattering length and
effective range. Note that we use a superscript (1) to denote
the results at NLO, which include both LO (with superscript
(0)) and NLO corrections.
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A. Four-body scale

Retaining the two-body unitarity limit where the scattering
length diverges, in addition to the vanishing of the effective
range, we are limited to the plane of the three- and four-body
parameters. The four-body energies form lines as the four-
body parameter is varied. As the four-body force becomes
more attractive, the two states should get deeper and more
states become bound [38]. As it gets less attractive, the lines
must go towards zero energy. When they are close to vanishing
the system is mostly an S-wave system consisting of a particle
and a three-body core, and a Halo EFT description must be
possible.

At NLO, when the four-body force is perturbative, four-
body energies shift linearly with a four-body force parameter
that we will call E (1)

0 :

B(1)
4,0 − B(0)

4,0 = λ0(�) E (1)
0 (�), (6)

B(1)
4,1 − B(0)

4,1 = λ1(�) E (1)
0 (�), (7)

where λ0,1(�) are regulator-dependent matrix elements of the
four-body force. Their regulator dependence is compensated
by that of E (1)

0 (�), so that the binding energies become nearly
cutoff independent at large cutoff values. These quantities
depend entirely on LO physics and, in principle, do not vanish.

One parameter is needed to fix E (1)
0 (�), which we can take

to be the most natural choice, B(1)
4,0. Then B(1)

4,1 can be calculated
with only residual cutoff dependence. One consequence is
that λ1(�)/λ0(�) has a well-defined limit λ1/λ0 when the
momentum cutoff increases arbitrarily. The asymptotic value
λ1/λ0 cannot depend on B3 since λ1/λ0 is dimensionless and
there is no dimensionful parameter at LO other than B3. As a
consequence, λ1/λ0 should be the same for every three-body
bound state. The asymptotic value of λ1/λ0 can be, but has not
yet been, calculated. Until such a calculation is performed we
do not know even its sign, although one can expect λ1/λ0 > 0.
However, we do not know whether it is bigger or smaller
than 1.

From Eqs. (6), (7), and (3),

B(1)
4,1

B3
= κ1 − λ1

λ0
κ0 + λ1

λ0

B(1)
4,0

B3
, (8)

where the first term on the right-hand side is the LO cor-
relation (2), and the remaining terms represent the NLO
correction rewritten in terms of the ground-state energy at
NLO. This implies a universal, linear correlation between B(1)

4,1
and B(1)

4,0 in units of B3, with a slope λ1/λ0 and an intercept
determined by the same ratio and the known κ0,1.

B. Deviation from two-body unitarity

In addition, we can consider small deviations from
two-body unitarity when the scattering length satisfies
(a2

√
mB3)−1 � 1, where m is the particle mass. This devia-

tion can be considered in isolation since it does not require
a four-body force for renormalization. Deviation from uni-
tarity can also arise from a natural-sized two-body effective
range, r2

√
mB3 � 1. This departure can be independent of the

scattering length, but inclusion of the two-body two-derivative

contact interaction that generates the effective range requires
the presence of a four-body force.

Putting all the NLO effects together,(
B(1)

4,0 − B(0)
4,0

)
/B3 = η0(a2

√
mB3)−1

+ ζ0(�) r2
√

mB3 + λ0(�)Ẽ (1)
0 (�)/B3,

(9)(
B(1)

4,1 − B(0)
4,1

)
/B3 = η1(a2

√
mB3)−1

+ ζ1(�) r2
√

mB3 + λ1(�)Ẽ (1)
0 (�)/B3.

(10)

In these expressions, the universal dimensionless numbers
η0,1 are cutoff independent. In contrast, ζ0,1(�) are regula-
tor dependent quantities and Ẽ (1)

0 (�) is the four-body-force
parameter in the presence of the effective range. Because this
is first-order perturbation theory, λ1(�)/λ0(�) must be the
same as when r2 = 0; in particular, it approaches a cutoff-
independent λ1/λ0 for large cutoff. As is the case for λ0,1(�),
η0,1 and ζ0,1(�) depend only on LO dynamics.

Because η0,1 are cutoff independent, we can consider the
effects of the scattering length alone by setting r2 = 0 and
Ẽ (1)

0 (�) = 0. The two-body scattering length induces corre-
lated changes in B4,1 and B4,0. Following the same steps as
before,

B(1)
4,1

B3
= κ1 − η1

η0
κ0 + η1

η0

B(1)
4,0

B3
, (r2 = 0, Ẽ (1)

0 (�) = 0)

(11)

describes the change in B(1)
4,1 that accompanies a change in

B(1)
4,0 as a consequence of a variation in a2. Again, since η1/η0

is dimensionless this correlation should hold throughout the
three-body tower.

Once the range is included, the four-body force is compul-
sory. Now B(1)

4,1 does not change in lockstep with B(1)
4,0. If again

we fit Ẽ (1)
0 (�) to ensure B(1)

4,0 is fixed in terms of experimental
input, renormalization allows us to write

B(1)
4,1

B3
= κ1 − λ1

λ0
κ0 + λ1

λ0

B(1)
4,0

B3

+
(

η1

η0
− λ1

λ0

)
η0(a2

√
mB3)−1 + zr2

√
mB3,

(12)

where

z ≡ ζ1(�) − ζ0(�)
λ1

λ0
(13)

is finite for large cutoff. This is the most general form of the
energy correlation at NLO. The last two terms represent the
effects of the two-body scattering length and effective range
and break DSI if we hold a2 and r2 fixed. For r2 = 0, Eq. (12)
reduces to Eq. (11) for the scattering length that yields the full
change in B(1)

4,0, namely, (a2
√

mB3)−1 = (B(1)
4,0/B3 − κ0)/η0.

