PHYSICAL REVIEW A 109, 043110 (2024)

Strong-field processes induced by an ultrashort linearly polarized pulse with two carrier frequencies

D. Habibovi¢ ®! and D. B. Milogevi¢ ©'-?
! Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina
2Department of Natural and Mathematical Sciences, Academy of Sciences and Arts of Bosnia and Herzegovina,
Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina

® (Received 14 February 2024; accepted 27 March 2024; published 11 April 2024)

We perform a detailed semianalytical study of the characteristics of strong-field processes induced by an
ultrashort linearly polarized pulse with two carrier frequencies. We show that the photoelectron spectra depend
to a great extent on the absolute phases of the field components and on the duration of the pulse. By using the
saddle-point method, we show that this dependence can be exploited to control the electron dynamics in the laser
field. Besides the photoelectron spectra, we also investigate the spectra of high-order harmonics. Again, we find a
strong dependence on the absolute phases and the duration of the pulse. We present the spectra using a false color
scale in the absolute phase-harmonic energy plane, and show that particular regions in this plane can be assessed
using the simple man’s model founded on the classical solution of the Newton equation of motion. Finally, we
investigate the symmetry properties of the photoelectron and high-order harmonic spectra with respect to the
transformation which includes the change of the absolute phase, and compare them with those valid for a long

driving pulse with a flat envelope.
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I. INTRODUCTION

When an atom or molecule is exposed to an intense laser
field many processes can be induced. Among these, partic-
ularly interesting are high-order above-threshold ionization
(HATT) and high-order harmonic generation (HHG) (for re-
view see [1-9]). For both of these processes, following the
ionization of the atom or molecule by the strong laser field,
the released electron is propagated in the continuum. The
oscillatory laser field may return the electron in the vicinity
of the parent ion, and then various scenarios may happen.
For HATI, the electron rescatters off the parent ion, while
the scenario which corresponds to the HHG assumes that the
electron is recombined with the parent ion and the energy
excess is released in the form of the high-order harmonic. This
simple picture is called the three-step model [10,11].

The simplest case of the driving field is a monochromatic
field which can be represented as an infinitely long pulse
with a flat envelope. During the past three decades, a rapid
development of the laser technologies made possible the con-
struction of more complex near-infrared lasers with the pulses
which consist of only a small number of optical cycles [12].
These pulses allow one to record the electron dynamics in
real time [13] and they are called the few-cycle pulses. The
corresponding electric field can be written in the form of
the product of the carrier wave and the envelope function.
The phase between the maximum of the envelope and the
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nearest maximum of the carrier wave is called the absolute
phase or the carrier-envelope phase (CEP). The influence of
the CEP on the photoelectron emission was reported in the
experiment [14] and was theoretically explained in [15] for
the laser pulses with nonstabilized CEP. Later, the technolog-
ical advancements enabled construction of the CEP-stabilized
laser systems for which the influence of the CEP on the
photoelectron emission was investigated both experimentally
[16] and theoretically [17]. An example of experimental and
theoretical investigations of molecular HATT induced by a
few-cycle pulse is given in [18]. The influence of the exact
value of the CEP on the ionization of atoms and molecules by
the circularly polarized field was investigated in [19], while
the theory which allows one to extract the CEP dependence of
observables using the wave function for a single value of the
CEP was presented in [20]. Besides the above-threshold ion-
ization, the HHG process also depends on the value of the CEP
[21-27], as well as the other strong-field processes such as
nonsequential double ionization [28—32], dissociation [33,34],
laser-assisted electron-atom scattering [35], and laser-assisted
electron-ion radiative recombination [36]. Moreover, the char-
acteristics of different atomic and molecular processes in a
linearly polarized few-cycle field were analyzed in [37]. Fi-
nally, the plasmonic field-enhanced HHG and its dependence
on the CEP was investigated in [38].

