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Modified saddle-point method applied to high-order above-threshold ionization and high-order
harmonic generation: Slater-type versus asymptotic ground-state wave function
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We present a modified saddle-point method and apply it to the high-order above-threshold ionization (HATI)
and high-order harmonic generation (HHG) processes. When we use the Slater-type orbitals to describe the
ground-state wave function of the valence electron in a noble gas atom, we cannot apply the ordinary saddle-point
method (SPM) because the singular points of the ionization matrix element, as well as the recombination matrix
element for HHG, are in the vicinity of the corresponding saddle points. Therefore, we present a modification of
the SPM and show that the obtained results are in excellent agreement with the spectra calculated by numerical
integration. Furthermore, we compare the results obtained by the modified SPM with those obtained by the
ordinary SPM with the asymptotic ground-state wave function. We conclude that both methods work for HATI,
but for HHG we show that it is necessary to use the modified SPM because the recombination happens close to
the atomic core, where the electron ground state is well described only by the Slater-type orbitals.
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I. INTRODUCTION

Since the early days of lasers, advances in nonlinear optics
have been closely linked to the quest for shorter laser pulses.
These efforts have led to our ability to observe and manipulate
the behavior of electrons in atoms and molecules with attosec-
ond pulses—the shortest pulses currently available [1–5]. To
generate, separate, and analyze attosecond pulses, it is essen-
tial to understand the interaction between strong laser fields
and matter. In the field of ultrafast laser-matter interactions,
the phenomena of above-threshold ionization (ATI) [2,6–9]
and high-order harmonic generation (HHG) [6,10–12] are
processes that have been studied with particular attention. The
attempts to describe these phenomena have led to the de-
velopment and application of various theoretical frameworks.
Among these, the saddle-point method (SPM) proves to be a
powerful and versatile tool that provides valuable insights into
the interaction between intense laser fields and matter.

In the ATI process, an atom or molecule is ionized in the
presence of a strong laser field, whereby more photons are
absorbed from the laser field than are required for ionization.
For certain laser-field configurations, the liberated electron
can be compelled back toward its parent ion by the laser
field. Should this electron recombine with the ion, its en-
tire energy is emitted during the HHG process as a single
high-energy photon. In addition, the returning electron can
elastically scatter off the parent ion and move toward the
detector with a higher energy. This process is called high-
order ATI (HATI). The presented model for both HHG and
HATI is called the three-step model [13,14]. Both processes
can be theoretically described by a semiclassical theory based
on the strong-field approximation (SFA) [2,6,15–17]. Within
the SFA, the transition amplitude of HHG and HATI pro-
cesses can be represented by a multidimensional integral over

ionization time, recombination (rescattering) time, and the
canonical momentum between ionization and recombination
(rescattering). Since the integrating function can be written as
a product h(z) exp[iS(z)], where h(z) and S(z) are complex
analytic functions of the complex variable z, the transition
amplitude of HHG and HATI can be calculated by solving
the five-dimensional integral using the SPM. Within the SPM,
one has to find complex solutions zs of the saddle-point (SP)
equation dS/dz = 0 and then expand the functions h(z) and
S(z) around these SP solutions. The corresponding integral
can be then approximated by the sum of the contributions of
the SP solutions.

The SP solutions for ATI induced by various laser fields
have been analyzed in detail in Ref. [18]. For a linearly po-
larized laser field the classification of the SP solutions and
analysis of the corresponding quantum trajectories (orbits) has
been presented in Ref. [19] for HHG and in Refs. [20,21] for
HATI. The case of an elliptically polarized field has been an-
alyzed in Refs. [22–24], while the bicircular and orthogonally
polarized two-color fields were considered in Refs. [25–27]
and [28,29], respectively.

In the present paper we consider the application of the SPM
to HHG and HATI processes, where the ground-state wave
function of the valence electron is modeled as an asymptotic
or as a Slater-type orbital (STO) wave function (by the STO
wave function we mean that it is given as a linear combination
of the STOs). If we use the asymptotic wave function, then the
ionization and recombination matrix elements are singular at
the saddle points. The singularity problem was solved earlier
[30] and the SPM was applied to HATI [2,26] and HHG
[27]. On the other hand, if we use the STO as the ground-
state wave function, the ionization and recombination matrix
elements are not exactly singular at the saddle points, but
the singular points are very close to the saddle points. Since
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the direct application of the SPM is not possible in this case,
we introduced a modification of the SPM based on the ex-
pansion of the ionization matrix element in the Laurent series
around each singular point and applied it to ATI [31]. In
the present paper we apply this modified SPM to analyze
HATI and HHG spectra for a linearly polarized laser field.
We find excellent agreement between the spectra obtained
using the modified SPM and those obtained by the numerical
integration of the T -matrix element, and conclude that it is
appropriate to use the modified SPM in the analysis of the
HHG process. We use atomic system of units.

II. THEORY

A. Improved strong-field approximation for HATI and HHG

The quantum-mechanical treatment of the above-
mentioned three-step model is based on the improved
strong-field approximation (ISFA) [2,6,26]. The ISFA
assumes that the electron released in the HATI (HHG)
process interacts with the parent ion only during ionization
and rescattering (recombination), while the interaction with
the parent ion during propagation is neglected. For both
processes, the T -matrix element can be written in the form
[6,15–17,26]

T P
m (n) = − i

T

∫ T

0
dt

∫
dk

∫ t

−∞
dt0 eiSP (k;t,t0 )

×MP(k; t )〈k + A(t0)|r · E(t0)|ψlm〉, (1)

where n is the number of absorbed laser field photons having
the angular frequency ω, T = 2π/ω is the period of the laser
field, and P denotes the process (HATI or HHG), while t0
is the moment of ionization, t the moment of rescattering
(recombination), k the canonical momentum between the ion-
ization and rescattering (recombination), and E(t ) = −Ȧ(t )
the electric field vector, with A(t ) being the vector poten-
tial. For HHG the number of absorbed photons n is equal to
the harmonic order, while for HATI the energy conservation
condition is nω = Ep + Ip + Up, where Ep is the emitted pho-
toelectron energy, Ip is the atomic ionization potential, and Up

is the ponderomotive energy of the electron in the laser field
[26].

