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A longitudinal radio-frequency (rf) magnetic field resonating at the Larmor frequency along the ẑ direction
in the presence of a static transverse magnetic field s investigated. Optical-radio-frequency double resonance in
85Rb characterizes the strength of an external magnetic field through the precession frequency of 85Rb atoms. The
measurements are carried out in a paraffin-coated 85Rb cell with a spin alignment configuration. An intriguing
discovery of magnetic resonance peaks is observed at subharmonics of the Larmor frequency, accompanied by
the emergence of nonlinear effects in the vicinity of the resonance. Notably, when the Larmor frequency reaches
zero, the optical rotation signals induced by the rf magnetic field demonstrate a superposition of high-order
harmonics of the rf frequency. Based on the simplified density matrix formalism and perturbation treatment,
analytical expressions for the optical rotation are consistent with experimental outcomes. These findings hold
the potential of extending our understanding on unveiling the dynamics of population and coherence among
Zeeman sublevels, thereby advancing our knowledge in the field of alignment magnetometry.
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I. INTRODUCTION

Since the pioneering work of Brossel and Bitter in the
1950s, the discovery of transitions between sublevels of
the excited state induced by a radio-frequency field at the
Larmor frequency, known as optical-radio-frequency double
resonance, marked a pivotal moment in atomic physics [1].
This foundational work laid the groundwork for extensive
investigations into energy levels, which have evolved into
multifaceted fields contributing to various scientific pursuits.
These pursuits included measuring population dynamics [2],
exploring the coherence of Zeeman sublevels [3], and finding
applications in advanced techniques recently such as atomic
magnetometry [4,5], atomic clocks [6,7], and atom cooling
[8].

In the presence of a low magnetic field (less than the
geomagnetic field), transitions within each hyperfine manifold
are degenerate. The transition frequencies remain independent
of the hyperfine sublevels of the ground state but exhibit a
linear dependence on the magnetic field, as described by the
Breit-Rabi formula. The resulting frequency, referred to as the
Larmor frequency, serves as a benchmark for comparison with
the transverse driving field [9]. During the magnetic resonance
process involving spin polarization induced by a circularly
polarized laser [10], when the transverse driving field is sig-
nificantly smaller than the bias field B0, the rotating wave
approximation [11] is often employed to solve the Bloch equa-
tion. Cohen-Tannoudji and colleagues [12] utilized Bessel
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functions to derive expressions for the magnetic resonance
lineshape. When the amplitude of the driving field becomes
comparable to or exceeds the bias field B0, the effects of cor-
rection terms to the rotating wave approximation are revealed
by making a Fourier expansion of the Bloch vector [13]. Sun
and coworkers [14] observed subharmonics of the Larmor
frequency in magnetic resonance curves and Bloch-Siegert
shifts [15]. Their work employed Floquet perturbation theory
[16] and numerical simulation of the Liouville equation [17]
to elucidate these phenomena.

In the magnetic resonance process involving spin align-
ment created by a linearly polarized laser [18], if the
transverse driving field is considerably smaller than the bias
field B0, the rotating wave approximation is applicable for
solving the Liouville equation [19]. Sudyka and coworkers
measured the Bloch-Siegert shifts and deformations of rf reso-
nance curves in a low magnetic field. They also demonstrated
the limitations of the rotating wave approximation. When the
amplitude of the driving rf magnetic field was comparable
to the bias field B0, Zigdon and coworkers [20] observed
magnetic resonance at the center of �L/3 and explained this
experimental phenomenon using the Fourier expansion of the
density matrix. Weis and coworkers [21] decomposed the
density matrix of the Liouville equation in terms of atomic
multipole moments and derived algebraic expressions for
magnetic resonance lineshapes at the Larmor frequency under
varying amplitudes of the driving rf magnetic field. Beato
and coworkers [22] mapped two parametric resonances at
zero field into the Hanle effect [23] and calculated analytical
expressions for optical rotation signals using the dressed-atom
approach.
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In this paper, we utilize linearly polarized light to achieve
n-rf photon resonance, exploring the distortion of a purely
Lorentzian profile at the center of the Larmor frequency
through the application of perturbation treatment. We ex-
tend this line of inquiry by investigating high-order magnetic
resonance in the presence of a strong driving rf field. The
orientation of the driving rf field Brf, atomic alignment states
A0, and bias magnetic field B0 all align along the ẑ direction.
When a small static magnetic field Bx0 is applied along the
x̂ direction, resonance occurs, and magnetic resonance peaks
emerge at subharmonics of the Larmor frequency (�L/m,
where m is an integer). Additionally, when the Larmor fre-
quency is zero, optical rotation signals induced by the strong rf
magnetic field exhibit a superposition of high-order harmonics
of the rf frequency, described by the summation of high-order
Bessel functions of the first kind. Simplifying the Liouville
equation of the density matrix into two time-dependent equa-
tions, we derive analytical expressions for optical rotation
based on these simplified equations and perturbation theory,
thereby demonstrating consistency with experimental results.
The organization of this paper is as follows. After describing
the density-matrix formalism analysis in Sec. II, we present
and discuss the experimental setup and results in Secs. III and
IV, respectively, followed by the conclusion in Sec. V.

