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High-order harmonic generation in helium: A comparison study
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We report a detailed study of high-order harmonic generation (HHG) in helium. When comparing predictions
from a single-active-electron model with those from all-electron simulations, such as the ATTOMESA code and
R-matrix-with-time-dependence method, which can include different numbers of states in the close-coupling
expansion, it seems imperative to generate absolute numbers for the HHG spectrum in a well-defined framework.
While qualitative agreement in the overall frequency dependence of the spectrum, including the cutoff frequency
predicted by a semiclassical model, can be achieved by many models in arbitrary units, only absolute numbers
can be used for benchmark comparisons between different approaches.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an important
method to generate coherent soft x rays by producing odd
harmonics of a fundamental frequency from an intense short-
pulse laser, often with a frequency in the midinfrared range
[1–3]. Over the past four decades, numerous experimental
and theoretical papers have been published on the subject,
too many to produce a representative and unbiased reference
selection of even moderate size. Most studies fall into two
categories: the generation of attosecond pulses using HHG
[4] and the use of HHG as a measurement tool [5,6]. The most
common means of understanding the HHG process is based on
the semiclassical three-step model introduced by Schafer et al.
[7] and Corkum [8], which explains some of the basic char-
acteristics of the process and its observations. In that model,
after an electron escapes from the target by tunnel ionization,
it is driven further away by the strong electric field, until it is
finally accelerated back towards its parent ion upon reversal of
the field. During the recollision process, some of the electron’s
energy is released as a high-energy photon whose frequency
must be an odd multiple of the fundamental frequency of the
driving field. The process repeats for various cycles of the
driving laser field. Due to the exponential dependence of the
tunnel probability on the width of the barrier, which in turn is
determined by the field strength, the largest effects occur near
the peak amplitude of the field.

From the above model, one can estimate the maximum
photon energy, or cutoff energy, that is producible by HHG
from a single laser source. This cutoff energy is given by [8]

Ec = Ip + 3.17Up, (1)
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where Ip is the atomic ionization potential and Up is the
ponderomotive potential. The latter can be approximated in
terms of the laser peak intensity and wavelength as

Up = 2e2

cε0m

I0λ
2

16π2
. (2)

Here e is the electron charge, c the speed of light, ε0 the
vacuum permittivity, m the electron mass, I0 the laser peak
intensity, and λ the (central) wavelength of the driving laser.

Interestingly, the vast majority of papers on the topic
of HHG present the spectrum in arbitrary units. While this
might be the only option for experimental studies due to the
notorious difficulties associated with absolute intensity mea-
surements, all the relevant quantities are well defined. Even
though different definitions (see below) are used by individual
groups, presenting theoretical HHG spectra with an absolute
unit is certainly possible. The quantity generally agreed upon
as being the determining factor for the HHG spectrum is the
dipole moment that is induced in the system by the external
driving field. In particular, we are interested in the Fourier
transform of the dipole acceleration, i.e.,

ã(ω) =
∫ +∞

−∞
a(t ) e iωt dt, (3)

where a(t ) is the second derivative with respect to time of the
induced dipole moment d (t ).

The present work is a follow-up on our recent study [9] of
HHG in neon, where we looked at the particularly challenging
problem of reaching the so-called water window of HHG fre-
quencies ranging from the K absorption edge of carbon to the
K edge of oxygen. In order to do so, we compared results from
a single-active-electron (SAE) model with predictions from
the R-matrix-with-time-dependence (RMT) [10] approach.
The latter is implemented in a general all-electron code based
on the close-coupling formalism. As such, electron exchange
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and correlation effects are accounted for in the RMT method,
whereas they are neglected in the SAE model.