Apart from the CEP, the characteristics of HATI and HHG
spectra also depend on the other laser-field parameters and
the specificities of the atomic or molecular target [39,40]. In
order to achieve particularly advanced control of the process,
the so-called tailored laser fields are useful. The examples of
the long pulses with a flat envelope include the bichromatic
linearly polarized field, the bicircular field, and the orthog-
onally polarized two-color field. The bichromatic linearly
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polarized field consists of two linearly polarized components
with mutually parallel polarizations, while the bicircular field
has two circularly polarized components. The orthogonally
polarized two-color field has two linearly polarized compo-
nents but, contrary to the case of the bichromatic linearly
polarized field, the polarizations of these components are
mutually perpendicular. For these driving fields, HATI and
HHG spectra depend on the frequencies of both field compo-
nents and the relative phase between them. For a few-cycle
pulse, additional parameters appear and they can be used
to control the process. More specifically, the spectra depend
on the duration or length of the pulse (i.e., on the number
of optical cycles per pulse), the CEP, and the shape of the
envelope. For example, the ionization of argon atoms induced
by an ultrashort linearly polarized field with two carrier waves
was investigated in [41] both theoretically and experimen-
tally. Here, the duration of the pulses of the two waves was
not equal. Furthermore, the ionization of neon atoms by the
linearly polarized femtosecond pulse, which consists of the
XUV and infrared components, was explored in [42]. Also,
the linearly polarized pulse with two carrier frequencies and a
time delay between the two components was employed in [43]
to analyze the possibility of optimization of the HHG intensity
and the position of the cutoff. More recently, the possibility of
extraction of the phase and time delays of attosecond wave
packets formed in strong-field ionization was theoretically
investigated using a two-carrier linearly polarized femtosec-
ond field with one strong and one weak component [44].
Also, the subcycle electron dynamics during the strong-field
ionization of NO molecules was investigated using a similar
driving pulse [45]. Apart from the gaseous media, the ultra-
short pulses have many applications in the solid-state physics.
For example, using the two ultrashort lasers, the dynamics of
the electrons in the bulk alpha quartz was investigated with
the time-dependent density functional theory [46].

In order to model HATI and HHG processes, various
theories can be employed. The most accurate theories rely
on the solution of the time-dependent Schrodinger equa-
tion [47,48]. These calculations are time consuming even
for the simple atoms or molecules and the semianalytical
approaches are beneficial. Particularly prominent examples
of these approaches are the theories based on the strong-
field approximation (SFA) which assumes that the interaction
between the liberated electron and the parent ion is negligi-
ble during the electron propagation in the continuum. The
Coulomb interaction between the liberated electron and the
parent ion can be included in the calculations [49-51], but
this contribution usually remains small [52]. We have al-
ready applied our SFA-based theory to investigate various
characteristics of HATI and HHG spectra induced by the
long tailored laser fields [39,53-56]. More recently, we have
explored the characteristics of the processes induced by the
few-cycle driving fields with two carrier frequencies [57,58].
For the linearly polarized few-cycle pulse, we have found that
the agreement between the results obtained using our SFA the-
ory and the theory based on the time-dependent Schrédinger
equation is excellent in the high-energy part of the spectra for
both the HATI and HHG processes [38,59-61]. We expect
the same to be valid for the driving pulses with two carrier
frequencies.

In the present contribution, we analyze the dependence of
HATI and HHG spectra on the parameters of the few-cycle
linearly polarized pulse with two carrier frequencies. The
paper is organized as follows. In Sec. II, we briefly present the
SFA-based theory of the HATT and HHG processes induced by
the few-cycle linearly polarized pulse. Also, we briefly discuss
the saddle-point method which allows one to get an insight
into the underlying physics of the process. The calculated
numerical results are presented in Sec. III, while the main
discussions and conclusions are given in Sec. IV. Atomic units
are used unless otherwise stated.

II. THEORY

In this section we briefly present the SFA-based theory of
HATI and HHG processes. Also, we succinctly discuss the
saddle-point method and the simple man’s model.