II. PRINCIPLES

The generation of spin states through the interaction of a
polarized laser beam with an alkali atom is well established in
physics. When the laser beam is circularly polarized, it propels
the atom towards a polarized state, resulting in a nonzero
average value of the ẑ component of the spin polarization, par-
ticularly when the propagation of the pump light aligns with
the ẑ direction. However, a linearly polarized light induces a
quadrupole or alignment of atoms along the polarization of the
pumping light, forming a quadrupole with 3〈ŝz〉2 − 〈ŝ2〉 �= 0
when the propagation of the pump light aligns with the ẑ
direction. To accurately model the observed optical rotation
signals of 85Rb atoms interacting with linearly polarized probe
and repump lights in a long relaxation time of a paraffin-
coated cell, it is essential to consider both the probe and
repump processes, as shown in Fig. 1. The central frequency
of the linearly polarized probe laser is tuned on resonance of
the Fg = 3 → Fe = 2 hyperfine transition, and the intensity
of the probe light is approximately 10 µW, corresponding
to a Rabi frequency of �R1 ≈ 0.1 MHz. After several ab-
sorption and decay cycles, the |mF = ±3〉 sublevels become
equally populated, while the populations of the other sublevels
decrease, resulting in alignment within the Fg = 3 states.
However, a significant portion of atoms will be pumped out
of the Fg = 3 → Fe = 2 transition and populated into the
hyperfine states in Fg = 2. To recover these lost atoms and
form a closed Fg = 3 → Fe = 2 transition, a repump laser is
tuned on the resonance of the Fg = 2 → Fe = 2 transition,
which repumps the atoms in Fg = 2 back to Fg = 3 with a
Rabi frequency of �R2 , where �R2 � �R1 . The intensity of
the repump light is about 200 µW, with a Rabi frequency
of �R2 ≈ 2 MHz much closer to the natural width of the
excited state, with a value of � = 5.75 MHz. This repump
laser dramatically enhances the optical rotation signal without

FIG. 1. The general diagram depicts the interaction of two lin-
early polarized lights with the Fg = 2, 3 → Fe = 2 transitions. The
probe light (red line) and the repump light (blue line) create align-
ment in the Fg = 3 states, with the quantization axis along the ẑ
direction. The ground Zeeman sublevels are separated by an en-
ergy equivalent to the Larmor frequency �L . The magnetic Rabi
frequency between these Zeeman sublevels is denoted as �rf (green
line). For clarity, we only depict the allowed spontaneous decay for
the |Fe = 2, mF = 0〉 state, as denoted by the red dashed line.

changing any atomic states in Fg = 3 Zeeman sublevels [24].
Since the atomic populations are mainly trapped in |Fg =
3, mF = ±3〉 hyperfine states during the probe and repump
processes, the system can be simplified into a scheme where
one probe beam interacts with a four-level model containing
Fg = 1 and Fe = 0 states, as mentioned in Ref. [20].