While there was qualitative agreement between the SAE
and RMT results, it was difficult to explain the remaining
quantitative differences, which were only found due to the
fact that we choose to compare absolute numbers using the
formula

S(ω) = 2

3πc3
|ã(ω)|2 (4)

for the so-called spectral density S(ω) [11,12]. We will refer to
the above equation as the acceleration form. We also investi-
gated equivalent formulas using the dipole moment directly
(the length form) or its first time derivative (the velocity
form). In addition to the order of the time differentiations,
the formulas differ by factors of ω2 and ω4 arising from
transforming to the velocity and length forms, respectively. As
a numerical check, we verified that the results from the three
methods agree well with one another, although the spectra
are not exactly equivalent due to additional terms that may
be present after the pulse has vanished [see Eq. (22) of [13]].
All of the results in this paper are presented in the acceleration
form, which is the generally preferred form, in particular for
short pulses [14,15]. We emphasize again that the prefactor in
the above equation, whose numerical value is approximately
8.25 × 10−8 in atomic units, together with the definition in
Eq. (3), provides an absolute value for the quantity of interest.
Unless indicated otherwise, atomic units (h̄ = e = m = 1 and
c ≈ 137) are used throughout this paper.

As mentioned above, other authors use different defini-
tions. Specifically, we note the papers by Tong and Chu [16]
and Guan et al. [13], who defined their spectrum by

P(ω) = 1

ω4τ 2
|ã(ω)|2, (5)

where τ is the length of the pulse. The authors used a fixed
number of cycles with a sin2 envelope for the electric field.
In this case, the pulse length τ from the very beginning to
the very end is well defined, in contrast to somewhat more
realistic pulses, e.g., a Gaussian envelope, where one usually
defines the length via the full width at half maximum of the
intensity. Normalizing to the pulse length has the advantage
that pulses with a different number of cycles can be better
compared with respect to the yield. Note, however, that the
frequency dependence is very different in the two definitions,
since the factor 1/ω4 now appears in the acceleration form of
Refs. [13,16].

In the calculations reported in this paper, we also used a
linearly polarized laser pulse with a sin2 envelope, specifically

E(t ) =
√

2I0

ε0c
sin2

(
ωt

2N

)
cos(ωt ) ẑ. (6)

The electric field is assumed to vanish outside of the inter-
val 0 < t < 2πN/ω. We used time steps between 0.006 and
0.02 in the various methods described below to ensure that
the propagation yielded a sufficiently accurate value of the
induced dipole moment, which is the fundamental quantity of
interest.

To simplify matters in calculating absolute HHG spectra,
we decided to perform a comparison study using helium rather
than the much more complex neon target. In this case, one

might expect the SAE and RMT results to agree reasonably
well, especially if the RMT model only includes a single
target state, namely, He+(1s). This corresponds effectively
to the static exchange approximation for electron scattering
from He+. In the static exchange model, we also added results
from a new multielectron time-dependent code, ATTOMESA, to
give us an additional source of comparison. We emphasize
that our calculations, like many other theoretical attempts, are
single-atom simulations. While they are important in practical
realizations of the HHG process, we are not concerned with
macroscopic effects such as phase matching or volume aver-
aging of the intensity in the present work. We note, however,
that work in this direction using the RMT code was recently
reported [17].

Furthermore, it is possible to systematically test the effects
of extending the close-coupling model by including more
states, such as the n = 2 and n = 3 states of He+. Such models
should indicate the importance of channel coupling as well as
correlations in the initial state, whose expansion then includes
doubly excited states.

This paper is organized as follows. In Sec. II we briefly
describe the SAE, RMT, and ATTOMESA models used in the
present work. This is followed by the presentation and discus-
sion of our results for two wavelengths 248.6 and 1064 nm.
Since these are the wavelengths investigated by Tong and
Chu [16] and Guan et al. [13], we selected them and the
intensities chosen in the latter studies to have a further basis
for comparison with other works. As will become clear below,
some of these laser parameters appear to be quite challenging
from a numerical perspective. Consequently, we judge them
to be a good start for benchmark studies, even though their
Keldysh parameters are not in the predominantly tunneling
regime.