When instead a−1
2 = 0, it reduces to Eq. (8). The correlation

expressed by Eq. (12) should hold as long as the corrections
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FIG. 2. Energy of the four-body excited state B4,1 as a function
of the ground-state energy B4,0, both in units of the energy B3 of
the associated three-body state, as the two-body scattering length
is varied. The Short-Range EFT results of Ref. [8] (as listed in
Ref. [25]) for a < 0 (full circles) and a > 0 (full boxes) are fitted
with Eq. (11) (solid lines). The extrapolation to the unitarity limit is
also given (full diamond).

are perturbative and apply across the three-body tower when
all energies are rescaled.

III. ENERGY-CORRELATION PARAMETERS

In Short-Range EFT, the correlation parameters in Eq. (12)
are obtained from the expectation values of the NLO interac-
tions with respect to the LO wave function, using a consistent
regularization and renormalization scheme. Unfortunately, the
wave function for the excited state is difficult to calculate
reliably. However, some of the correlation parameters can be
inferred from existing calculations, either directly in EFT or
using potential models. In this section we interpret some of
these calculations with Short-Range EFT.

For momentum Q ∼ a−1
2 , the expansion around the unitary

limit does not converge. Still, Short-Range EFT can be orga-
nized in such a way as to account for a finite a−1

2 at LO, that
is, (Qa2)−1 terms are resummed. In fact, most applications of
Short-Range EFT do so [2]. The two four-boson states were
first calculated in this framework [8], and then a−1

2 was varied.
We collect these results (as given in Ref. [25]) in Fig. 2. Fits
with Eq. (11), which should be valid when (a2

√
mB3)−1 � 1,

yield

B4,1

B3
� 0.896468 + 0.025601

B4,0

B3
(a < 0), (14)

� 0.94742 + 0.0159823
B4,0

B3
(a > 0). (15)

The average slope is

η1

η0
� 0.0207917. (16)

The converged point κ0 � 5.61826 and κ1 � 1.040858,
marked in Fig. 2, is consistent with the average intercept
0.921944 since κ1 − κ0η1/η0 � 0.924045. Presumably the
calculation of Ref. [8] differs from that of Ref. [16] because
of range effects.

FIG. 3. Energy of the four-body excited state B4,1 as a function
of the ground-state energy B4,0, both in units of the energy B3 of
the associated three-body state, as one goes up in the Efimov tower.
Results of excited (n � 1) states [27] for two separable two-body po-
tentials (empty circles) are fitted with Eq. (8) (solid line), neglecting
the two extreme points, as shown in the inset. The converged result
[16] is also indicated (full square).

The values of κ0,1 in Ref. [16] are obtained from states
sufficiently high in the Efimov tower when a−1

2 = 0. The
results for different states are shown in Table II of Ref. [27],
starting from the ground state, for two separable two-body
potentials (sets 1 and 2). Points for excited states (n � 1 states
in Ref. [27]) are plotted in Fig. 3. They are approximately
lined up, except for the n = 1 points at the extremes where
range effects are still important. We fit the other points (points
n =2, 3, 4, and 5 for sets 1 and 2) using Eq. (12), assuming
that the last two terms on the right-hand side are absent, that
is, using Eq. (8). We obtain

B(1)
4,1

B3
� 0.928624 + 0.0159741

B(1)
4,0

B3
. (17)

Thus the slope gives one of the correlation parameters,

λ1

λ0
� 0.0159741. (18)

The value for the intercept is consistent with the values for κ0,1

[16], which, together with the slope (18), give κ1 − κ0λ1/λ0 �
0.928627. The n = 1 points of sets 1 and 2 fall above the
line by 0.0003 and 0.0016, respectively. This is consistent
with the last term on the right-hand side of Eq. (12) if
z > 0. For the other excited states, this term is expected to be
smaller by factors of �22.7 and is thus negligible, justifying
the use of Eq. (8).

Results with a four-body scale were obtained at and near
the unitarity limit in Refs. [25,26]. In the four-boson Faddeev-
Yakubovsky (FY) equations for the zero-range two-body
interaction, the three- and four-body scales can be introduced
by subtractions in the appropriate four-body Green’s func-
tions, in a way to keep the three-body binding fixed while the
four-body energy is moved [25]. As the four-body attraction
increases additional four-body states aggregate below thresh-
old and the behavior of four-body binding energies resembles
[39] the limit cycle found at three-body level, when contin-
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FIG. 4. Energy of the four-body excited state B4,1 as a function
of the ground-state energy B4,0, both in units of the energy B3 of the
associated three-body state, as a four-body scale is varied. Results
[25] for a nonpertubative implementation of this scale (dashed line)
are fitted with Eq. (8) (solid line).

uous scale symmetry is broken to a discrete version. In a
Hamiltonian framework, the dependence of four-body states
on a four-body scale is translated into a four-body short-range
interaction, which within EFT is introduced pertubatively at
NLO [22]. Therefore, a portion of the results of Refs. [25,26]
should be described in terms of the correlations obtained in
Short-Range EFT.