In Eq. (1) 〈k + A(t0)|r · E(t0)|ψlm〉, with ψlm the ground-
state wave function characterized by the orbital quantum
number l and the magnetic quantum number m, is the
ionization matrix element, while MP(k; t ) represents the
rescattering (recombination) matrix element in the case of
HATI (HHG). The rescattering matrix element in the first
Born approximation does not depend on the time t and is given
by

MHATI(k; t ) ≡ Mp(k) = 〈p|V (r)|k〉, (2)

where p is the final momentum of electron. By using the
double Yukawa potential [32]

V (r) = − Z

H

e−r/D

r
[1 + (H − 1)e−Hr/D], (3)

with H = DZ0.4, where Z is the atomic number (for the
neon atom Z = 10 and D = 0.500), we easily derive the

rescattering matrix element (2), which is given by

Mp(k) = − Z

2π2H

[
1

K2 + D−2
+ H − 1

K2 + (
H+1

D

)2

]
, (4)

with K = p − k. The recombination matrix element in the
case of HHG is given by

MHHG(k; t ) ≡ M j (k; t ) = 〈ψlm| j|k + A(t )〉, (5)

where j = x, y defines the polarization axis of the harmonic
field. Both the ionization and recombination matrix elements
can be obtained directly from the dipole matrix element 〈k +
A(t )|r|ψlm〉, derived in the Appendix. The modified actions
SP(k; t, t0) for HATI and HHG processes can be written as

SHATI(k; t, t0) = Sp(t ) − Sk(t ) + Sk(t0) + Ipt0,

SHHG(k; t, t0) = nωt − Sk(t ) + Sk(t0) − Ip(t − t0), (6)

with Sp(t ) = ∫ t dt ′[p + A(t ′)]2/2.
In the case of HATI, the physically measurable (observ-

able) quantity is the differential ionization rate (averaged over
all possible values of m), defined as

w̄p(n) = 4π p
l∑

m=−l

∣∣T HATI
m,p (n)

∣∣2
, (7)

where we added the subscript p in the T -matrix element to
denote the final electron momentum, with p = |p|. For HHG
the T -matrix elements are summed coherently [33] and the
physically measurable quantity is the intensity of the nth har-
monic

In = (nω)4

2πc3

∑
j=x,y

∣∣∣∣∣∣
l∑

m=−l

T HHG
m, j (n)

∣∣∣∣∣∣
2

, (8)

where subscript j in the T -matrix element denotes the polar-
ization axis of the emitted harmonic.

B. Saddle-point method treatment

In order to find the differential ionization rate in the HATI
process or the intensity of the nth harmonic in the HHG
process, the SPM can be applied. The saddle-point-method
approximation is performed when one deals with highly os-
cillatory integrals of the form

∫
�

dz h(z) exp[iS(z)], where
h(z) and S(z) are complex analytic functions of the complex
variable z. In the SP approximation, the contour of the inte-
gration � is deformed so that it passes through the saddle
points zs which are solutions of the SP equation S′(zs) = 0
(see Ref. [18] and references therein). The main contributions
to the integral come from small neighbourhoods around these
saddle points. If the function h(z) does not change too much
around the saddle points zs it can be approximated by its value
at the saddle point h(zs) and our integral can be approximated
as [34–39]∫

�

dz h(z)eiS(z) ≈
∑

s

√
2π i

S′′(zs)
h(zs)eiS(zs ). (9)

The usual treatment of HATI and HHG (see
Refs. [26,27,29]) is to first apply the SPM to the integrals
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∫ T
0 dt

∫
dk in the T -matrix element (1) and then to the

integral
∫ t
−∞ dt0. The triple integral over dk results in the

factor {2π/[i(t − t0)]}3/2 with the corresponding SP solution

kst = −α(t ) − α(t0)

t − t0
, (10)

where α(t ) = ∫ t dt ′A(t ′). Physically, Eq. (10) represents the
return condition of the electron to the parent ion. The in-
tegral over dt gives the factor (2π i/S′′

P,s)1/2, where S′′
P,s =

∂2SP(kst; t, t0)/∂t2|t=ts , while ts are solutions of the SP equa-
tion ∂SP(kst; t, t0)/∂t = 0. For HATI we obtain

S′′
HATI,s = (kst − p) · E(ts) + [kst + A(ts)]2

ts − t0
, (11)

with the saddle-point equation
1
2 [kst + A(ts)]2 = 1

2 [p + A(ts)]2, (12)

while for HHG we can write

S′′
HHG,s = [kst + A(ts)] · E(ts) + [kst + A(ts)]2

ts − t0
, (13)

with the corresponding SP equation
1
2 [kst + A(ts)]2 = nω − Ip. (14)

Equations (12) and (14) represent the energy conservation
conditions at the moment of rescattering and recombination,
respectively. The T -matrix element now takes the form

T P,SP
m (n) = 23/2π2

iT

∑
ts

∫ ts

−∞
dt0

MP(kst; ts)

[i(ts − t0)]3/2

(
2i

S′′
P,s

)1/2

×〈kst + A(t0)|r · E(t0)|ψlm〉eiSP (kst;ts,t0 ). (15)

The SP treatment of the integral over dt0 is a little more
complicated. The SP equation ∂SP(kst; ts, t0)/∂t0 = 0 for sad-
dle points t0s is the same for HATI and HHG, and has the form