As will be shown below, the quantitative calculation of
HHG spectra is by no means trivial, due to the well-known
fact that the conversion efficiency of the process is often
very low. Most of the emitted radiation may simply return
at the fundamental frequency, although the choice of laser
parameters (if available in the setup) can change this. Even
though 248.6 nm is not a particularly suitable wavelength for
HHG in practice, the calculation in Ref. [13] was performed
with a sophisticated two-electron code specifically designed
for the helium target. These benchmark results, fortunately
also given as absolute numbers, provide an excellent further
source of comparison. Such a thorough test is highly desirable
to assess the reliability of all the results presented here, as well
as those from other approaches, for longer wavelengths and
higher intensities.

II. THEORY

Since the SAE and RMT methods have been described in
previous papers, we limit ourselves to a brief summary and the
specifics of their applications to the helium target. We also add
a short description of the ATTOMESA code, which is currently
under development.

A. SAE model

We employed the same SAE model as Birk et al. [18] and
Meister et al. [19]. Specifically, we used the one-electron
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potential

V (r) = −1

r
−

(
1

r
+ 1.3313

)
exp(−3.0634 r), (7)

where r is the distance from the nucleus, to calculate the
valence orbitals. We used a variable radial grid with a
smallest step size of 0.1 near the origin, gradually increasing
by 5% per step up to a maximum step size of 0.2 to a box size
of approximately 200. In this discretization, the difference
between the predicted ionization potential and the excitation
energies of all (1sn�) states with singlet spin character (the
SAE model is, of course, only concerned with the n� orbital)
up to n = 6 and � = 5 with the recommended values from the
NIST database [20] is less than 0.2 eV even in the worst-case
scenario.

Assuming that the driving radiation is linearly polarized,
the initial state can be propagated very efficiently and ac-
curately. We used an updated version of the code described
by Douguet et al. [21]. Based on many previous works us-
ing SAE approaches, we expected it to be more suitable for
the helium target compared to heavier noble gases, as long
as obvious two-electron correlation effects, e.g., autoionizing
resonances, are not affecting the process significantly. Most
of the calculations were performed with partial waves up to a
total angular momentum of 47. Spot checks carried out with
angular momenta up to 120 did not change the results reported
below significantly.

We then calculated the induced dipole moment as

d (t ) = 〈z〉(t ) = 〈�(r, t )|z|�(r, t )〉 (8)

during the pulse and numerically differentiated the function
twice to obtain the dipole acceleration required in Eq. (3).
Since there are two electrons in the 1s orbital of helium, the
above dipole moment should be multiplied by 2 to account for
the occupation number [16].

B. RMT method

As a second method, we employed the general R-matrix-
with-time-dependence method [10]. The RMT method has
been applied to the study of HHG several times, including
HHG from two-color fields [22], XUV-initiated HHG [23],
and HHG from mid-IR lasers [9,24]. Most recently, it has
been extended to include macroscopic propagation effects
in HHG [17].

To calculate the necessary time-independent basis func-
tions and dipole matrix elements for the present work, we
started with the simplest possible model, namely, a nonrel-
ativistic one-state approach. This model, labeled RMT-1st
below, is the one most closely related to the SAE approach. It
essentially describes electron collisions with He+ in the ionic
ground state. Nevertheless, there are some subtle differences,
for example, in the 1s orbital used in the two models. In the
SAE model, the potential given in Eq. (7) supports bound
states, and the 1s orbital obtained that way is close to the
Hartree-Fock orbital of the ground-state configuration. Since
the potential used in the SAE calculations, given in Eq. (7),
is not ab initio, the resulting ground-state energy of −2.910
is slightly lower than obtained in nonrelativistic variational
calculations [25]. In the RMT approach, on the other hand,

we use the analytically known 1s orbital of He+. While this
is not optimal to obtain the best ground-state energy, it is
a suitable orbital to describe essentially all excited states of
neutral helium, which are automatically contained (to a very
high accuracy) in the close-coupling approach, as long as the
state fits into the R-matrix box.