To allow an EFT interpretation, we compare in Fig. 4 the
FY calculations of Deltuva [16,27] and Hadizadeh et al. [25]
at unitarity. We construct a line parallel to Deltuva’s results,
that is, we use the slope (18) and adjust the intercept,

B4,1

B3
� 0.9255 + 0.0159741

B4,0

B3
, (19)

to overlap partially with Hadizadeh et al.’s curve. The re-
sults from Hadizadeh et al. show more features than the
linear dependence, which holds well within the interval 4.7 �
B4,0/B3 � 4.9. The intercept is slightly different from that
obtained in Fig. 3. A possible origin for the disparity [40]
is that in the calculations of Ref. [25] the FY components
were truncated to the S wave, while in Ref. [27] higher partial
waves were considered. It is remarkable that the slope is com-
mon to these two independent calculations, one without any
four-body force and the other obtained with the introduction
of a four-body scale in nonperturbative form. From the EFT
perspective, both approaches are effectively introducing a
four-body force, which leads to an energy correlation through
λ1/λ0.

For another way to see the differences between Short-
Range EFT and Hadizadeh et al.’s calculation, we can return
to Fig. 1. There, in addition to the results of the existing
calculations, we plot√√√√B(1)

4,1 − B3

B(1)
4,0

=
√√√√(κ1 − λ1

λ0
κ0 − 1

)(√
B3

B(1)
4,0

)2

+ λ1

λ0

(20)

for λ1/λ0 given in Eq. (18) and the two values for the inter-
cept κ1 − κ0λ1/λ0: 0.928624 (from Fig. 3) and 0.9255 (from
Fig. 4). By construction these lines describe well the results
from Refs. [16,27] and [25], respectively, at small excited
four-body energy.

Similarly to Deltuva’s extreme points, Hadizadeh et al.’s
curve in Fig. 4 shows deviations from a straight line, which
are reflected in the gentler curvature and slope with which
it approaches the x axis in Fig. 1. These deviations are con-
sistent with effective-range effects where z > 0 as defined
in Eq. (13). However, there are no explicit range effects
in Ref. [25] and other explanations for this curvature are
possible. On the left side of Fig. 4, the excited state is be-
coming unstable, presumably turning into a virtual state of
the particle + three-particle system. This is the mechanism
by which a three-body Efimov state becomes unstable as the
scattering length a > 0 decreases (see, e.g., Ref. [1]). It is
possible that such a critical point cannot be properly char-
acterized by perturbative NLO corrections in Short-Range
EFT. On the right side, the four-body force increases and
we might be seeing the appearance of higher-order effects.
Note that in the range of Fig. 4 the deviations from a
straight line are small compared to the difference between
the Hadizadeh et al.’s and Deltuva’s curve, which presumably
[40] stems from the approximations made in Ref. [25].

These results suggest that there is no conflict between
Short-Range EFT and the calculations of Hadizadeh et al.
When the implicit four-body force of the latter is relatively
weak, these calculations can be reproduced at NLO in Short-
Range EFT with the correlation parameter (18) and a small
adjustment in κ1 − κ0λ1/λ0. When the implicit four-body
force is relatively strong, the Hadizadeh et al. calculations
apply to a class of systems where a four-body scale would
appear already at LO in Short-Range EFT, even though it is
not required by renormalization.

We thus obtained two of the energy-correlation parameters
that appear in Eq. (12): λ1/λ0, Eq. (18), and η1/η0, Eq. (16).
Unfortunately, we were not able to determine the remaining
parameter, the z of Eq. (13).

IV. OTHER CORRELATIONS

Similar correlations through �� exist in Short-Range EFT
for other four-body quantities. As an example, we consider
here mean-square radii 〈r2〉(n)

4,0 and 〈r2〉(n)
4,1, defined as the aver-

age squared distance of a particle from the center of mass,
for the ground state and first-excited state at NnLO. These
radii, which we also denote by 〈r2

iG〉 (G stands for center of
gravity) in the following, are related to the average squared
interparticle distance 〈r2

i j〉 in Appendix A.
The four-body states, apart from the lowest two physical

states, are unstable bound states. This is reflected not only in
their widths, but also more generally in other quantities, such
as radii, taking on complex values. Their imaginary parts are
also correlated to other observables, but, being tied to deeper
states, are small. When the breakdown scale is accounted for,
the Efimov tower is truncated at the ground state and the
radii for the lowest two tetramer states become real as their
widths vanish. For illustration, we focus here on the real part
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of the radius, Re〈r2〉, which at LO are correlated to their
corresponding binding energies through

m
(
B(0)

4,0 − B3
)
Re〈r2〉(0)

4,0 = ρ0, (21)

m
(
B(0)

4,1 − B3
)
Re〈r2〉(0)

4,1 = ρ1. (22)

The numbers ρ0,1 obtained at large cutoff are universal as
they are dimensionless and there is no other scale at LO than
��. Using the LO binding energy and point-charge radius
(normalized by the charge) obtained for the ground state of
the 4He nucleus at unitarity [11] with finite cutoffs, we find
the universal number ρ0 = 0.8 ± 0.6. (Note that this number
may change slightly as the cutoff increases and deep, unphys-
ical trimers appear.) As a comparison, for 4He atoms, which
are close but not quite at unitarity, we extract 0.95 from the
values in Table VIII of Ref. [41]. The corresponding universal
number for the first-excited state ρ1 is harder to nail down by
direct calculation.