1
2 [kst + A(t0s)]2 = −Ip, (16)

which represents the energy conservation condition at the
moment of ionization. However, the ionization matrix element
〈q0s|r · E(t0)|ψlm〉, with q0s = kst + A(t0s), either diverges at
the saddle points if we use the asymptotic wave function as
the ground-state function ψlm [see Eq. (A11) with (A10)], or
it has singular points very close to the saddle points if we use a
linear combination of STOs as the ground-state wave function.
The latter can be seen from Eq. (A19) by comparing the values
of the coefficients ζ 2

i with 2Ip.
However, the asymptotic ground-state wave function de-

scribes only the behavior of the electron far from the nucleus
of an atom, while the STO ground-state wave function de-
scribes the electron’s behavior both near and far from the
atomic nucleus. In Fig. 1 we have plotted the logarithm of the
electron probability density ρ(r) = |ψ0(r)|2, with ψ0 ≡ ψlm,
as a function of the distance from the nucleus (we have limited
ourselves to the x axis only), for the neon atom with l = 1
and m = 1, using the STO (red solid line) and the asymptotic
(black dashed line) ground-state wave function. We can see
that for x larger than 2.5 a.u. the asymptotic wave function

FIG. 1. Logarithm of the electron probability density ρ(r) =
|ψ0(r)|2 (in a.u.) as a function of the distance from the nucleus on the
x axis, for the neon atom with l = 1 and m = 1, obtained using the
STO ground-state wave function (red solid line) and the asymptotic
ground-state wave function (black dashed line).

almost coincides with the STO wave function. However, in the
vicinity of the atomic nucleus the two wave functions differ
significantly. This will have a particular impact on the HHG
rate because it contains the recombination matrix element
〈ψlm| j|kst + A(ts)〉 and because the SP equations imply that
the recombination occurs very close to the center of the atom.
For more detailed analyses of the initial-state wave-functions
effects in (H)ATI and HHG spectra of anions and noble gases
see Refs. [40–42].

The problem with the ordinary SPM that arises when we
use the STO ground-state wave functions is that, due to the
proximity of the singular points to the saddle points, we can-
not assume that the subintegral function does not change too
much around the saddle points, and therefore we cannot use
the formula (9). In the following we separately present appli-
cation (modification) of the SPM in order to solve problems
that arise in the case of asymptotic (STO) ground-state wave
functions.

1. SPM for the case of overlapping saddle
points and singular points

For the case of asymptotic ground-state wave functions the
subintegral function diverges at the saddle points, and formula
(9) is not applicable. The problem was solved in Ref. [30]
using the formula (see also Refs. [18,43,44])

∫
�

dz
eiS(z)

[S′(z)]ν
≈ iν

�(ν/2)

2�(ν)

√
2π i

S′′(z0)

[
2

iS′′(z0)

] ν
2

eiS(z0 ), (17)

where �(ν) is the Gamma function. In order to obtain the
desired form in Eq. (15), the first line is approximated by its
value at t0s (this is justified because it does not change too
much around t0s). Then, the integral of the factor in the second
line of Eq. (15), after a partial integration, becomes∫ ts

−∞
dt0 〈q(t0)|r · E(t0)|ψlm〉eiSP (kst;ts,t0 )

= −
∫ ts

−∞
dt0 ψ̃lm(q(t0))

[
q2(t0)

2
+ Ip

]
eiSP (kst;ts,t0 ),

(18)
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where q(t0) = kst + A(t0). If we now apply the formula (17)
to the integral (18), we obtain the T -matrix element for the
case of asymptotic ground-state wave function

T P,SP
m (n) = i

T
Aπ2κνν�(ν/2)

∑
t0s,ts

MP(kst; ts)

[i(ts − t0s)]3/2

×
(

2i

S′′
P,s

)1/2(
2i

S′′
P,0s

)(ν+1)/2(q0s

iκ

)l

×Ylm(q̂0s) eiSP,s , (19)

with SP,s = SP(kst; ts, t0s) and (both for HATI and HHG)

S′′
P,0s = ∂2SP(kst; ts, t0)

∂t2
0

∣∣∣∣
t0=t0s

= −E(t0s) · q0s. (20)

The quantities A, κ , and ν are defined in the Appendix,
Ylm(q̂0s) are spherical harmonics, and q0s = q(t0s). Since this
type of the SPM treatment has been conventional so far
[26,27,29], we refer to the results obtained by Eq. (19) as
ordinary SPM treatment of HATI and HHG.

2. Modified SPM for the case when saddle points and singular
points are in close proximity

The problem that arises for the STO ground-state wave
function was analyzed before for the process of direct ioniza-
tion (ATI) [31]. In this paper we generalize this approach and
apply it to HATI and HHG. The modified SPM deals with the
integrals of the form

∫
�

dz h(z) exp[iS(z)], where the function
h(z) has singular points Zs very close to the saddle points zs of
iS(z). The idea is to expand the function h(z) in the Laurent
series around the singular points Zs (we assume that these are
the poles of order k0)

h(z) = a−k0,s

(z − Zs)k0
+ a−(k0−1),s

(z − Zs)k0−1
+ · · ·

+ a−2,s

(z − Zs)2
+ a−1,s

z − Zs
+ hs,reg(z), (21)

and then to integrate the principal and regular parts of the Lau-
rent series separately. Since the entire singularity is contained
in the principal part, the regular part hs,reg(z) can be integrated
using the ordinary SPM (9). Integration over the principal part
leads to the integrals of the form

A−k,s =
∫ ∞

−∞
dη

e−η2

(η − bs)k
, (22)

with bs = (Zs − zs)/
√

2i
S′′(zs ) , which can be calculated via the

recurrence relation

A−(k+1),s = −2

k
[bsA−k,s + A−(k−1),s], (23)

with

A−1,s = iπe−b2
s erfc(−ibs), A0,s = √

π, (24)

where erfc(z) is the complementary error function. Adding
it all up, the initial integral in the modified SPM can be

approximated by [31]