A. HATI theory

The differential ionization probability for transition from
the initial bound state 1, to the final continuum state, which
corresponds to the photoelectron with asymptotic momentum
p.is Wo=p> |Mp,,,|2 where p = |p| is the momentum
amplitude, the sum over m is the sum over the magnetic
quantum number, and My, is the probability amplitude given
by My, = MS) + M{)), with [61]
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Here Ml(,(,),f is the contribution of the direct electrons, i.e.,
the electrons which after liberation go directly to the detec-
tor without further interaction with the parent ion. On the
other hand, Ml()}g is the contribution of the rescattered elec-
trons, which after the liberation interact once with the core.
Also, p = p — A(t,), A(t) = — [ E(¢')dt’ being the vector
potential of the applied field E(¢); 7, =n,T is the pulse
length expressed as an integer multiple of the laser period
T, Ky =— j;; dt'A(t")/(t —tp) is the stationary momentum,
and ¢ and ¢ are the ionization and rescattering times, respec-
tively. Also, M,,,(q, ty) = {q + A(t)|r|¥,,) is the ionization
matrix element, while S(p, 7o) = I,to + [ dt'[p + A(t))]?/2
and S(Ky; 1, 1p) = f;f, dt'{[kg + At)]*/2 + I,} are the actions
of the direct and rescattered electrons, respectively. Finally,
I, is the ionization potential of the bound state which we
represent by a linear combination of the Slater-type orbitals

26,172
Vel

Here, Y;,,(2) are the spherical harmonics, n,, / and m are
the quantum numbers, while the coefficients C, and ¢, are
tabulated in [62]. Finally, the rescattering potential V (r) is
modeled by the double Yukawa potential [63]. Besides the
double Yukawa potential, a more accurate rescattering poten-
tial, which includes six parameters instead of two, can also be

Y = Yin(@®) =Y _Cy e Y (Q). (3)
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used as the rescattering potential [64,65]. However, this po-
tential leads to almost the same results as our double Yukawa
potential except in the low-energy part of the spectrum [64].
The integrals which appear in the probability amplitude
M) can be solved numerically, or by using the saddle-point
method. In the latter approach, the stationarity of the action
S(P, to) — S(ky; 1, to) with respect to fy and ¢ leads to the

saddle-point equations
[k + A = 21,
D+ ADF = [ke + ADT, “

with the complex solutions for ¢y and ¢. Then, the probability
amplitude Ml()},f can be written as a sum of the contributions of
different saddle-point solutions (see Appendix B in [61]).

B. HHG theory

For the HHG process, the intensity of the harmonic with
frequency Qx and wave vector K is Io, oc Qk|Tq,|?, where
the T-matrix element Tg, is

™ dt ;
To, = /0 ! 7 2 dn (e, ©)

and the sum over m is the sum over the magnetic quantum
number of the bound state. The time-dependent dipole is
[2,66]

t 21 32
dml = —i dt . " k.’t
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where the time ¢ now represents the recombination time.
Besides the ionization matrix element M, (K, 7o), the re-
combination matrix element M, (kg 1) appears as well. Here
we only consider the atoms with closed electron shells so that
the magnetic quantum number of the initial and final states is
the same [66].

Important insight into the strong-field process can be
gained by exploring the electron dynamics described by the
Newton equation for an electron exposed to the laser field.
This is the foundation of the simple man’s model introduced in
[67-69] and applied to the three-step processes in [10,11,70].
The optimal harmonic intensity is determined by the condi-
tion that the electron velocity at the ionization time is zero.
Using this condition, we obtain that the harmonic intensity is
maximal for the harmonic-photon energy [54]:

QK opt = I, + [A(t) — A(19)]*/2. (7)

In this paper as the driving field we use a few-cycle linearly
polarized pulse with two carrier frequencies. This field can be
presented as