In addition to RMT-1st, we set up two more models, one
where we added the n = 2 states of He+ using the 2s and
2p ionic orbitals and another one where we also included the
n = 3 states. These two models will be referred to as RMT-3st
and RMT-6st, respectively. We used an R-matrix radius of
40.0 and 60 B splines to expand the continuum orbitals inside
the R-matrix box. Partial waves up to a total orbital angular
momentum of 49 were used to ensure converged results for
all cases reported below. Since we noticed a few surprising
results, to be discussed in the next section, we varied the size
of the R-matrix box, the number of splines, and the number
of partial waves, as well as the radial grid and the time step.
We even altered the numerical accuracy of the real variables in
the computer code. The results reported below did not change
significantly. They were obtained with 60 splines employed
to expand the one-electron orbitals inside the R-matrix radius
of 40 and an outer-region size of up to 8000. The results did
not change significantly whether or not an absorbing boundary
condition was applied near the outer edge.

C. ATTOMESA

As a third approach, we utilized ATTOMESA, a novel time-
dependent multielectron code tailored for applications in
attosecond science, particularly focusing on the treatment of
atoms and molecules under intense fields. This methodology
bears resemblances to the time-dependent restricted-active-
space configuration-interaction method [26], XCHEM [27,28],
and ASTRA [29] numerical techniques. In this study, we
present the initial outcomes of ATTOMESA and will concentrate
our discussion on its most salient features. A comprehensive
description of the method will be provided in a forthcoming
communication.

In ATTOMESA, short-range electron correlations and ex-
changes are described from a set of Gaussian-type orbitals
(GTOs) centered on each atom. The latter space is augmented
with finite-element discrete-variable (FEDVR) functions [30],
in contrast to the B-spline functions employed in XCHEM,
ASTRA, and the RMT approach. These FEDVR functions are
subsequently orthogonalized to all GTOs, thus establishing
a mixed GTO-FEDVR basis set that enables an accurate
description of short-range multielectron interactions and the
electronic continua associated with diverse excited electronic
states of the residual ion.

In contrast to XCHEM, which employs a single-center ex-
pansion for computing electronic integrals involving B-spline
functions and GTOs, our approach utilizes the Becke in-
tegration scheme [31,32] for evaluating electronic integrals
involving FEDVRs and GTOs within the inner region defined
by the spatial extension of the GTOs. Beyond this region,
where the photoelectron dynamics is described solely by
FEDVRs, the electronic integrals are computed in a single-
center grid using Gauss-Lobatto quadrature [30]. This method
capitalizes on the unique properties of FEDVRs, particularly
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their straightforward representation of any local operator.
Consequently, it results in an exceptionally sparse atom-
field interaction Hamiltonian in the length gauge, facilitating
the development of efficient time-propagation schemes. The
exponential time propagator is further decomposed into field-
free and atom-field interaction operators, with the action of the
field-free Hamiltonian handled in its diagonal representation,
while the atom-field interaction is expressed in the FEDVR
representation.

The results obtained from ATTOMESA were compared
against SAE predictions for HHG from atomic hydrogen,
utilizing a hybrid Gaussian-FEDVR basis set. Virtually per-
fect agreement was found between both methods, thereby
validating the computation of the electronic integrals and
the time-propagation method employed in ATTOMESA. Fur-
thermore, the nonrelativistic energies of the Rydberg states
of atomic hydrogen, extending up to n = 15, were repro-
duced with a precision up to ten decimal places. Nevertheless,
ATTOMESA is still under development. The calculation of the
integrals will be drastically improved, and parallel-processing
capabilities are not yet supported. For this reason, we are
still limited in the parameter space where ATTOMESA can be
applied. Therefore, calculations were only performed for the
shorter wavelength and lower-intensity pulses considered in
this study. The principal goal was to assess the consistency
between different methods and models.