∫
�

dz h(z)eiS(z) ≈
∑

s

[
k0∑

k=1

a−k,s

[
2i

S′′(zs)

](1−k)/2

A−k,s

+
√

2π i

S′′(zs)
hs,reg(zs)

]
eiS(zs ). (25)

The ionization matrix element 〈q(t0)|r · E(t0)|ψlm〉 in the
ionization integral [first line in Eq. (18)] has the role of
function h(t0) and, for neon atoms described with the STO
ground-state wave function, it can be written in the form [see
Eq. (A19)]

h(t0) =
4∑

i=1

hi(t0) =
4∑

i=1

wi(t0)

[gi(t0)]4
, (26)

where gi(t0) = q2(t0) + ζ 2
i and

wi(t0) = −mCi
8ζ

7/2
i

π
[Ex(t0) fx(t0) + Ey(t0) fy(t0)],

fx(t0) = q2(t0) − 6q2
x (t0) − 6miqx(t0)qy(t0) + ζ 2

i ,

fy(t0) = miq2(t0) − 6qx(t0)qy(t0) − 6miq2
y (t0) + miζ 2

i , (27)

where the index i denotes the STOs, while the dependence on
quantum numbers l and m is assumed implicitly. The function
h(t0) has fourth-order poles at the points t0si which satisfy the
equations gi(t0si ) = 0, i.e.,

[kst + A(t0si )]
2 = −ζ 2

i , i = 1, 2, 3, 4. (28)

These equations have the same form as the SP equation (16),
with the only difference that 2Ip is replaced by ζ 2

i . Since the
values of the coefficients ζ 2

i are very close to the value of
2Ip (especially for the first two STOs in the case of neon
atoms), the singular points t0si are close to the saddle points t0s.
Therefore, the index s in t0si denotes the saddle point which is
in a close neighborhood of the singular point, while the index
i denotes the STO for which the singularity occurs. Applying
formula (25) to the ionization integral (18), we obtain the
T -matrix element in the modified SP approximation, by using
the STO ground-state wave function of neon atoms, in the
following form:

T P,MSP
m (n) = 23/2π2

iT

∑
t0s,ts

MP(kst; ts)

[i(ts − t0s)]3/2

(
2i

S′′
P,s

)1/2

× eiSP,s

4∑
i=1

[
4∑

k=1

a−k,si

(
2i

S′′
P,0s

) 1−k
2

A−k,si

+
(

2iπ

S′′
P,0s

)1/2

hsi,reg(t0s)

]
, (29)

where we have added the index i to a−k,si, A−k,si, and
hsi,reg(t0s) to account for all four STOs. The implicit depen-
dence on the quantum numbers l and m is assumed by the
expansion coefficients a−k,si. For the function (26) the expan-
sion coefficients a−k,si are given in Ref. [31]. We refer to the
result (29) as the modified SPM treatment of HATI and HHG.
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We emphasize that the algorithm for finding saddle points
and singular points consists of the following steps. We first
solve the system of equations

1
2 [kst + A(ts)]2 =

{
1
2 [p + A(ts)]2, HATI,

nω − Ip, HHG,
(30)

1
2 [kst + A(t0s)]2 = −Ip, (31)

(ts − t0s)kst = α(t0s) − α(ts), (32)

to find the saddle points {t0s, ts}, and then solve the equation

[kst + A(t0si )]
2 = −ζ 2

i , (33)

for each saddle point (with the corresponding value of kst) and
for each STO, in order to find the singular point t0si of the ion-
ization matrix element that is in the vicinity of corresponding
saddle point t0s.

III. NUMERICAL RESULTS

We present HHG and HATI spectra of Ne atoms (in the
initial state with the orbital quantum number l = 1 and the
magnetic quantum number m from −l to l) exposed to a
linearly polarized laser field, polarized in the x direction, ob-
tained by numerical integration and by the modified SPM. By
numerical integration we mean two-dimensional integration
over the times t0 and t in Eq. (1), after the integral over the mo-
mentum k was solved using the SPM. Our linearly polarized
laser field is defined as E(t ) = E0 sin(ωt )êx, with amplitude
E0 = √

I , where I is the intensity of the laser field. Pon-
deromotive energy is given by Up = E2

0 /(4ω2). We chose the
intensity of the laser field to be I = 2 × 1014 W/cm2 and the
wavelength λ = 1300 nm (λ = 1800 nm) for HATI (HHG),
but we have checked that our method is numerically stable for
a wide range of intensities and wavelengths. Numerical inte-
gration of these highly oscillatory integrals is performed using
Gauss-Legendre quadrature with several thousand nodes for
each integral. We perform numerical integration of the T -
matrix element as well as the SPM analysis by representing
the ground-state wave function in terms of STOs, but also by
its asymptotic form.

The SP solutions are classified using the usual (α, β, m)
notation [19,20,26,27,29,45]. The index m, defined as m =
[Re (ts − t0s)/T ], gives the approximate length of the travel
time in multiples of the laser period. For a fixed value of
m, there are two pairs of solutions within one period (for a
linearly polarized laser field), indexed by β = 1, 2. Finally,
for fixed values of β and m each pair of solutions consists
of two orbits with slightly different travel times. The index α

distinguishes the longer orbit (α = −1) from the shorter orbit
(α = +1). One of the two solutions of each pair has Im tr < 0
and its contribution diverges after the cutoff energy and has
to be discarded after the cutoff. To avoid this divergence, the
uniform approximation [19,46] has to be used.