The atoms experience a ẑ-directed B0 = B0ẑ, correspond-
ing to the Larmor frequency �L = μeffB0, where μeff =
gμB/(2I + 1), μB represents the Bohr magneton, and g is
the Landé factor (we set h̄ = 1), gμB = 2π × 28 Hz/nT, nu-
clear spin I = 5/2. The alignment of the atoms is created
and probed through the application of a linearly polarized
beam, propagating in the ŷ direction and having polariza-
tion in the ẑ direction. Additionally, a driving rf magnetic
field along the ẑ direction, denoted as Brf = B1 cos ωẑ,
is introduced, giving rise to Rabi frequency ω1 = μeff B1.
A transverse magnetic field

√
2Bx0 is in the x̂ direction,

corresponding to the frequency ωx0 = μeffBx0. The Hamil-
tonian of this model is H = μeff F · B + E · deg, where deg

is the dipole operator [17]. In the Zeeman basis |Fg =
1, mF = 1〉 = (1, 0, 0, 0)T , |Fg = 1, mF = 0〉 = (0, 1, 0, 0)T ,
|Fg = 1, mF = −1〉 = (0, 0, 1, 0)T , and |Fe = 0, mF = 0〉 =
(0, 0, 0, 1)T , the time-dependent Hamiltonian H under the
rotating wave approximation is given by

H =

⎛
⎜⎜⎝

ωz ωx0 0 0
ωx0 0 ωx0 −�R

0 ωx0 −ωz 0
0 −�R 0 −�

⎞
⎟⎟⎠, (1)

where the ωz = �L + ω1 cos ωt , �R is the Rabi frequency of
the optical transition induced by linearly polarized light, and
� = ωl − ω0 is the optical detuning [20]; ωl is the frequency
of the light and ω0 is the frequency of Fg = 3 → Fe = 2.
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The time evolution of the density matrix ρ is governed by
the Liouville equation [17], which is written in the form of

dρ

dt
= −i[H, ρ] − 1

2
{�, ρ} + �(ρ), (2)

where [, ] denotes the commutator and {, } the anticommuta-
tor. The density matrix of the system is given by

ρ =

⎛
⎜⎜⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞
⎟⎟⎠. (3)

The relaxation of system is given by the matrix

� =

⎛
⎜⎜⎝

γt 0 0 0
0 γt 0 0
0 0 γt 0
0 0 0 γt + �L

⎞
⎟⎟⎠, (4)

where the rate of spontaneous decay from the excited state is
�L, and both the ground and excited states undergo relaxation
at a rate of γt as atoms exit the light beam. The matrix �

is the repopulation of the ground state due to atoms entering
the beam and spontaneous decay from the excited state [17],
which is given by

� = 1

3

⎛
⎜⎜⎝

γt + �Lρ44 0 0 0
0 γt + �Lρ44 0 0
0 0 γt + �Lρ44 0
0 0 0 0

⎞
⎟⎟⎠. (5)

The time derivatives of ρ14 and ρ34 that determine optical
rotation signal φ can be written in the form of

d

dt
ρ14 = −

(
�L

2
+ γt − iωz

)
ρ14 − i�Rρ12 − iωx0ρ24,

d

dt
ρ34 = −

(
�L

2
+ γt + iωz

)
ρ34 − i�Rρ32 − iωx0ρ24, (6)

given that �L � ωx0,�L, ω1, γt , it is reasonable to assume
that ρ12 and ρ32 are static over the integral time t and the value
of ρ24 is negligible and can be omitted from Eq. (6), leading
to a general solution in the form of

ρ14 ≈ 2i�R

�L
ρ12,

ρ34 ≈ 2i�R

�L
ρ32, (7)

obviously, the optical rotation signal is determined by ρ12

and ρ32. Using these relationship ρ12 = −ρ23 and ρnm = ρ∗
mn,

the in-phase and out-of-phase of observable optical-rotation
signals after passing through the vapor cell are well defined in
Ref. [20], which can be written in the form of

φin = λ2
0n0�Ll

8
√

2π�R

Im(ρ14 − ρ34) = λ2
0n0l

2
√

2π
Reρ12,

φout = λ2
0n0�Ll

8
√

2π�R

Re(ρ14 + ρ34) = λ2
0n0l

2
√

2π
Imρ12, (8)

where λ0 refers to the wavelength of probe beam, n0 is the
alkali vapor density, and l is the optical length. In the case of

weak probe light and transverse magnetic field, we notice that
the magnetic field does not significantly alter the population
from the steady states. Using this assumption and above equa-
tion (7), the time evolution of 16 elements are contracted into
two equations, ρ12 and ρ13, which are briefly expressed in the
form of (