At NLO, linear corrections are expected from the two-body
scattering length and effective range, and from the four-body
force. Corrections from two-body currents are expected only
at higher orders. Thus one can write relations similar to
Eqs. (9) and (10) for 〈r2〉(1)

4,0 and 〈r2〉(1)
4,1 multiplied by their

respective LO energy splittings from the three-body ground
state. For the excited state, in particular, one can write, up to
higher-order terms,

m
(
B(0)

4,1 − B3
)
Re〈r2〉(1)

4,1 = ρ̃1 − ρ1

κ1 − 1

(
B(1)

4,1

B3
− κ1

)
, (23)

where B(1)
4,1/B3 is given by Eq. (12) and

ρ̃1(B3, B(1)
4,0, a2, r2) ≡ m

(
B(1)

4,1 − B3
)
Re〈r2〉(1)

4,1. (24)

Potential-model calculations for 4He atoms typically include
all orders in the deviation from unitarity, but to the extent that
higher-order corrections are small, they allow for an estimate
of ρ̃1. The corresponding number for the LM2M2 potential
can again be obtained from Ref. [41] as 0.0851. The value
of 〈r2

iG〉 is not given in Ref. [30], but using its value for 〈r2
i j〉

and Eq. (A9) we obtain 0.0406 for ρ̃1 with the same potential.
In Ref. [30], an approximation for the tetramer excited-state
wave function was made, which might be the reason for the
discrepancy with Ref. [41].

Since the four-body excited state is very close to the 3 + 1
break-up threshold, four-body calculations are made difficult
by the large distances involved. These and other correlations
can be obtained, however, from an additional expansion that
exploits the separation between the characteristic scale of
the trimer and that of the excited tetramer. We describe this
approach in the next section.

V. THE EXCITED STATE AS A HALO

Because the four-body excited state is so close to the 3 + 1
break-up threshold, it must be a halo state where one particle
orbits at a large distance from a three-particle core. Such
type of system can be described by a low-energy EFT, Halo
EFT [33], where the three-body subsystem is treated as an
“elementary” particle. This EFT is not sensitive to details
of the trimer structure, where the characteristic momentum

for each particle is Mhalo
hi ∼ √

2mB3/3. (As discussed below,
the mean-square radius of the unitary three-body cluster does
not provide a more stringent estimate.) The four-boson ex-
cited state is then effectively a two-body bound state with
a characteristic momentum Mhalo

lo ∼ √2μ(B4,1 − B3), where
μ � 3m/4 is the reduced mass. Observables related to this
state can be obtained in an expansion in the small ratio
Mhalo

lo /Mhalo
hi ∼ 3

√
κ1 − 1/2 � 1/14.

Note that the ground tetramer involves momenta
∼√2μ(B4,0 − B3) ∼ √

(κ0 − 1)2μB3 > Mhalo
hi and thus

cannot be described in this Halo EFT. Since it involves even
larger momenta ∼22.7

√
2μB3 	 Mhalo

hi , the decay of an
excited tetramer into a lower trimer must be described in
Halo EFT by imaginary parameters. The interaction strengths
must be complex and translate into complex threshold
parameters like the scattering length and the effective
range, respectively,

a0 = ar + iai, (25)

r0 = rr + iri. (26)

While a−1
r = O(Mhalo

lo ) reflects the shallowness of the excited
state, the effective range carries information about the trimer
structure and we expect r−1

r = O(Mhalo
hi ). The real parts of the

shape parameters are expected to scale with Mhalo
hi similarly

to the effective range, that is, according to their dimensions.
Since the imaginary parts are driven by physics outside the
EFT, they should be suppressed compared to the real parts
by at least one power of the breakdown scale, for example,
|a−1

i | = O(Mhalo
hi ) and |r−1

i | = O((Mhalo
hi )2/Mhalo

lo ).
Halo EFT can be applied at any order of the Short-Range

EFT expansion, where the scattering parameters between halo
particle and core can, in principle, be calculated. As long as
the Short-Range EFT expansion converges, the exact values
of these parameters will change from order to order but their
orders of magnitude, and thus the organization of the Halo
EFT expansion, will not. In fact, any underlying theory that
yields the same hierarchy of scales for the four-body excited
state is amenable to Halo EFT. We start with LO in Short-
Range EFT, using the equivalent results of Ref. [16], where
the effects of the finite range in a potential model were min-
imized by studying successively higher trimer excited states
labeled n = 1, . . .. Around n = 5 properties of the associated
excited tetramer vary little and offer a good estimate of the
unitarity limit,

a(0)−1
r /

√
2μ(B(0)

4,1 − B3) � 0.92, −a(0)−1
i /a(0)−1

r � 20.7,

r (0)−1
r /a(0)−1

r � 7.02, −r (0)−1
i /a(0)−1

r � 362.