In our calculations, we used the helium cc-pVQZ basis set
[33] and construct our reference space from the first s and
p orbitals obtained from a Hartree-Fock calculation for He.
This space is complemented with the 1s orbital of He+. We
obtained the He ground-state energy as −2.900 and virtually
the exact He+ ground-state energy of −2.0. We used a box
size of 300, with a complex absorbing potential placed near
the edge, and elements of radial size 10 with ten DVRs per
element. For the present work, we only performed static ex-
change (one-state) calculations with ATTOMESA. The largest
angular momentum included in the time propagation was � =
15. These parameters are sufficient for the short wavelength
of 248.6 nm and intensity of 1 × 1014 W/cm2 for which we
report ATTOMESA results.

III. RESULTS AND DISCUSSION

We now discuss our results for two wavelengths. The
first one (248.6 nm) was chosen by Guan et al. [13]
using a sophisticated computer code specifically designed
for the two-electron helium target. Due to the complex-
ity of the model and the available computational resources
at the time, the wavelength and pulse duration were
chosen relatively short in order to produce benchmark
results.

The second wavelength (1064 nm) was chosen by Tong
and Chu [16] but with an SAE potential generated via
density-functional theory. Hence, comparing with their results
serves as an indicator for the sensitivity of the predic-
tions to the potential employed in the SAE calculation.
Most importantly, however, in light of the rapid develop-
ments in computational power, we could employ the RMT
model also for this more challenging wavelength and longer
pulses.

       et                al. [13]

FIG. 1. Spectrum for a 15-cycle pulse with a central wavelength
of 248.6 nm with a sin2 envelope of the electric field and peak
intensity of 1 × 1014 W/cm2. The results from our SAE model are
compared with predictions from ATTOMESA and three RMT cal-
culations with a different number of coupled states. Note that the
RMT-1st and RMT-3st results are practically indistinguishable. The
predicted cutoff energy from the three-step model is approximately
equal to 26 eV, corresponding to the fifth harmonic. The crosses are
the results for the peak values obtained by Guan et al. [13] in the
acceleration form.

A. The 248.6-nm driving field

Figures 1–3 show the HHG spectrum for 248.6 nm, using
the style of Guan et al. [13]. Unfortunately, their results are
not available in numerical form. We digitized their data, but an
additional curve would make the figure practically unreadable.
However, a close visual inspection shows good agreement in
the main features produced by all numerical methods, i.e., the
heights of the fundamental peak and of the first few harmon-
ics. The exception is the height of the fundamental peak of

       et                al. [13]

FIG. 2. Spectrum for a 30-cycle pulse with a central wavelength
of 248.6 nm with a sin2 envelope of the electric field and peak inten-
sity of 1 × 1014 W/cm2. Again, the RMT-1st and RMT-3st results
are practically indistinguishable.
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FIG. 3. Spectrum for a 30-cycle pulse with a central wavelength
of 248.6 nm with a sin2 envelope of the electric field and peak
intensity of 5 × 1014 W/cm2. The predicted cutoff energy from the
three-step model is approximately equal to 34 eV, corresponding to
the seventh harmonic.

Guan et al. in Fig. 1, where their result in the acceleration form
seems to lie significantly below that obtained in the length
form. The latter agrees well with our predictions (see their
Fig. 5).

Nevertheless, there are several observations worth com-
menting on. To begin with, the RMT-1st and RMT-3st results
are very similar. However, mainly at the minima between the
peaks, the results from the other models differ, with the SAE
numbers close but certainly not identical to those from RMT-
1st and RMT-3st, while the RMT-6st results are significantly
different. Upon further analysis, we confirmed that the main
reason for the change from RMT-3st to RMT-6st is the inclu-
sion of the He+(3p) state in the close-coupling expansion.

We performed exhaustive tests to check the numerical
accuracy of the results. None of the changes made in the

FIG. 4. Dipole expectation value as a function of time for a
30-cycle pulse with a central wavelength of 248.6 nm with a sin2

envelope of the electric field and peak intensity of 5 × 1014 W/cm2

(same laser parameters as in Fig. 3).

numerical treatment altered the numbers for the dipole
moments, and subsequently the resulting harmonic spectra,
significantly. Since the dipole moment is the underlying
physical quantity that determines the spectrum, and it
apparently converges well against changes in the model (see
also the discussion in the next section), we do believe that the
basic physics is contained in our treatment. The quantitative
calculation of the HHG spectrum, on the other hand, presents
a surprisingly difficult task.