ρ̇12

ρ̇13

)
= M

(
ρ12

ρ13

)
+

(
iωx0A0

0

)
, (9)

where the matrix M is

M =
(−Rrel − iωz iωx0

2iωx0 −γt − 2iωz

)
, (10)

defining κ = 2�2
R/�L as the relaxation rate caused by probe

light, the total relaxation rate Rrel is γt + κ . The steady-state
solutions of the population are ρs

11 = (γt + 2κ )/(3γt + 4κ )
and ρs

22 = γt/(3γt + 4κ ). The equilibrium alignment A0 is
ρs

11 − ρs
22 = 2κ/(3γt + 4κ ). A0 is similar to polarization P0 in

the Bloch equation of Ref. [25], which describes the alignment
state of atoms created by polarized light. In general, this
Eq. (9) can be solved analytically by perturbation technique
[26]. We replace ωx0 in Eq. (9) by λωx0, where λ is a parameter
ranging between zero and one that characterizes the strength
of the perturbation. We now search for a solution to Eq. (9),
expressed as a power series with respect to λ is given as

ρmn = ρ (0)
mn + λρ (1)

mn + λ2ρ (2)
mn + · · · , (11)

we require that Eq. (11) be a solution of Eq. (9) for any value
of the parameter λ. To hold this condition, each coefficient
of power series with respect to λ should satisfy Eq. (9) sepa-
rately. It is not difficult to find ρ

(2n)
12 = 0, ρ

(2n)
23 = 0, ρ

(0)
13 = 0,

and ρ
(2n−1)
13 = 0, where n is the integer. We thereby obtain the

first-order derivative ρ̇
(1)
12 as

ρ̇
(1)
12 = −[γt + κ + i(�L + ω1 cos ωt )]ρ (1)

12 + iωx0A0. (12)

To simplify the integral calculation, we choose a set of
initial states ρ

(0)
11 = ρs

11, ρ
(0)
22 = ρs

22, ρ
(1)
12 (0) = 0, ρ

(1)
32 (0) = 0,

ρ12 = −ρ23, ρ23 = ρ∗
32. When employing these initial states

into Eq. (12), the solution can be written as

ρ
(1)
12 = iωx0A0

m=+∞∑
m=−∞

n=+∞∑
n=−∞

Jm(β )Jn(β )ei(m−n)ωt

Rrel + i(�L + mω)
, (13)

where β = ω1/ω is the modulation parameter and Jm(β ) is the
first kind of Bessel function. For a large modulation parame-
ter, such as β = 1, the high-order derivatives of ρ̇

(2)
13 and ρ̇

(3)
12

should be taken into consideration. The solutions of ρ̇
(2)
13 and

ρ̇
(3)
12 are given in the Appendix.

III. EXPERIMENTAL SETUP

Figure 2 depicts a schematic of the experimental setup
employed in this study. The experiment utilizes a spherical
cell with a diameter of 5 cm, containing a natural abundance
rubidium. The antirelaxation coating on the cell enhances the
coherence time between ground Zeeman sublevels, as evi-
denced by the measured half maximum and half width of the
magnetic resonance curve in Fig. 4(d), which is �v = 5 Hz.
The cell is maintained at room temperature and is positioned
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FIG. 2. Schematic of the experimental setup. A triaxial coil con-
structed by Lee-Whiting coils and saddle coils, is designed to provide
a static or oscillated magnetic field. The static magnetic field direc-
tion is along the ẑ direction, which generated by a signal generator. A
driving rf field along the ẑ direction is produced by a signal generator.
The repump and probe beams, emitted from a distributed feedback
laser and separated by about 5 mm, propagate along the ŷ direction
with the initial polarization along the ẑ direction. Optical rotation
signal of probe beam induced by atoms is detected and analyzed by
a polarimeter and lock-in amplifier. A polarimeter contains a pair of
photodiodes PD+ and PD−, a mirror, HWP, and PBS. LP is linearly
polarized plate; HWP is half-wave plate; PD is photodiode; PBS is
polarized beam splitter.

within a four-layer cylindrical μ-metal shielding for magnetic
field with a shielding factor of approximately 104.

A triaxial coil, designed using Lee-Whiting coils and sad-
dle coils, is employed to provide either a static or oscillating
magnetic field [27]. The large static magnetic field is directed

FIG. 3. The distributions of the magnetic resonance curves are
centered at �L/m, where m can be numerically simulated by
Eq. (9). The transverse frequency ωx0 = 2π × 5 Hz, A0 = 0.2, the
Larmor frequency �L = 2π × 10 kHz. The rf field with amplitude
of ω1 = 0.8�L and frequency of ω varying from 2π × 90 Hz to
2π × 10.1 kHz.