A. High-order above-threshold ionization

In Fig. 2 we present the backward-scattering (α, β, m),
m � 2, SP solutions {t0s, ts} for the HATI process and with
electron emission in the laser field direction. For each SP

FIG. 2. SP solutions for HATI of neon atoms in a linearly polar-
ized laser field with intensity I = 2 × 1014 W/cm2 and wavelength
1300 nm, for emission in the direction of the laser field. The depen-
dence of the electron kinetic energy Ep (in units of ponderomotive
energy Up) on the real parts of the ionization and rescattering times
t0 and tr is shown. Only the backward-scattering solutions with
m = 0, 1, 2 are presented. The indices β and m are labeled near the
corresponding ionization times, while the index α is labeled near the
corresponding rescattering time. The contribution of the solutions
denoted by dashed lines should be discarded after the cutoff.

solution presented, the electron energy Ep = p2/2 (in units of
the ponderomotive energy Up) is plotted as a function of the
real part of the electron ionization time Re t0 and the rescat-
tering time Re tr . The solutions that should be discarded after
the cutoff are marked by dashed lines. For the first four pairs
of SP solutions (which are the dominant ones) in Fig. 3 we
show by black thick lines the ionization time t0 in the complex
plane. For each SP-solution pair we plot the corresponding
four singular-point solutions by red thin lines, one for each
STO. For larger values of ζ 2

i we have a higher imaginary part

FIG. 3. Saddle-point (black thick lines) and singular-point solu-
tions (red thin lines) in the complex plane of the ionization time for
pairs of solutions (β, m) = (1, 0), (2, 0), (1, 1), and (2,1), denoted in
Fig. 2. For each SP solution there are four singular-point solutions,
corresponding to four STOs in the wave function of the neon atom.
The electron kinetic energy changes along each curve from zero
to Ep = 15Up. The solid and dashed curves correspond to different
values of α = ±1 and approach each other near the cutoff of the
corresponding pair.
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FIG. 4. Logarithm of the differential ionization rate (in a.u.) of
neon atoms as a function of electron kinetic energy Ep (in units
of ponderomotive energy Up) for the same parameters as in Fig. 2.
(a) Spectra obtained by numerical integration and (b) spectra ob-
tained by the SPM. Black dot-dashed lines represent the spectra in
which the asymptotic ground-state wave function is used, while the
red solid lines represent the spectra in which the STO ground-state
wave function is used. (c) Partial contributions of the most dominant
SP solutions. Thinner lines represent contributions obtained using the
asymptotic ground-state wave function, while thicker lines represent
contributions obtained using the STO ground-state wave function.

of the singular-point solution. It can be seen that the singular
points can be close to the saddle points especially for the first
two STOs.

In Fig. 4 we present the HATI spectra obtained by nu-
merical integration [panel (a)] and by the SPM [panel (b)].
The spectra obtained using the asymptotic ground-state wave
function are represented by black dot-dashed lines, while
those obtained using the STO ground-state wave function
are depicted by red solid lines. Since at least one singular
point is very close to the saddle point, the ordinary SPM
is not applicable in the case of the STO ground-state wave
function, and we have to use the above-presented modified
SPM. From Figs. 4(a) and 4(b), we see that the agreement
between the results obtained by numerical integration and
using the SPM is excellent for both the asymptotic and STO
wave functions. Furthermore, it can be seen (both for the
numerical integration and for the SPM) that the rates obtained
using the STO ground-state wave function are lower by about
a factor of two than the rates obtained using the asymptotic
ground-state wave function. This difference in height of the

FIG. 5. Saddle-point solutions for HHG of neon atoms in a lin-
early polarized laser field with intensity I = 2 × 1014 W/cm2 and
wavelength 1800 nm. The dependence of the harmonic photon en-
ergy nω (in units of the ponderomotive energy Up) on the real parts
of the ionization and recombination times t0 and tr is presented. Only
the solutions with m = 0, 1, 2 are shown.

two spectra remains constant for all energies and there is no
other structural difference between these two spectra.

To explain the above-mentioned difference, in Fig. 4(c) we
plot the individual contributions of the first five pairs of the
SP solutions. Thinner lines represent contributions obtained
using the asymptotic ground-state wave functions and formula
(19), while thicker lines represent contributions obtained us-
ing the STO ground-state wave functions and formula (29).
We see that for all pairs of solution the contributions obtained
by the asymptotic ground-state wave function are higher than
those obtained by the STO ground-state wave function. Since
the rescattering matrix element, given by Eq. (4), does not
depend on the ground-state wave function, the difference in
height of the two spectra comes purely from the ionization
matrix element. From Fig. 1 it can be seen that for the dis-
tances x > 3 a.u. the value of the radial part of the asymptotic
wave function is higher than that of the STO wave function.
Since the emission of an electron in the HATI process occurs
at distances much larger than 3 a.u., the contribution to the
emission rate by the ionization matrix element obtained by
using the asymptotic wave functions is higher than the corre-
sponding contribution obtained by the STO wave function. It
should be noted that, by increasing the number of STOs in the
ground-state wave function (we are using four orbitals from
Ref. [47], while more orbitals can be found, for example, in
Ref. [48]), the difference between the asymptotic and the STO
wave functions will shrink at large distances, and therefore the
ionization matrix element would not differ significantly for
these two types of ground-state wave functions.

B. High-order harmonic generation

In Fig. 5 we present the SP solutions for the HHG pro-
cess in the same way as for the HATI process. The ordinate
axis now shows the harmonic photon energy nω (in units of
ponderomotive energy Up). In Fig. 6 we show, in the complex
plane, the ionization time t0 of the first four pairs of the SP
solutions (black thick lines), together with the corresponding
singular-point solutions (red thin lines), for various values
of the harmonic order from n = 100 to n = 380, i.e., of the
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FIG. 6. Saddle-point (black thick lines) and singular-point solu-
tions (red thin lines) in the complex plane of the ionization time for
pairs of solutions (β, m) = (1, 0), (2, 0), (1, 1), and (2,1), denoted in
Fig. 5. The results are presented similarly as in Fig. 3 for HATI, but
we have shown only singular-point solutions corresponding to the
first two STOs of the neon atom.

harmonic photon energy from nω = 1.15Up to 4.35Up. We
have shown only singular-point solutions for the first two
STOs. These singular-point solutions are very close to the
saddle points, and one has to apply the modified SPM because
application of the ordinary SPM to the HHG process will fail
in this case. Singular points corresponding to the other two
STOs are not shown because, as for the HATI process, they
are further away from the saddle points so that the ordinary
SPM, Eq. (9), would give approximately the same results as
the modified SPM.