As explained above, ATTOMESA cannot yet describe pro-
cesses for the high-intensity and long pulses used in Fig. 3.
The remaining part of this paper is therefore devoted to a
further analysis of the various RMT predictions.

In the interest of benchmarking and testing computer
codes, it is advisable to look at the quantity that actually
determines the HHG spectrum, independent of how one might
define it. As an example, Fig. 4 shows the induced dipole
moment for the spectrum exhibited in Fig. 3. Once again,
there are several interesting observations to be made. First
of all, it is very difficult to see differences in the dipole
expectation value predicted by the various models. This
is due to the fact that the fundamental frequency is very
dominant, i.e., all the higher harmonics are due to tiny dif-
ferences from the dipole moment adiabatically following the
driving field.

We therefore exhibit the differences between the dipole
expectation values calculated within the various models in
Fig. 5. As seen there, the maximum deviations in the pre-
dicted induced dipole moment by the RMT-1st and RMT-6st
from the RMT-3st numbers (which we selected as the ref-
erence) are more than an order of magnitude smaller than
the values of the dipole moment themselves. This already
suggests that the latter must be calculated to very high ac-
curacy in order to obtain reliable absolute values for the HHG
spectrum.

A second feature of interest concerns the development of
the dipole moment shortly after the maximum amplitude of

FIG. 5. Difference between the dipole expectation values ob-
tained with the RMT-1st and RMT-6st models relative to the results
obtained with RMT-3st as a function of time for the laser parameters
used to produce Fig. 3 (30-cycle pulse with a central wavelength of
248.6 nm with a sin2 envelope of the electric field and peak intensity
of 5 × 1014 W/cm2).
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FIG. 6. Spectrum for a 60-cycle pulse with a central wavelength
of 1064 nm with a sin2 envelope of the electric field and peak
intensity of 5 × 1013 W/cm2. The results from the SAE model are
compared with predictions from three RMT calculations with a dif-
ferent number of coupled states. The predicted cutoff energy from
the three-step model is approximately equal to 41 eV, corresponding
to the 35th harmonic.

the driving field. The regular structure seen up to then sud-
denly becomes very irregular, and the dipole moment certainly
does not go back to (near) zero at the end of the pulse. In
fact, the oscillations occur with a much higher frequency than
that provided by the driver. We analyzed this behavior and
noticed that it is due to a remaining small (a few percent)
occupation of the He(1s2p) 1Po state. The excitation energy
is between four and five driving photon energies above the
ground state. Nevertheless, at the end of the pulse, the system
is essentially in a coherent superposition of the ground state
and the He(1s2p) 1Po state, with small additions from other
excited bound states. As a result, we see oscillations with
a frequency corresponding to the energy difference between
these two states. A close inspection of the spectra exhibited
in Figs. 1–3 reveals that these oscillations indeed affect the
appearance of the spectra near the fifth harmonic, where some
additional structures can be seen.

In our previous paper [9], we discussed the effect of using
windows to numerically force the induced dipole moment to
zero at the end of the pulse. The above discussion shows that
this will not only affect, once again, the absolute values and
the details of the spectrum, but it is in fact unphysical.

B. The 1064-nm driving field

Figures 6 and 7 show the HHG spectrum for a 60-
cycle pulse with a central wavelength of 1064 nm and a
sin2 envelope of the electric field with a peak intensity of
5 × 1013 W/cm2. This is one of the cases reported by Tong
and Chu [16]. In contrast to the spectra shown in the preceding
section, which diverge at very small frequencies due to the
1/ω4 in their definition, the ones exhibited in Fig. 6 appear to
remain finite on the grid shown. Nevertheless, we also show
the spectral density in Fig. 7 after evaluating it according
to Eq. (4).