(27)

Both |a(0)
i |/a(0)

r and r (0)
r /a(0)

r are within a factor of 2 of
the expected expansion parameter. Even though |r (0)

i |/a(0)
r is

somewhat smaller than expected, in the following we conser-
vatively treat it as if had the expected size. Ratios of similar
size are obtained for the lower (n = 1, 2, 3, 4) tetramer excited
states [16]. Note that we continue to use the superscript (0) to
denote the values of parameters from Short-Range EFT at LO,
which represents the unitarity limit. For notational simplicity
we do not add an index to make explicit the order in Halo EFT.
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With this scaling of parameters, Halo EFT for the ex-
cited tetramer is similar to Short-Range EFT, just with the
additional imaginary parameters at higher orders. The LO,
nonderivative two-body contact interaction has a real strength
determined by this state’s binding energy, B4,1 − B3, or, al-
ternatively, by the real part of the scattering length ar , the
difference being compensated at higher orders. At NLO, the
same interaction has an imaginary strength determined by ai,
in addition to a two-derivative interaction determined by the
real part of the effective range rr . At N2LO, the latter gets
an imaginary strength fixed by ri. Shape parameters, as well
as partial waves higher than S, start contributing at N3LO.
The corresponding Hamiltonian is, therefore, Hermitian at
LO and becomes non-Hermitian at NLO. The non-Hermitian
Hamiltonian at NLO is a consequence of reducing the four-
body tetramer excited-state dynamics to an effective two-body

problem in Halo EFT: deeper trimers, to which the excited
tetramer could decay to, are integrated out of the formal-
ism, and therefore tetramer instability ought to be taken
into account by an imaginary term in the two-body effective
Hamiltonian.

To account for inelasticities, the S matrix in the S wave at
energy E ≡ k2/2μ can be written as

S(k) = η(k) exp[2iδr (k)] ≡ exp[2iδ(k)], (28)

in terms of real phase shift δr and the inelasticity η. In the
two-body scattering we consider here, the EFT reduces to an
ordering of the effective-range expansion,

k cot δ(k) = − 1

ar
+ i

ai

a2
r

+ rr

2
k2 + a2

i

a3
r

+ i
ri

2
k2 + · · · . (29)

For the first three orders in the Halo EFT expansion,

δr (k) = π − arctan(kar ) − rra2
r k3

2(1 + k2a2
r )

−
(

a2
i

a2
r

+ r2
r k2

4

)
a3

r k3

(1 + k2a2
r )2

+ · · · , (30)

η(k) = 1 + 2aik

1 + k2a2
r

+ 2aiark2

(1 + k2a2
r )2

(
ai

ar
+ rrk

)
+ ria2

r k3

1 + k2a2
r

+ · · · . (31)

In Figs. 5 and 6, respectively, the real phase shift δr and the
inelasticity η from Halo EFT are plotted as functions of the en-
ergy, using as input the unitary values of scattering parameters
in Eq. (27) [16]. In both figures we show the results obtained
from the n = 5 excited trimer, but also for n = 1, 2, where we
use instead of Eq. (27) the corresponding values in Ref. [16].
In the energy region we plot, the expansion in Halo EFT

FIG. 5. The S-wave phase shifts (in degrees) for particle scat-
tering from the nth-excited trimer, δr,n, as functions of the energy
En relative to the trimer energy B3,n. Results from Halo EFT at
LO (dashed lines: red for n = 1, blue for n = 5), NLO (dash-dotted
lines: red for n = 1, blue for n = 5), and N2LO (solid lines: red for
n = 1, blue for n = 5) are compared with the direct results for n = 1
(red circles) and n = 5 (blue triangles) from Ref. [16]. Dotted lines
represent the corresponding results when the effective-range effect is
resummed.

displays a very good convergence pattern. Moreover, Halo
EFT results converge to the phase shift and inelasticity calcu-
lated directly from Ref. [16] for E � 0.1B3, a bit lower than
the estimated breakdown at ∼4B3/9. Resumming the imagi-
nary part of the scattering length and the effective range, that
is, treating them exactly instead of expanding as in Eq. (29),
gives more visible improvement for the inelasticity than for
phase shifts. This is not surprising given that η − 1 starts at
NLO and is, consequently, of smaller magnitude (note the
scale of the vertical axis in Fig. 6).

FIG. 6. The S-wave inelasticity for particle scattering from the
nth-excited trimer ηn as a function of the energy En relative to the
trimer energy B3,n. Red and blue curves and points as in Fig. 5. Green
curves and square points represent the corresponding results for the
n = 2 tetramer excited state. The LO result for the inelasticity is the
same (ηn = 1) for all states.
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We can now translate this scattering input into properties
of the excited state.

A. Energy

The S matrix has a complex pole in the complex k plane at
kr + iki with

ki = 1

ar

(
1 + rr

2ar
− a2

i

a2
r

+ r2
r

2a2
r

+ · · ·
)

, (32)

kr = ai

a2
r

(
1 + rr

ar
− ri

2ai
+ · · ·

)
. (33)

It corresponds to a relative binding energy

B4,1 − B3

B3
≡ κ2

2μB3

= 1

2μB3a2
r

(
1 + rr

ar
+ 5r2

r

4a2
r

− 3a2
i

a2
r

+ · · ·
)

. (34)