E@t) = f(OIE: sin(rot + ¢1) + Ex sin(sot 4+ ¢2)]€,  (8)

where E; and ¢; with j = 1, 2 are the electric-field amplitudes
and absolute phases, w = 2w /T is the fundamental carrier
frequency, r and s are integers, and f(¢) = sin?[wt /(2np)] for
t €10, 7,]; f(¢) = 0 otherwise is the pulse envelope. The real
vector &, defines the driving-field polarization direction.

logm [Wp (a.w)]

1
Photoelectron energy / UpO

FIG. 1. Logarithm of the differential ionization probability as a
function of the photoelectron energy of Ar for HATI induced by
the w-2w linearly polarized few-cycle pulse with the component
intensity E? = E? = 10'* W/cm?, fundamental carrier wavelength
of 800 nm, and the values of the absolute phases as indicated in the
panel. The total pulse duration and the emission angle are 7, = 4T
and 0, = 0°, respectively.

III. NUMERICAL RESULTS

In order to investigate the characteristics of HATT and HHG
spectra induced using the pulse given by Eq. (8), we use the
example of the Ar atom. The corresponding ionization poten-
tial is I, = 15.76 eV and its ground state is modeled using two
2p and two 3p states for whichn, =2,/ =1,m =0, £1 and
n, =3, =1,m =0, 1, respectively.

A. High-order above-threshold ionization

We start our investigations by exploring the dependence of
the HATT spectrum on the values of the absolute phases and
the length of the pulse. The emission angle 6, is defined as the
angle between the final photoelectron momentum and the axis
defined by &,. In Fig. 1 we present the photoelectron spectra
induced by the w-2w linearly polarized few-cycle (n, = 4)
pulse with component intensity £ 12 = E22 = 10"* W /cm?, fun-
damental carrier wavelength of 800 nm, and the values of
the absolute phases as indicated in the panel. For our driving
field, we fix the value of the phase ¢; = 0° and change the
phase ¢>. The photoelectron energy is expressed in units of
Uy = [Elz/(ra))2 + E22/(sa))2]/4, r =1, s = 2, and the emis-
sion angle is 6, = 0°. The photoelectron spectrum depends
to a great extent on the value of the absolute phase. This is
particularly true for the position of the cutoff (see the arrows
in Fig. 1). For example, for the absolute phase ¢, = 30°, the
emission of the medium- and high-energy electrons is signifi-
cantly suppressed and the cutoff appears for the energy around
6.4Uyo. On the other hand, for the values of the absolute
phase ¢, > 60°, the rescattering plateau extends to a much
higher energy [see the red (cutoff at 10.3Uy0), green (cutoff
at 12.5Up), and blue (cutoff at 12.0Up) arrows in Fig. 1 for
the values of the absolute phase ¢, = 120°, 180°, and 240°,
respectively]. Besides the position of the cutoff, the value
of the differential ionization probability also depends on the
absolute phase in the sense that the height of the rescattering
plateau strongly depends on this parameter. For example, for
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Photoelectron energy / Up0

FIG. 2. Logarithm of the differential ionization probability as a
function of the photoelectron energy of Ar for HATI induced by the
w-2w linearly polarized few-cycle pulse which consists of n,, optical
cycles, as indicated in the upper left panel, and for the values of
the absolute phase ¢, as indicated in the panels. Other driving-field
parameters and the emission angle are the same as in Fig. 1.

the photoelectron energy (E, = p?/2) Ep > 6Up, the HATI
spectra are significantly different for different values of the
absolute phase. The plateau is the longest for ¢, = 180°. Also,
for ¢ < 180° (¢, > 180°) the photoelectron yield is higher
(lower) than the corresponding yield obtained for ¢, = 180°.
In order to gain full information about the dependence of the
photoelectron spectra on the absolute phase, it is necessary to
investigate this dependence together with the dependence on
the length of the pulse. For this purpose, in Fig. 2 we present
the photoelectron yield obtained using the same driving pulse
as in Fig. 1 but with n,, optical cycles per pulse, as indicated
in the upper left panel, and for the values of the phase ¢,
as indicated in the panels. The phase ¢; is zero. The length
and height of the rescattering plateau strongly depend on the
pulse duration. As a rule, for a very short laser pulse (which
covers only three optical cycles), the photoelectron yield is
lower than that for pulses with more than three optical cycles
(see the upper right and lower left panels in Fig. 2). The only
exception is for the phase ¢, around 240°. In this case the
photoelectron emission is also suppressed for longer pulses
even though not to such an extent as for the case with n, = 3
(see the lower right panel of Fig. 2).