FIG. 7. Spectral density as defined in Refs. [11,12] for a 60-cycle
pulse with a central wavelength of 1064 nm with a sin2 envelope of
the electric field and peak intensity of 5 × 1013 W/cm2 (the parame-
ters of Fig. 6). The y axis is logarithmic.

Once again, the RMT-6st results are significantly different
than those obtained in the other models. In particular, the
height of the plateau is significantly different in the RMT-6st
calculation compared to the other models. The fraction of the
harmonic spectra under the first few odd harmonics and the
aforementioned plateau is summarized in Table I below.

To further illustrate the numerical challenges associated
with an accurate calculation of the spectrum, we show in
Fig. 8 the induced dipole moment for this case and in Fig. 9 the
differences in the models relative to the RMT-1st result. The
situation is similar, but even more pronounced, to what we
saw for the 248.6-nm case: A tiny difference in the calculated
dipole moment can change the predicted height of the plateau
by several orders of magnitude.

Having seen that the differences in the dipole moment,
as small as they are, are still large enough to result in

FIG. 8. Dipole expectation value as a function of time for a
60-cycle pulse with a central wavelength of 1064 nm with a sin2

envelope of the electric field and peak intensity of 5 × 1013 W/cm2

(the parameters used to produce Fig. 6).
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TABLE I. Fraction (in %) of the integral under various peaks for a 60-cycle pulse with a central wavelength of 1064 nm with a sin2

envelope of the electric field and low and high peak intensities of 5 × 1013 and 4 × 1014 W/cm2, respectively.

Model SAE RMT-1st RMT-3st RMT-6st

Frequency Domain Intensity Low High Low High Low High Low High

Fundamental 99.97689 9.71731 99.97233 7.61130 99.96863 9.35664 99.96643 7.81866
3rd harmonic 0.02309 0.42943 0.02764 0.25380 0.03134 0.33415 0.03134 0.29346
5th harmonic 0.00001 0.02763 0.00001 0.00681 0.00001 0.00859 0.00001 0.00607
Plateau 2.7×10−6 87.46749 0.00001 90.50232 0.00001 88.75972 0.00014 89.97512

FIG. 9. Difference between the dipole expectation values ob-
tained with the RMT-1st and RMT-6st models relative to the results
obtained with RMT-3st as a function of time for the laser parameters
used to produce Fig. 6 (central wavelength of 1064 nm with a sin2

envelope of the electric field and peak intensity of 5 × 1013 W/cm2).

FIG. 10. Super-Gauss window function centered on the plateau
with different widths to focus on the frequencies of the plateau in
Fig. 6.

FIG. 11. Reconstructed part of the dipole moment with the wider
super-Gauss window function centered on the plateau of Fig. 6.

FIG. 12. Reconstructed part of the dipole moment with the nar-
rower super-Gauss window function centered on the plateau of
Fig. 6.
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FIG. 13. Same as Fig. 6 for a peak intensity of 4 × 1014 W/cm2.
The predicted cutoff energy from the three-step model is approxi-
mately equal to 160 eV, corresponding to the 137th harmonic.

significantly different HHG spectra, we decided to investigate
how much of the induced dipole moment with the laser pa-
rameters of Fig. 6 is actually associated with the plateau of
the spectrum. We did this by applying a super-Gauss window
function

W (ω) ≡ e−[(ω−ωc )/ωw]6
, (9)

where ωc is the central frequency and ωw is the width, to the
Fourier transform of the dipole moment and then calculat-
ing the inverse transform. We centered the function around
33 eV and choose widths of 22 and 14 eV, respectively. These
functions are depicted in Fig. 10. We choose a linear scale
on purpose to demonstrate how an apparent “zero” can be
misleading.

Figure 11 shows the reconstructed dipole moment with
the window function. Using the wider function, the dipole
moment is reduced by four orders of magnitude, but it is still
dominated by the fundamental frequency. Consequently, even
though the contribution of the fundamental is drastically (but
still insufficiently) reduced in the HHG spectrum, the RMT-
1st and RMT-6st models still reproduce the partial dipole
moment in almost the same way.