However, this bound state is unstable with a relative half-
width

�4,1

2B3
= − 1

2μB3a2
r

2ai

ar

(
1 + 3rr

2ar
− ri

2ai
+ · · ·

)
, (35)

which is O(Mhalo
lo /Mhalo

hi ) compared to the relative binding
energy, that is, an NLO effect in Halo EFT. Note that a positive
width requires ai < 0, which means that at NLO the bound
state is displaced from the imaginary momentum axis to the
left half-plane, the generic situation for an unstable bound
state [37]. Once we plug in the numbers from Eq. (27),

κ1−1 = B(0)
4,1

B3
−1 = (1.958 + 0.279 + 0.0360 + · · · ) × 10−3

� 2.27 × 10−3 + · · · , (36)

γ1 = �
(0)
4,1

2B3
= (1.89 + 0.39 + · · · ) × 10−4

� 2.28 × 10−4 + · · · , (37)

to be compared to the direct determination from Refs. [16,42],
κ1 � 2.28 × 10−3 and γ1 � 2.38 × 10−4. The convergence
pattern suggests an expansion parameter for energies ∼15%,
which is about twice what was expected.

We thus showed that the tetramer excited state is a halo
system in the sense that it can be described consistently by
Halo EFT. This EFT incorporates correlations among excited-
tetramer properties. For example, there is a relation between
B4,1 and �2

4,1 through Eqs. (34) and (35). As such, we can
estimate through the expansion of Halo EFT some correlation
parameters that are not easy to determine directly in Short-
Range EFT.

B. Radius

We illustrate this idea with the correlation parameter ρ1 in
Eq. (22) up to N2LO in Halo EFT using the complex scattering
length and effective range for atom-trimer scattering at the
unitarity limit from Ref. [16]. The real part of the energy is
expanded in Eq. (34). As discussed in Appendix B, there are
two types of contributions to the mean-square radius 〈r2

iG〉:

from the average squared distance between the particle and
the core 〈r2

ic〉 and from the core size 〈r2
core〉.

The expansion for the average distance can be adapted
from Ref. [43] using the formalism of non-Hermitian
quantum mechanics [44] or through the form factor [45],
to give

〈
r2

ic

〉 = a2
r

2

(
1 + 2i

ai

ar
− a2

i

a2
r

+ r2
r

4a2
r

+ · · ·
)

. (38)

At LO, we recover the simple relation

〈
r2

ic

〉 = 1

2κ2
+ · · · (39)

that follows from the LO wave function

ψ (
ric) =
√

κ

2π

e−κric

ric
+ · · · . (40)

At NLO and higher, one has to apply the non-Hermitian
formalism of quantum mechanics. The wave function ob-
tained from the residue of the Green’s function at the unstable
bound-state pole is then identified as an eigenstate of the non-
Hermitian Hamiltonian. It has, in addition to the exponential
fall off, an oscillatory component, which makes the radius
complex in the non-Hermitian formalism.

Apart from the range correction, we should also
consider the correction due to the finite size of the
core, which is expected to be N2LO. In the unitar-
ity limit, the mean-square radius, like everything else,
is determined by B3. In fact, it is known to be given
by [3]

〈
r2

core

〉 = 1 + s2
0

9mB3
, (41)

in which s0 � 1.00624. Note that 〈r2
core〉1/2 is approximately

three times smaller than the smallest distance ∼(2mB3/3)−1/2

that Halo EFT is expected to describe. Putting these results
together,

ρ1 = 1

16

[
1+ rr

ar
+ 3r2

r

2a2
r

− 4a2
i

a2
r

+ 4

3

(
1 + s2

0

)
(κ1 − 1) + · · ·

]
.

(42)

Using the values from Ref. [16], one obtains

ρ1 = 1
16 (1 + 0.1425 + 0.0273 + · · · ) � 0.0731. (43)

The ratio of the various orders is close to the 15% inherited
from the real part of the effective range. While entering at
N2LO because κ1 − 1 = O((Mhalo

lo )2/(Mhalo
hi )2), the finite-core

correction is only about 20% of the N2LO total, which is
dominated by effective-range effects.

Equation (42) gives a universal prediction for unstable ex-
cited states in the four-body tower from Halo EFT because we
use the universal numbers at the unitarity limit. The first term
in brackets of Eq. (42) is the LO result. It is parameter-free
and therefore holds also away from unitarity: it is purely a
consequence of the halo character of the excited tetramer.
Since for the excited state under consideration

κ2

2μ
= B(n)

4,1 − B3, (44)
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at order n in Short-Range EFT, we arrive at

m(B(n)
4,1 − B3) Re〈r2〉(n) = 1

16 = 0.0625 (45)

in LO in Halo EFT. In particular, at NLO in Short-Range EFT,

ρ̃1 = ρ1 = 1
16 . (46)

Differences appear from NLO on in Halo EFT, where param-
eters arise which depend on the deviation from the unitarity
limit. The scattering length ar , which is very sensitive to the
proximity to the trimer threshold, could change significantly,
but other ERE parameters should vary less, so we might well
expect corrections to Eq. (46) in the same range of 10% to
30% as seen above for energies.