The fact that the medium- and high-energy parts of the
photoelectron spectrum are suppressed for certain interval of
values of the phase ¢, can be elaborated using the saddle-
point method. The partial contributions to the differential
ionization probability, which correspond to the solutions of
the saddle-point equations (4) and significantly contribute to
the spectrum, are displayed in Fig. 3 for the driving pulse
with the phase ¢, = 120° and the same other parameters as
in Fig. 1. Similarly as for the driving pulse with one carrier
frequency, the solutions appear in pairs [61] and the contribu-
tions of the solutions which diverge after the cutoff should be
discarded (dashed lines in Fig. 3) [71,72]. The contributions
of the direct electrons are not presented in Fig. 3. For the
given values of the driving-pulse parameters, the medium-
and high-energy parts of the spectrum are solely determined
by the partial contributions denoted by A and m; [see the

log, [ Wp (arb. units)]

Photoelectron energy / UpO

FIG. 3. Saddle-point partial contributions to the differential ion-
ization probability for the driving pulse with ¢, = 120° and the same
other parameters as in Fig. 1. The pair which is dominant in the
high-energy part of the spectrum is denoted by h, while the pair
whose contribution is significant in the medium part of the spectrum
is denoted by m; .

blue (k) and magenta (m;) solid and dashed lines in Fig. 3].
The low-energy region of the spectrum is dominated by the
direct electrons [cf. the red (gray; cutoff at 10Upo) line in the
upper right panel of Fig. 2 with the black solid line in Fig. 3;
they coincide very well except in the low-energy part of the
spectrum]. The number of saddle-point solutions significantly
increases with the increase of the length of the pulse. How-
ever, the number of the saddle-point solutions which lead to
the significant contributions to the differential ionization prob-
ability remains relatively small. In order to analyze how the
partial contributions to the differential ionization probability
depend on the value of the absolute phase ¢,, it is enough
to investigate how the pairs denoted by & and m,; behave as
functions of this parameter. For this purpose, in Fig. 4 we
present the complex ionization time for the pairs of solutions
of the saddle-point equations which contribute significantly in
the high-energy (left panel) and medium-energy (right panel)

\ ‘ \ T \ \
0.16 \/ — ¢, = 180° +| medium-energy pair
o (pz =220° |[” —0.12
[ /\ — 0,=260° |
0.14 =i
~ L \/ ] ~
= = 4011 =
0.12- A \/ .
0.1 . . B
high-energy pair = 0.1
! ! ‘ \ \ \
1.6 1.65 1.7 1.26 1.29 1.32
t! T tw! T

FIG. 4. Complex saddle-point solutions for the high-energy (left
panel) and medium-energy (right panel) pair for the driving pulse
with the absolute phase ¢, = 180° (black lines; largest for), @2 =
220° (red lines; medium for), and ¢, = 260° (green lines; smallest
tor), and the same other parameters as in Fig. 1.

043110-4



STRONG-FIELD PROCESSES INDUCED BY AN ...