Figure 12 shows the reconstructed dipole moment with
the narrower function. Now the dipole moment is reduced
by five orders of magnitude, the fundamental as well as the
low-order harmonics are filtered out, and we see indeed a large
difference in the reconstructed part of the dipole moment in
the RMT-1st and RMT-6st models. The RMT-3st reconstruc-
tion (not shown for clarity) is very similar to that obtained
from RMT-1st. While we cannot unambiguously decide that
the RMT-6st results are problematic, these figures suggest that
the problem is numerically ill-conditioned for this choice of
parameters. For this very reason, however, we suggest it as a
challenge for benchmark calculations to thoroughly test the
many computer codes that have been used to predict relative
rather than absolute HHG spectra.

Our final comparison with the results of Tong and Chu [16]
is shown in Fig. 13, and we again also exhibit the results
obtained with Eq. (4) in Fig. 14. Even though details are

FIG. 14. Spectral density as defined in Refs. [11,12] for the laser
parameters used to produce Fig. 13. The y axis is logarithmic.

hardly visible, there appears to be quantitative agreement with
the results shown in Fig. 5(b) of Ref. [16].

As pointed out in Ref. [9], a quantity of significant practical
interest is the conversion efficiency, i.e., what portion of the
incident intensity can actually be converted into a few low-
order harmonics and the plateau. In fact, a straightforward
indication is a comparison of the integrals under the various
peaks and the plateau. Due to the likely singularity for ω → 0
in the definition of Refs. [13,16], we only use Eq. (4) to obtain
the fractions relative to the integral under the entire curve.

The results are listed in Table I. We only present them
for the 1064-nm case discussed in this section, since there
is no real plateau for 248.6 nm. For the relatively low peak
intensity of 5 × 1013 W/cm2, the spectra are completely dom-
inated by the contribution from the fundamental frequency,
followed by rapid drops for the low-order harmonics that are
still distinguishable on the graphs. The relative importance of
the plateau is most important according to the RMT-6st model
for this low intensity. However, the numbers are extremely
small, and such small numbers are usually very difficult to
calculate accurately.

For the higher peak intensity of 4 × 1014 W/cm2, on the
other hand, the integral under the plateau provides the dom-
inant contribution to the spectrum. As one might expect for
this case of larger numbers, the numerical challenges appear
to be less significant. Table I shows that for the high-intensity
results, the plateau integrals all agree to within about 3%,
a significant improvement upon the order-of-magnitude dis-
agreement observed in the low-intensity case. We note that the
total ionization probability for the laser parameters selected
for this case is still only about 0.1%, i.e., this is consistent
with the usual HHG condition of almost negligible ionization.

IV. CONCLUSION

We reported a comparison study for high-order har-
monic generation in helium. While many results for this
problem have been reported previously, we emphasize the
importance of a number of items that seem to have been
frequently ignored in other works. Most importantly, we
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continue to advocate that theorists publish absolute num-
bers, together with the definition they used to obtain them.
Furthermore, we illustrated that the induced dipole mo-
ment needs to be calculated with very high accuracy
if reliable benchmark results are to be obtained, which
can then be used to assess the likely reliability of the
predictions.

Finally, we found a surprising effect on the results for
5 × 1013 W/cm2 by adding the n = 3 states (specifically the
3p) of He+ into the RMT model. We hope that the present
work will encourage other groups to perform calculations
that hopefully will lead to established benchmark results.
Since the underlying quantity is the induced dipole moment,
from which all the other parameters (time derivatives, Fourier
transforms, and spectra in various conventions) can be
calculated, we uploaded our results to [34]. To simplify

the file structure, all the dipole moments were interpolated
to a common time grid with a step size of 0.1 and are
given from the beginning to the end of the driving pulse.
We checked that the spectra shown in this paper can be
reproduced with sufficient accuracy from these interpolated
results.
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