As a comparison, our LO Halo EFT value (46) differs by
� 26.5% from the value for the 4He tetramer excited state with
the LM2M2 potential from Ref. [41], and lies in-between the
values of this reference and the value extracted from Ref. [30].
We can estimate the changes due to the effective range and
the size of the core,

ρ̃1 � m(B4,1 − B3) Re
〈
r2

iG

〉
= 1

16

[
1 + r0

a0
+ 3r2

0

2a2
0

+ · · · + 12m(B4,1 − B3)
〈
r2

core

〉]
(47)

in terms of the (real) scattering length a0 and effective range
r0 for atom-trimer scattering. Taking the values for 4He from
Ref. [30], a0 � 103.7 Å, r0 � 29.1 Å, m � 0.0825 K−1Å−2,
B4,1 − B3 � 1.11 mK, and 〈r2

core〉 � 39.97 Å2 [converted from
the mean-square interparticle distance using the relation for
N = 3 in Eq. (A9)],

ρ̃1 = 0.0625 + 0.0175 + 0.0074 + · · · + 0.0027 � 0.0901.

(48)

This number is only �6% away from the result 0.0851 of
Ref. [41]. Using instead the core values from Ref. [41], the
core contribution decreases slightly to 0.0023.

VI. CONCLUSION

Among the many surprising features of Efimov physics,
one of the most mysterious is the emergence of two towers
of geometrically spaced states in the four-boson system. The
second tower is placed so very close below to the geometric
tower in the three-boson system that normally one would
be tempted to invoke fine-tuning. Yet the splitting between
towers is an intrinsic property of the dynamics tied to discrete
scale invariance. Whatever its explanation, the proximity to
the three-body threshold means that the properties of the states
in this excited four-body tower are vulnerable to interactions
that break DSI.

In this work we used effective field theory methods to
exploit this proximity and reach several conclusions about the
properties of the excited four-body state as follows.

(1) We have pointed out that the organization of interac-
tions intrinsic to EFT leads to definite correlations among
four-body observables. The EFT at LO automatically leads
to DSI and gives rise to simple correlations that are partially
known in the literature. NLO interactions modify correlations
that exist at LO. In addition to a finite two-body scattering

length and effective range, renormalization requires a four-
body parameter.

(2) We have used arguments based on (distorted-wave)
perturbation theory to derive the explicit form of the cor-
relation between first-excited and ground states of the two
four-body towers at NLO in Short-Range EFT, Eq. (12). The
validity of this form relies on the perturbativeness of the four-
body force and, therefore, is a signal of the importance of the
three-body scale relative to the four-body scale.

(3) The large size of the excited state makes a direct calcu-
lation of the correlation parameters challenging. We have used
a variety of existing model calculations to constrain some of
the parameters appearing in the correlation between excited
and ground four-body energies.

(4) We find consistency among various model calcula-
tions, which allows them to be interpreted through Short-
Range EFT. In particular, we found that the results from
Short-Range EFT where a four-body scale enters perturba-
tively at NLO are reasonably close to part of the energy
regime explored in the calculations of Refs. [25,26], where
a four-body scale enters on the same footing as the three-
body scale. Thus we conclude that, within that limited energy
regime, the four-body scale is really a subleading effect.

(5) The fact that part of the results from Refs. [25,26]
cannot be described by the correlation (12) leads to the conjec-
ture that the calculations of Refs. [25,26] represent a different
universality class of systems where a four-body force enters
at LO, see, e.g., Refs. [38,39].

(6) We have pointed out that correlations between excited
and ground states exist involving other properties of these
states. The proximity between excited four-body and three-
body energies is reflected in the large size of these four-body
states, a size much larger than of the three-body state. We,
in particular, have derived the NLO correlation, Eq. (23),
between the radius and energy of the excited state.

(7) We have shown how a different EFT, Halo EFT, yields
correlation parameters involving the excited state’s size. Halo
EFT treats a three-body Efimov state as a single unit, reducing
the excited state to a two-body problem. We have constructed
the theory and its organizational principle.

(8) We have demonstrated the usefulness of this approach
by first exhibiting its consistency with existing calculations
of scattering and bound-state properties. Next, we have de-
termined parameters appearing in correlations between the
radius and energy of the four-body excited states at unitarity,
and showed they are close to those of existing calculations
away from unitarity. In other words, we reproduce the result of
a difficult four-body calculation thanks to a correlation based
on EFT power counting.

While we have not explained the emergence of the four-
body excited tower at unitarity, we laid the foundation for
the understanding of how its properties change with a small
explicit breaking of discrete scale invariance. The limited
validity of Eq. (12) raises the interesting question of whether
subleading effects in Short-Range EFT can invert the relative
ordering between the four-body excited state and the asso-
ciated three-body state. Without a full NLO calculation in
Short-Range EFT for the excited state, we cannot offer a con-
clusive answer. For one, we were unable to quantify from the
literature the effect of the two-body effective range captured
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by the correlation parameter z. The results given in Fig. 2
indicate that the two-body scattering length cannot drive the
instability while NLO is perturbative and the relative change
in B4,0/B3 remains small. By the same token, Fig. 3 suggests
that a moderately repulsive four-body force might lead to
instability. Even in this case, it is not clear that level inversion
can be captured without a rearrangement of the Short-Range
EFT expansion. Examples of a need for change in EFT power
counting in specific energy regimes exist for simpler systems
[2], e.g., pion-nucleon scattering in the vicinity of the Delta
peak (when the Delta self-energy is no longer a higher-order
effect) and Compton scattering on the deuteron at very small
energies (when the interaction between two nucleons cannot
be neglected in states between photon absorption and emis-
sion).