PHYSICAL REVIEW A 109, 043110 (2024)

30F ‘ o
[ — hg,=120 I
b ¢, =260°
00 g, =120° ]
10~ my, @, =260° i
5t i
5 o .
= L i
-101 =260
20
F o 00
'30*‘(1)1 ! \/ L 01 L =120
1.5 2.5

2
Time/ T

FIG. 5. Photoelectron trajectories for the convergent solutions of
the 4 [blue and green (upper) lines] and m; [magenta and orange
(lower) lines] pairs of the saddle-point solutions for the absolute
phase as indicated in the panel. The photoelectron energy is E, =
7.5U,. Other pulse parameters are the same as in Fig. 1. Inset: The
electric field for the two values of the phase as indicated in the panel,
and with the relevant real part of the ionization times denoted by dots.

parts of the spectrum, for the values of the phase ¢, as in-
dicated in the left panel and the same other field parameters
as in Fig. 1. The imaginary part of the ionization time g
is related to the ionization probability in such a way that
the increase of ty; corresponds to the exponential decrease
of the ionization probability. With this in mind, it is easy to
see that the contribution of the high-energy (medium-energy)
solution decreases (increases) with the increase of the phase
@>. More precisely, for ¢; = 0°, as the phase ¢, increases
from ¢, = 120° towards ¢, = 260°, the partial contribution
of the pair h (m;) to the differential ionization probability
becomes smaller (larger). For the pair 4, this change is partic-
ularly pronounced for ¢, € [180°, 260°]. Apart from the pairs
h and m, contributions of other saddle-point solutions remain
negligible regardless of the values of the absolute phases.
This behavior can successfully be exploited to control
the electron dynamics using the absolute phase as the pa-
rameter. The quantum orbits are defined as the solutions of
the Newton equation of motion for the electron in the laser
field for complex ionization and rescattering times [61,73].
The photoelectron trajectories are given by the real part of
r(t'") = kg(t' — 1) + a(t’) — a(ty) for Rety <t < Ret, and
r(t’) =p@’ — 1)+ a(t’) — a(t), for t' > Ret, where a(r) =
f " A(t')dt' is the electron excursion in the laser field. In Fig. 5
we present the photoelectron trajectories for the energy E;, =
7.5Uy and for the convergent contributions of the & [blue
and green (upper) lines] and m; [magenta and orange (lower)
lines] pairs of the saddle-point solutions for the absolute
phase as indicated in the legend. The inset in Fig. 5 displays
the electric field as a function of time for the two values
of the absolute phase as indicated in the panel. For ¢, = 120°,
the medium-energy and high-energy parts of the spectrum are
exclusively determined by the solutions of the % pair so that,
for this value of the absolute phase, the electron motion in the
laser field would be as shown by the blue (uppermost) line in
Fig. 5. The corresponding real part of the ionization time is
denoted by the blue dot in the inset. Clearly, the ionization

= N
o o

-
N

Photoelectron energy / U,

0

e i:_
& A \) o
log1o[W, (arb.units)]

60 120 180 240 300 36
¢4 (degrees)

FIG. 6. Logarithm of the differential ionization probability as a
function of the absolute phase ¢; and the photoelectron energy for
the driving pulse with ¢, = 0° and the same other parameters as in
Fig. 1.

happens when the electric field is close to its maximal value,
thus leading to the significant differential ionization probabil-
ity. For the value ¢, = 260°, the situation is different. Namely,
the ionization time for the 4 solution is slightly changed with
respect to the one obtained with ¢, = 120° (see the green dot
in the inset), but the field strength is radically different and
the contribution of this solution becomes negligible. The sit-
uation is opposite for the m; solution, which is significant for
¢y = 260° [compare the positions of the magenta and orange
(upper) dots with the positions of the blue and green (lower)
dots in the inset]. The electron trajectory which corresponds to
this solution is very different with respect to the one obtained
for the & solution. In this way, by changing the absolute phase,
we can achieve that only one, out of two pairs of solutions, is
dominant, thus attaining a fine control of the motion of the
released electron. For a few-cycle pulse with only one carrier
frequency, far less advanced control is possible. Besides the
dependence of the spectra on the second-harmonic absolute
phase, it is also instructive to investigate how the photoelec-
tron yield depends on the absolute phase ¢; of the carrier field.
In Fig. 6 we present the logarithm of the differential ionization
probability as a function of the absolute phase ¢; and the
photoelectron energy for the w-2w driving pulse with ¢, = 0°
and the same other parameters as in Fig. 1. The position of the
cutoff and the value of the differential ionization probability
strongly depend on the absolute phase ¢;. For example, for
the values of the ¢; slightly smaller than 7 and 27, the cutoff
appears for the photoelectron energy E, < 7U,, while for the
phase ¢; ~ 100°, the position of the cutoff appears for £, >
16U . In addition, the spectra do not possess any nontrivial
symmetry properties with respect to the change of the phase
¢,. Besides the position of the cutoff, the dependence of the
differential ionization probability on the photoelectron energy
also depends to a significant extent on the phase ¢;. For ex-
ample, for ¢; &~ 120°, the spectrum exhibits relatively smooth
structure with only two deep minima, while for ¢; &~ 240°,
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FIG. 7. Logarithm of the differential ionization probability as a function of the absolute phase ¢; and the photoelectron energy for the
driving field with n, = 3 (a) and n, = 5 (b) optical cycles per pulse, and for the long pulse with a flat envelope (c). The absolute phase is