In Fig. 7 we plot the HHG spectra in the same way as
for the HATI process in Fig. 4, except that the abscissa is
now the harmonic order n. We see that again the agreement
between the results obtained by numerical integration and
using the SPM (ordinary for the asymptotic and modified for
the STO wave functions) is very good. A small difference in
the height of the spectra obtained by numerical integration and
saddle-point methods is due to the higher-order corrections of
the exponent eiS(z). There is again a small difference between
the spectra obtained using the asymptotic and the STO wave
functions, but, in contrast to the HATI case, this difference in
the height of the spectra depends on the harmonic order. It is
evident that the difference between the spectra increases with
increasing the harmonic order. For n < 130 the two spectra
coincide, while for n = 315 (near the cutoff) the difference in
emission rates is by about a factor of two.

In order to explain this behavior, in Fig. 7(c) we again plot
all individual contributions. It is evident that the solution pair
(α, β, m) = (±1, 1, 0) is dominant through the entire plateau
region. For this particular pair, we can also see that the dif-
ference in the contributions obtained applying the ordinary
SPM with the asymptotic wave function (thin black solid line)
and applying the modified SPM with the STO wave functions
(thick black solid line) increases with the increase of the har-
monic order. As we have shown before for the HATI process,
the difference between these two spectra can be caused by

FIG. 7. Logarithm of the harmonic intensity (in a.u.) as a func-
tion of the harmonic order n for HHG of neon atoms for the same
parameters as in Fig. 5. The spectra are plotted in the same way as
for HATI in Fig. 4.

the ionization matrix element, but this difference does not de-
pend on the electron energy or harmonic order. Therefore, we
conclude that the harmonic-order dependence of the differ-
ence of the two spectra is caused only by the recombination
matrix element which depends on the ground-state wave
function.

Since the right-hand side of the recombination SP equa-
tion (14) is larger than zero (for higher-order harmonics such
that nω > Ip), the recombination time tr is almost real (al-
most, since kst is still complex), and the recombination occurs
almost at the center of the atom. The difference between
the STO and the asymptotic wave functions is the highest
at small distances from the nucleus because the asymptotic
wave function describes the ground state well only at large
distances. Quantitatively, this difference can be more clearly
described by considering the ground-state wave function in
the momentum space ψ̃0(q), which is directly related to the
recombination matrix element [see Eq. (A1)]. It is sufficient to
consider the most dominant solution (α, β, m) = (−1, 1, 0).

In Fig. 8 we plot the dependence of the electron momentum
qx(t ) = Re [kst,x + Ax(t )] as a function of time for the dom-
inant SP solution for two different harmonic orders n = 51
(black dashed line) and n = 281 (red solid line) from the mo-
ment of ionization Re t0 to the moment of recombination Re tr .
It can be seen that the momentum of the electron at the mo-
ment of recombination for n = 51 (qx,rec = 1.00 a.u.) is much
smaller than the momentum of the electron at the moment of
recombination for n = 281 (qx,rec = 3.56 a.u.). If we now look
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FIG. 8. Electron momentum qx (t ) = Re [kst,x + Ax (t )] (in a.u.)
as a function of time (in units of period T ) for the solution
(α, β, m) = (−1, 1, 0) for two different harmonic orders n = 51
(black dashed line) and n = 281 (red solid line) from the moment of
ionization Re t0, to the moment of recombination Re tr . The momen-
tum of the electron at the moment of recombination qx,rec ≡ qx (Re tr )
is equal to 1.00 a.u. for n = 51, while for n = 281 it is equal to 3.56
a.u.

at Fig. 9(a), where we have plotted the logarithm of |ψ̃0(q)|2
as a function of the electron momentum (we have restricted
ourselves to the qx axis only) for the STO ground-state wave
function (red solid line) and the asymptotic ground-state wave
function (black dashed line), we can see that the difference be-
tween the two ground-state wave functions is much larger for

FIG. 9. Logarithm of (a) electron probability density in mo-
mentum space |ψ̃0(q)|2 (in a.u.) and (b) absolute square of the
recombination matrix element 〈ψ0| j|k + A(t )〉 (in a.u.), as functions
of electron momentum qx (restricted to the x axis only) for the neon
atom with l = 1 and m = 1, obtained using the STO or the asymp-
totic ground-state wave function. In (a) the red solid line corresponds
to the case of STO, while the black dashed line corresponds to the
case of asymptotic wave function. In (b), the red lines correspond
to the case of STO (solid line for the x and dot-dashed line for
the y component), while the black lines correspond to the case of
asymptotic wave function (dashed line for the x and dotted line for
the y component). (c) shows the vector potential Ax (red dashed line)
and the electron momentum qx (blue solid line), for the solution
(α, β, m) = (−1, 1, 0) at the moment of recombination, as functions
of the harmonic order n. Additionally, in (a) the electron momenta at
the moments of recombination for n = 51 and n = 281 are indicated
by blue arrows.

n = 281 than for n = 51. The difference can also be seen in
Fig. 9(b), where we plotted the logarithm of the recombination
matrix element (5) as a function of the electron momentum
for both ground-state wave functions and for two different
polarization axes of the emitted harmonic. In Fig. 5(c) (the
inset in the upper right corner) we have also plotted the vector
potential Ax (red dashed line) and electron momentum qx (blue
solid line) at the moment of recombination as functions of the
harmonic order n for the solution (α, β, m) = (−1, 1, 0). The
intensity of the electron momentum vector at the moment of
recombination increases with the harmonic order n, and this
is the reason for the gradual change in the difference of the
heights of the two spectra as the harmonic order increases.