In the future, we intend to address this question with a
full four-body calculation to NLO in Short-Range EFT. We
would also like to apply these ideas to the interesting changes
these states experience [42,46] when the two-body system has
a finite scattering length which must be accounted for at LO
in Short-Range EFT.
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APPENDIX A: RADII IN SHORT-RANGE EFT

In this appendix, we relate 〈r2
i j〉, the average squared dis-

tance between two particles, to 〈r2
iG〉, the average squared

distance of a particle from the center of mass, for a system
consisting of N identical particles with mass m at positions

ri (i = 1, . . . , N), as we have in Short-Range EFT. In Secs. IV
and V we use this relation to compare results found in the
literature. The relative position of particle i to the center of
mass is


riG ≡ 
ri − 
R = 1

N

∑
j �=i


ri j, (A1)

where


R = 1

N

N∑
i=1


ri (A2)

is the position of the center of mass and


ri j ≡ 
ri − 
r j (A3)

denotes the relative position between two particles i and j.
Since the particles are identical, 〈r2

iG〉 should be the same
for any particle i, and 〈r2

i j〉 should be the same for any pair of

particles. We then have

N
〈
r2

iG

〉 = N∑
i=1

〈
r2

iG

〉 = 1

N2

N∑
i=1

〈⎛⎝∑
j �=i


ri j

⎞
⎠

2〉

= 1

N2

N∑
i=1

⎡
⎣(N − 1)

〈
r2

i j

〉+ 2
∑
j �=i

∑
k> j

〈
ri j · 
rik〉
⎤
⎦

= N − 1

N

〈
r2

i j

〉+ 2

N2

N∑
i=1

∑
j �=i

∑
k> j

〈
ri j · 
rik〉. (A4)

Using


ri j · 
rik + 
r ji · 
r jk = r2
i j (A5)

leads to

N
〈
r2

iG

〉 = N − 1

N

〈
r2

i j

〉+ Nt

N2

〈
r2

i j

〉
, (A6)

in which

Nt = N[(N − 2) + (N − 1) + · · · + 1]

= N (N − 1)(N − 2)

2
(A7)

is the total number of terms summed in the second term in the
last equality of Eq. (A4). We finally obtain

〈
r2

iG

〉 = N − 1

2N

〈
r2

i j

〉
. (A8)

Since we did not make any assumption except that the system
is composed of N identical particles, this relation is very
general. In particular,

〈
r2

iG

〉
〈
r2

i j

〉 =

⎧⎪⎪⎨
⎪⎪⎩

1/4 = 0.25, N = 2,

1/3 ≈ 0.33333, N = 3,

3/8 = 0.375, N = 4.

(A9)

The result for N = 2 is intuitively correct. In Ref. [41], the
ratios are 0.33315 and 0.33330 for the 4He trimer ground and
excited states, and 0.37467 and 0.37333 for the 4He tetramer
ground and excited states, respectively. They are all close to
the analytical values in Eq. (A9). The small deviation may be
due to approximations or numerical issues.

APPENDIX B: RADII IN HALO EFT

Here we discuss the contributions to 〈r2
iG〉 in Halo EFT that

enter up to, and including, N2LO [47]. Operators involving
two bodies and an external probe, which would bring con-
tributions beyond those from the wave function, appear at
N3LO [48]. Thus, if we denote by f (
ρ) the normalized mass
distribution, then

〈
r2

iG

〉 = 〈∫ d3 
ρ ρ2 f (
ρ)

〉
, (B1)

where the average is taken with respect to the wave function
in Halo EFT.

In Halo EFT at LO and NLO, we consider the first tetramer
excited state as two point particles of mass mc and mi at
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positions 
rc and 
ri in the center-of-mass frame. The relative
coordinate is


ric ≡ 
ri − 
rc = mi

μ

ri = −mc

μ

rc (B2)

in terms of the reduced mass μ = mimc/(mi + mc), and the
normalized mass distribution

f (
ρ) = μ

mc
δ(
ρ − 
ri ) + μ

mi
δ(
ρ − 
rc) + · · · . (B3)

The dominant contributions to 〈r2
iG〉 arise simply from the

average of the squared distance 〈r2
ic〉. At N2LO the matter

distribution gets distorted by the finite size of the constituents,
with the largest contribution from the core radius 〈r2

core〉. Up

to and including this order,

〈
r2

iG

〉 = 〈∫ d3 
ρ ρ2 f (
ρ)

〉
= μ2

mimc

〈
r2

ic

〉+ μ

mi

〈
r2

core

〉+ · · · .

(B4)

For a single-particle core, mi = mc, as considered in Ref. [43],
the core size can be neglected and 〈r2

iG〉 � 〈r2
ic〉/4, as one

would expect from a radius. Instead, here we have a core
consisting of three bosons and a halo boson. In lowest orders
we can neglect the binding energy of the core and mc � 3mi ≡
3m so that μ � 3m/4. Equation (B4) becomes

〈
r2

iG

〉 = 3

4

[〈( ric

4

)2
〉
+ 〈r2

core

〉]+ 1

4

〈(
3ric

4

)2
〉

+ · · ·

= 3

16

〈
r2

ic

〉+ 3

4

〈
r2

core

〉+ · · · , (B5)

which is consistent with the fact that a boson is a part of
the core with probability 3/4 and is the halo particle with
probability 1/4.
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