FIG. 4. Magnetic resonance peaks were observed at subharmon-
ics of the Larmor frequency with the same gain of photodiode
amplifier under two different transverse frequencies ωx0 = 2π ×
5 Hz and 2π × 20 Hz. (a)–(d) are magnetic resonance curves cen-
tered at frequency of �L/6, �L/3, �L/2, and �L . The nonlinear
effect near the resonance frequency shown in blue triangle lines and
green inverted triangle lines in (c) and (d) can be interpreted by
Eqs. (13) and (A2b).

along the ẑ direction and generated by a signal generator. We
align the quantization axis along the ẑ direction. The driving
rf magnetic field along the ẑ direction is produced by the sine
wave output of a signal generator.

Two beams, emitted from a distributed feedback laser
and separated by approximately 5 mm, propagate along the
ŷ direction with the initial polarization along the ẑ direction,
serving as the repump and probe beams. The repump light
is tuned on the resonance of the Fg = 2 → Fe = 2 transi-
tion, while the probe light is tuned on the resonance of the
Fg = 3 → Fe = 2 transition to maximize the optical rotation
signal. The intensity of the probe light is 10 µW with a 1/e2

beam diameter of approximately 5 mm. The intensity of the
repump light is 200 µW with a 1/e2 beam diameter of about
5 mm. After passing through the vapor cell, the polarization
of the probe beam is analyzed using a balanced polarimeter,
consisting of a polarizing beam splitter and two photodiodes
detecting the intensities of the two beams. The output signal
is extracted by a lock-in amplifier.

IV. RESULTS AND DISCUSSION

A. High-order magnetic resonances at subharmonics
of the Larmor frequency

In the absence of transverse magnetic field, there is
no resonance occurring. When a small transverse static
magnetic field Bx0 = 1.07 nT is applied, corresponding to
transverse frequency ωx0 = 5 Hz (� Rrel), Eq. (13) predicts
that the high-order magnetic resonances appeared at center
of ω = �L/m after being demodulated at frequency of ω.
Numeric simulations of Eq. (9) demodulated at first har-
monic of ω are depicted in Fig. 3. The parameters used in
the calculation are Rrel = 2π × 10 Hz, β = 2π × 800 Hz/ω,
�L = 2π × 10 kHz, ωx0 = 2π × 5 Hz, and A0 = 0.2. In the
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experiment, the intensity of probe light is 10 µW, the trans-
verse magnetic field Bx0 = 1.07 nT, the bias magnetic field
B0 = 2.14 µT, the rf field with amplitude of B1 = 0.8B0, and
the sweeping frequency of ω starting from 0.01�L to 1.1�L

is along the ẑ direction. After demodulating at a frequency
of ω, the profiles of the magnetic resonance curves follow a
Lorentzian distribution. The center frequency is �L/m, where
m is an integer. We choose m = 1, 2, 3, 6 and plot them in
Fig. 4. The half maximum and full width of Lorentzian curve
resonated at �L = 2π × 10 kHz is approximately 10 Hz as
depicted in Fig. 4(d). At the center of �L/6, magnetic reso-
nance curves are shown in Fig. 4(a), the half maximum and
full width of the black square line is about six times narrower
than the Lorentzian curve resonating at �L.

If the transverse magnetic field Bx0 = 4.28 nT, ωx0 is com-
parable to the relaxation rate, for example, ωx0 = 2π × 20 Hz,
then higher orders of λ come into play. The nonlinear effects,
as shown in Refs. [20,21], also occur at the center of �L and
�L/2, as depicted by the blue triangle lines and green inverted
triangle lines in Figs. 4(c) and 4(d). Continuing to increase the
value of ωx0 up to �L and nullifying the static magnetic field
along the ẑ axis, this scheme is similar to that mentioned in
Ref. [20], where resonance peaks only appear at the center
of �L/(2m − 1), where m is a positive integer. The equa-
tion that expressed magnetic resonance at the center of �L

can be carried out by substituting m = −1, m − n + q = −2,
m − n + q − p + k = −1, and m − n + q − p + k − l = −1
into Eqs. (13) and (A2b), which are simplified into