@, = 0° and the other parameters are as in Fig. 1.

the photoelectron yield exhibits almost erratic behavior as a
function of the photoelectron energy.

Now we analyze how the dependence of the differential
ionization probability on the absolute phase ¢; is changed as
a function of the pulse length. For that purpose, in Fig. 7 we
present the logarithm of the differential ionization probability
as a function of the absolute phase ¢; and the photoelectron
energy for the driving field with n, = 3 [panel (a)] and n, = 5
[panel (b)] optical cycles per pulse, and for the long pulse
with a flat envelope [panel (c)]. Other parameters are the
same as in Fig. 6. By comparing the results displayed in
Fig. 6 and in Figs. 7(a) and 7(b) with the results shown in
Fig. 7(c), it becomes clear that the length of the pulse has
a big impact on the photoelectron spectra. If a long pulse
with a flat envelope [f(r) =1 in Eq. (8)] is employed to
induce the process, the photoelectron spectra exhibit a sym-
metry Wy (@1, ¢2) = Wy(@1 + 7, o) (see the Appendix). For
an ultrashort pump pulse, this symmetry is broken and the
photoelectron spectra significantly depend on the value of
the absolute phase ¢;. For example, for the driving pulse
with n, = 3 optical cycles, the emission of the high-energy
electrons is suppressed for ¢; < m, while those electrons are
present for ¢; > 7 [see Fig. 7(a)]. In contrast, for the driving
pulse with n, = 4 optical cycles, the high-energy electrons
are predominantly emitted for ¢; < m, and are suppressed for
@1 > 7 (see Fig. 6). Finally, for n, > 5, the symmetry with
respect to the change ¢; — ¢; + 7 becomes more apparent
[see Fig. 7(b)] even though it is exact only for a long pulse
with a flat envelope [see Fig. 7(c)]. It is also interesting to
mention that, for the w-2w long pulse with a flat envelope,
the symmetry with respect to the change ¢, — ¢, + 7 does
not exist. Consequently, with a fixed phase ¢; and changing
the phase ¢, we can only get one broad region of the phase
¢, for which the high-energy electrons are expected with a
significant ionization probability. On the other hand, with a
fixed phase ¢, and changing the phase ¢; we get two re-
gions of the phase ¢, for which the high-energy electrons are
expected with a significant probability. The discussed sym-
metries can be derived using the dynamical symmetry of the
field as explained in [39] (for more details see the Appendix).
For a few-cycle pump, the mentioned symmetries can only be
approximate and they cannot be observed at all if the number
of optical cycles per pulse is very small (n, < 5).