IV. CONCLUSIONS

We have presented and applied a modified saddle-point
method to high-order above-threshold ionization and high-
order harmonic generation processes in a linearly polarized
laser field for neon atoms with a ground-state wave function
expressed as a linear combination of the Slater-type orbitals.
The spectra obtained by this method are compared with the
spectra obtained by the usual saddle-point method which is
applicable to the asymptotic ground-state wave functions.
Both methods are compared separately with the results ob-
tained by numerical integration.

In order to find the transition amplitude of the HATI (HHG)
process, one has to solve the five-dimensional integral over the
rescattering (recombination) time t , the canonical momentum
k between ionization and rescattering (recombination), and
the ionization time t0. The integrals over t and k are solved
by ordinary SPM, while the integral over the ionization time
t0 requires special care. In the case of asymptotic ground-state
wave functions, saddle points t0s overlap with singular points,
while for the STO ground-state wave functions the saddle
points t0s are in close proximity to singular points t0si (one for
each STO). The problem of overlapping saddle and singular
points was solved in Ref. [30], and so far the use of asymptotic
ground-state wave functions has been a common practice in
the SPM treatment of HATI and HHG.

In this paper, we presented a modified SPM applied to
HATI and HHG, which treats the proximity problem of the
saddle and singular points that arises when we use the STOs
as the ground-state wave functions. The idea of the presented
method is to expand the part of the T -matrix element respon-
sible for the appearance of singularities in the Laurent series
around each of the singular points, and then to integrate the
principal and regular parts of the Laurent series separately.
The integral over the principal part is related to the comple-
mentary error function and is calculated using a recurrence
relation, while the regular part is integrated using the ordinary
SPM. The algorithm for finding singular points consists of
first finding the saddle points {t0s, ts}, and then, for each SP
solution and each STO, finding the corresponding singular
point t0si.

The spectra obtained using our modified SPM are in
excellent agreement with those obtained by the numerical
integration, for both the HATI and HHG processes. In the case
of HATI, the rates obtained using the STO ground-state wave
function were slightly lower than those obtained using the
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asymptotic ground-state wave function. However, the differ-
ence in height between these two spectra remained constant
for all electron energies, and there was no other structural
difference between the spectra. If we had used more STOs
to describe the ground-state wave function, the two spectra
would overlap completely. Since the ionization takes place far
away from the nucleus, we concluded that in the case of the
HATI process it is justified to use either the asymptotic or the
STO ground-state wave functions.

In the case of the HHG process, there is also a small
difference between the spectra obtained using the asymptotic
and STO wave functions, but in this case the difference in
height of the two spectra increases with increasing harmonic
order. For lower harmonic orders, these two spectra com-
pletely coincide, while for higher harmonic orders, especially
near the cutoff energy, the two spectra differ significantly.
This behavior is also visible for partial contributions of dif-
ferent solutions of the SP equations. We have shown that
this difference in the height of the two spectra is due to the
recombination matrix element. Electron recombination occurs
close to the center of the atom, where the difference between
the asymptotic and the STO ground-state wave functions is the
largest.

We have performed a more detailed analysis in momentum
space and for the most dominant SP solution. The momen-
tum of the electron at the recombination time increases with
increasing harmonic order, while the difference between the
asymptotic and STO wave functions in momentum space in-
creases with increasing momentum of the electron, and hence
the difference in height of the two spectra increases with in-
creasing harmonic order. Since the asymptotic wave functions
correctly describe the behavior of the electrons only far from
the nucleus, we concluded that in the case of the HHG process
the STO ground-state wave functions and the modified SPM
should be used.

Furthermore, for understanding and control of strong-field
processes it is important to analyze them in the fashion
of Feynman path integral and quantum-orbit formalism
[22,49,50]. This can be achieved applying the SPM to
calculate observables which are expressed in the form of
multidimensional integrals. However, singular points of the
subintegral matrix elements may prevent direct application
of the SPM. These singular points may overlap or be in close
proximity to the saddle points. The results presented in our
paper show how this problem can be solved. We have applied
our method to HATI and HHG and have shown that it is
particularly useful for HHG since the HHG recombination
matrix element should contain the STOs for which our
modified SPM works well.

The three-step model, mentioned in the Introduction, be-
sides the HHG and HATI, can also be applied to other
strong-field processes [see Eqs. (1)–(3) in Ref. [50]]. One
important example is nonsequential double ionization (see,
for example, the review article [51,52]), in which the returned
electron is responsible for liberation of the second electron.
Since the first step of this process is also the ionization, it
is clear that similar singular points of the ionization matrix
element, as those considered in our paper, appear. The saddle-
point method was applied to nonsequential double ionization
in Refs. [53–57].

The method developed in our paper can also be useful in
the context of two recently analyzed phenomena in attosec-
ond science: full quantum optical description and quantum
electrodynamics effects in intense laser-matter interactions
[58–67] and entanglement and decoherence [68–77]. Since
the ionization and recombination matrix elements appear also
in these cases, our method is even more useful since, in com-
parison with semiclassical transition amplitudes, additional
integrals may appear for such processes (for example, due to
quantum statistics of driving light).
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APPENDIX: DIPOLE MATRIX ELEMENTS

The dipole matrix element 〈q|r|ψ0〉 can be written as

〈q|r|ψ0〉 = 1

(2π )3/2
i

∂

∂q

∫
dre−iq·rψ0(r) = i

∂

∂q
ψ̃0(q).

(A1)

Therefore, we need the ground-state wave function in momen-
tum space ψ̃0(q). We will separately derive momentum-space
wave functions of the neon atom for the case of asymptotic
ground-state wave function and for the case of wave function
described by a linear combination of STOs.