ρm
12 = ρms

12 + ρmt
12 , (14)

where

ρms
12 = −iωx0A0

J0(β )J1(β )

Rrel + i(�L − ω)
, (15)

and

ρmt
12 = − ρms

12 2ω2
x0

p=+∞∑
p=−∞

q=+∞∑
q=−∞

(
Jp+1(β )Jq+1(β )

Rrel + i(�L − ω)

× Jp(2β )Jq(2β )

γt + 2i(�L − ω)

)
, (16)

ρms
12 is a steady-state part and ρmt

12 is a time-dependent part.
ρms

12 is the term that Eq. (13) resonance at frequency of �L.
Substituting Eq. (14) into Eq. (8), the in-phase and quadrature
optical rotation signals are

φin
f = λ2

0n0l

2
√

2π
Reρm

12, (17a)

φout
f = λ2

0n0l

2
√

2π
Imρm

12. (17b)

To simulate Eq. (14), we set γt = 2π × 10 Hz, ωx0 =
2π × 20 Hz, κ = 2π × 10 Hz, ω1 = 2π × 10 kHz, �L =
2π × 10 kHz, and ω varying from 9.85 kHz to 10.15 kHz,
indices of summations p and q range from −6 to 6, these
values all correspond to the experimental parameters. The
simulation results are plotted in Fig. 5, two black square lines
are the real and imaginary parts of Eq. (14), the two red dotted
lines are the real and imaginary parts of Eq. (15), and the two
triangular lines are the real and imaginary parts of Eq. (16).

(a)

(b)

FIG. 5. Magnetic resonance curves at center of �L = 2π ×
10 kHz simulated by perturbation theory. (a) shows the real part of
ρms

12 , ρmt
12 , and ρm

12. (b) is imaginary part of ρms
12 , ρmt

12 , and ρm
12. The

deformations of Lorentzian magnetic resonance curves come from
ρ

(3)
12 .

We found the nonlinear effect near the resonance coming from
the derived term of the third-order λ. However, when the ωx0

is larger than the relaxation rate γt , perturbation theory is
not valid, thus, we need go back to Eq. (9) and utilize the
fourth-order Runge-Kutta method to numerically simulate the
fraction of magnetic resonance curves.

B. Zero field and large modulation parameters

When �L is close to zero, for Rrel � ω, we use the dc com-
ponent of Eq. (A2b) to calculate the integration of Eq. (A1b),
which can be written in the form of

ρh
12 = iA′

0e−iβ sin ωt
m=+∞∑
m=−∞

Jm(β )eimωt

Rrel + imω
, (18)

where

A′
0 = ωx0A0

(
1 − 2ω2

x0J0(β )2J0(2β )2

Rrelγt

)
.

Substituting Eq. (18) into Eq. (8), the general form of the
optical rotation signal available in the regime of high rf power
could be given by

φh = G0
λ2

0n0l

2
√

2π
Reρh

12, (19)

where the l is optical length and G0 is a scaling factor to
ensure alignment with the signal’s amplitude.

In the case of low rf power, characterized by a small mod-
ulation parameter β, for example, β = 0.05, only the m = 0
and m = ±1 terms in Eq. (19) are significant. By employ-
ing the Jacobi-Anger expansion Eq. (A3) into Eq. (18) to
expand the eiβ sin ωt , and omitting the dc component while
retaining the low order of Bessel functions, the optical rotation
signals in this regime can be simplified into

φs = G0
A′

0λ
2
0n0l√

2πRrel

J0(β )J1(β ) sin ωt, (20)

the static magnetic field in the x̂, ŷ, and ẑ axes are 21.4 pT,
zero, and zero, respectively. The spin relaxation rate Rrel is
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FIG. 6. Measurements of optical rotation signal at different mod-
ulation parameters of β. The static magnetic field in x̂ direction is
about 21.4 pT, which in ŷ and ẑ axes are zero. The relaxation rate
Rrel = 2π × 10 Hz. The triangles are experimental data and black
lines are numerical fitting curves.

2π × 10 Hz. The intensity of the probe light is 10 µW. Fig-
ure 6 shows the optical rotation signals at different modulation
parameters of β. The black triangles in Fig. 6(a) show the
β = 0.05 which is explained by Eq. (19). When the power
of the rf field is increased, the high order of Bessel function
in Eq. (19) should be taken into consideration. The curves
depicted in Figs. 6(b), 6(c) and 6(d) are the superpositions of
different harmonic waves.

We substitute parameters γt = 2π × 1 Hz, ωx0 = 2π ×
0.1 Hz, κ = 2π × 3 Hz, ω = 2π × 5 Hz, λ0 = 794.9825 nm,
the saturated vapor density n0 = 1.27 × 1010/cm3, l = 5 cm,
G0 ≈ 0.07 into Eqs. (9) and (19), and we plot the optical
rotation angle φh at different modulation parameters, β =
0.05, 5, 25, 100 as shown in Fig. 6. Moreover, we could also
use these parameters to calculate the numeric solution of
Eq. (9). The theoretical solutions obtained by perturbation the-
ory and numerical simulation based on the simplified Eq. (9)
are both consistent with the experimental data.

V. CONCLUSION

In summary, our investigation into high-order magnetic
resonances of spin alignment in the presence of a longitudinal
rf field, both theoretically and experimentally, has yielded
insightful results. Specifically, when a longitudinal driving rf
magnetic field resonates at the Larmor frequency along the ẑ

direction, in the presence of a small static magnetic field in
the transverse plane, we observed magnetic resonance peaks
at the center of fractional Larmor frequencies, accompanied
by the emergence of nonlinear effects near the resonance
frequency.

Furthermore, our study revealed that when the Larmor fre-
quency reached zero, optical rotation signals induced by a rf
magnetic field exhibit a superposition of high-order harmonics
of the rf frequency. This phenomenon is accurately described
by the summation of high-order Bessel functions of the first
kind. A key highlight of our work lies in the simplification
of the time-derivative equations governing the 16 density ma-
trix elements into two equations, primarily concerning ρ12

and ρ13, which predominantly determine the optical rotation
angle. These simplified equations can be easily solved using
Jacobi-Anger expansion and perturbation theory. Importantly,
the analytical expressions derived for optical rotation signals
align well with our experimental results.

These findings hold promise for extending our under-
standing of the dynamics of alignment states. The ability to
accurately model and manipulate high-order magnetic res-
onances opens avenues for advancing both theoretical and
practical aspects of spin alignment, with implications for im-
proving the performance of magnetometers.
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APPENDIX: CALCULATION OF HIGH ORDER λ OF ρ12

AND ρ13 BY PERTURBATION METHOD

Starting from Eq. (13), the general solution of ρ̇
(2)
13 and ρ̇

(3)
12

are in the form of

ρ
(2)
13 = 2iωx0e−(γt +2i�L )t+2iβ sin ωt

×
∫ t

0
e(γt +2i�L )t1+2iβ sin ωt1ρ

(1)
12 dt1, (A1a)

ρ
(3)
12 = iωx0e−(Rrel+i�L )t+iβ sin ωt

×
∫ t

0
e(Rrel+i�L )t1+iβ sin ωt1ρ

(2)
13 dt1, (A1b)

Equation (A1) can be expanded by Jacobi-Anger expressions
and then take the integration, which can be shown as

ρ
(2)
13 = −2ω2

x0A0

p=+∞∑
p=−∞

q=+∞∑
q=−∞

m=+∞∑
m=−∞

n=+∞∑
n=−∞

(
Jm(β )Jn(β )ei(m−n)ωt

Rrel + i(�L + mω)

Jp(2β )Jq(2β )ei(q−p)ωt

γt + i(�L + (m − n + q)ω)

)
, (A2a)

ρ
(3)
12 = −2iω3

x0A0

l=+∞∑
l=−∞

k=+∞∑
k=−∞

p=+∞∑
p=−∞

q=+∞∑
q=−∞

m=+∞∑
m=−∞

n=+∞∑
n=−∞

(
Jm(β )Jn(β )ei(m−n)ωt

Rrel + i(�L + mω)

× Jp(2β )Jq(2β )ei(q−p)ωt

γt + i(2�L + (m − n + q)ω)

Jk (β )ei(k−l )ωt

Rrel + i(�L + (m − n + q − p + k)ω)

)
, (A2b)
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where the Jacobi-Anger expansion [28] is

eiβ sin ωt =
+∞∑

m=−∞
Jm(β )eiωt . (A3)
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