1. Asymptotic ground-state wave function

Bound-state asymptotic wave function for valence electron
of the neon atom is given by [78]

ψνlm(r) = Arν−1e−κrYlm(r̂), r 	 1, (A2)

with ν = 1/κ , κ = √
2Ip, A = 2.1, l = 1, and Ip = 21.56eV.

In order to derive the asymptotic wave function in momentum
space

ψ̃νlm(q) = 1

(2π )3/2

∫
dre−iq·rψνlm(r), (A3)

we expand the plane wave exp(−iq · r) in spherical harmonics

e−iq·r = 4π

∞∑
l=0

(−i)l jl (qr)
l∑

m=−l

Y ∗
lm(r̂)Ylm(q̂), (A4)

where jl (qr) =
√

π
2qr Jl+ 1

2
(qr) are spherical Bessel functions

and Ylm(q̂) are spherical harmonics in momentum space. Writ-
ing dr = r2drd�, we get

ψ̃νlm(q) =
√

2

π
A

∫
dr rν+1e−κr

∞∑
l ′=0

l ′∑
m′=−l ′

(−i)l ′

× jl ′ (qr)Yl ′m′ (q̂)
∫

d�Y ∗
l ′m′ (r̂)Ylm(r̂). (A5)

Using the orthonormality condition of spherical harmonics∫
d�Y ∗

l ′m′ (r̂)Ylm(r̂) = δll ′ δmm′ , (A6)
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A. S. JAŠAREVIĆ et al. PHYSICAL REVIEW A 109, 043114 (2024)

Eq. (A5) becomes

ψ̃νlm(q) =
√

2

π
A (−i)l Ylm(q̂)

∫
dr rν+1 exp(−κr) jl (qr). (A7)

The integral in Eq. (A7) can be solved using formula (see 6.621 in Ref. [79])∫ ∞

0
e−σxJλ(εx) xμ−1 dx =

(
ε

2σ

)λ
�(λ + μ)

σμ �(λ + 1)

(
1 + ε2

σ 2

) 1
2 −μ

2F1

(
λ − μ + 1

2
,
λ − μ

2
+ 1; λ + 1; − ε2

σ 2

)
, (A8)

where 2F1(a, b; c; z) is the hypergeometric function. We get

ψ̃νlm(q) = A

2l+1/2 κ l−ν

�(l + ν + 2)

�(l + 3/2)
Ylm(q̂) fl (q), (A9)

fl (q) = (−iq)l

(q2 + κ2)ν+1 2F1

(
α, β; γ ; − q2

κ2

)
, (A10)

with α = (l − ν)/2, β = (l − ν + 1)/2, and γ = l + 3/2, so that the dipole matrix element (A1) becomes

〈q|r|ψνlm〉 = i
A

2l+1/2 κ l−ν

�(l + ν + 2)

�(l + 3/2)

[
Ylm(q̂)

∂ fl (q)

∂q
q̂ + fl (q)

∂Ylm(q̂)

∂q

]
. (A11)

Using the formula

∂ 2F1(α, β; γ ; z)

∂z
= αβ

γ
2F1(α + 1, β + 1; γ + 1; z), (A12)

we get

∂ fl (q)

∂q
= −i

(−iq)l−1

(q2 + κ2)ν+1

{[
l − 2(ν + 1)

q2

q2 + κ2

]
2F1

(
α, β; γ ; − q2

κ2

)
− 2αβ

γ

q2

κ2 2F1

(
α + 1, β + 1; γ + 1; − q2

κ2

)}
.

(A13)

Also, for l = 1 and m = ±1 spherical harmonics and their gradients (in momentum space) are given by

Y1m(q̂) = −m

√
3

8π

qx + imqy

q
(A14)

and

∂Y1m(q̂)

∂q
= −m

√
3

8π

1(
q2

x + q2
y

)3/2

[(
q2

y − imqxqy
)
êx + (

imq2
x − qxqy

)
êy

]
. (A15)

2. Slater-type-orbital ground-state wave function

Bound state of the valence electron of the neon atom, which is in the 2p state (n = 2, l = 1), can be more precisely expressed
as a linear combination of four STOs [47],

ψ21m(r) = 2√
3

4∑
i=1

Ciζ
5/2
i re−ζirY1m(r̂), (A16)

with Ci = {0.2180, 0.5334, 0.3293, 0.0187} a.u. and ζi = {1.4521, 2.3817, 4.4849, 9.1346} a.u. It can be noticed that STOs for
n = 2 and l = 1 have the same form as asymptotic wave function (A2) with ν replaced by 2, κ replaced by ζi, and A replaced by

2√
3
Ciζ

5/2
i . Therefore, comparing with Eq. (A9), we get

ψ̃21m(q) = −i
q√
6

�(5)

�(5/2)
Y1m(q̂)

4∑
i=1

Ciζ
7/2
i

1(
q2 + ζ 2

i

)3 2F1

(
−1

2
, 0;

5

2
; −q2

ζ 2
i

)
. (A17)

Since 2F1(a, 0; c; z) = 1, for the momentum space ground wave function we obtain

ψ̃21m(q) = 16

√
2

3π
Ciζ

7/2
i Y1m(q̂)

−iq(
q2 + ζ 2

i

)3 . (A18)
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Inserting Eq. (A14) and calculating the momentum gradient, the dipole matrix element (A1) for the neon atom and m = ±1
becomes

〈q|r|ψ21m〉 = −m
4∑

i=1

Ci
8ζ

7/2
i

π

1(
q2 + ζ 2

i

)4

[(
q2 − 6q2

x − 6miqxqy + ζ 2
i

)
êx + (

miq2 − 6qxqy − 6miq2
y + miζ 2

i

)
êy

]
. (A19)
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[21] D. B. Milošević, Forward- and backward-scattering quantum
orbits in above-threshold ionization, Phys. Rev. A 90, 063414
(2014).
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Sanpera, and M. Lewenstein, Feynman’s path-integral ap-
proach for intense-laser-atom interactions, Science 292, 902
(2001).
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