Let us now, using the saddle-point method, discuss the
suppression of the emission of the high-energy electrons for
some values of the phase ¢;. In Fig. 8 we present the loga-
rithm of the differential ionization probability as a function of
the photoelectron energy calculated by numerical integration
(black solid lines) and by using the saddle-point method [red
(gray) solid lines], together with the partial contributions of
different saddle-point solutions. The spectra calculated using
the saddle-point method do not include the contributions of
the direct electrons, while they are included in the spectra
calculated by numerical integration. The values of the ab-
solute phases (in all panels it is ¢, = 0°) and the number
of optical cycles per pulse are denoted in the panels. For
the four-cycle pulse, the high-energy part of the spectrum is
determined by one pair of the saddle-point contributions [blue
lines (with the highest cutoff) in Figs. 8(a) and 8(b)]. However,
for ¢; = 120°, these contributions are pronounced, while for
@1 = 240° they are suppressed by approximately two orders
of magnitude. Because there are no other contributions to the
high-energy part of the spectrum, the photoelectron emission
would be suppressed for ¢; around 240° (in accordance with
the results shown in Fig. 6). Furthermore, the medium-energy
part of the spectrum (6U,y < E, < 10Uy) is also affected
by the change of the phase ¢;. For example, for ¢; = 120°
this part of the spectrum is determined by the high-energy
solutions and only one additional solution [green solid line
(disappears from the panel at 10Up) in Fig. 8(a)] so that the
total spectrum remains relatively smooth. On the other hand,
for ¢; = 240° the medium-energy part of the spectrum is
determined by many saddle-point solutions [see the magenta,
orange, cyan, and blue (different shades of gray) lines in
Fig. 8(b)], thus exhibiting erratic oscillations of the total yield.

The discussion is much simpler for an even shorter pulse.
For the three-cycle pulse, the number of the relevant saddle-
point solutions is much smaller than for the four-cycle pulse.
The rescattered yield is usually determined by only one pair of
the saddle-point contributions. Consequently, if the contribu-
tion of that pair of the saddle-point solutions is suppressed
for some values of the absolute phase, the whole yield is
also expected to be suppressed. For example, for ¢; = 120°
(and other values of ¢; close to this one), the rescattering is
almost completely absent [see the black, red (gray), and brown
(light gray; uppermost) lines in Fig. 8(c); the contribution
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FIG. 8. Logarithm of the differential ionization probability as a function of the photoelectron energy calculated by numerical integration
(black solid lines) and by using the saddle-point method [red (gray) solid lines], together with the contributions of different saddle-point
solutions. The spectra calculated using the saddle-point method do not include the contributions of the direct electrons, while they are included
in the spectra calculated by the numerical integration. The values of the absolute phases and the number of optical cycles per pulse are denoted

in the panels. Other parameters are the same as in Fig. 1.

of the direct electrons is denoted by the brown (light gray;
uppermost) line]. The rescattering pair of the saddle-point
contributions [blue (dark gray) lines in Fig. 8(c)] is relevant
only in the narrow region around 6U, where it is of the
same order of magnitude as the contribution of the direct
electrons. This explains the strong suppression of the yield for
high energies and near ¢; = 120° in Fig. 7(a). On the other
hand, for ¢; = 280° (and other values close to this one) the
contribution of the rescattering pair extends to E, > 16Uy
and the rescattering plateau is well pronounced. Finally, it is
worth mentioning that the obtained photoelectron spectra are
very different in comparison with the spectra generated using
the pulse with one carrier frequency. For example, the position
of the cutoff for the process induced by a one-carrier field is
close to 10U, while for the two-carrier driving pulse, the
photoelectrons can have much higher energy, depending on
the values of the absolute phases.

B. High-order harmonic generation

After analyzing HATI by the linearly polarized few cycle
pulse with two carrier frequencies, we now investigate the
characteristics of the HHG process induced by this pulse.
First, we explore the dependence of the harmonic yield on

the absolute phase ¢;, for the fixed value of the phase ¢,.
When HHG is induced by a long bichromatic field with a
flat envelope, the length of the HHG plateau and the value
of the harmonic intensity significantly depend on the value
of the phase ¢;. However, the harmonic yield is invariant
with respect to the transformation ¢; — ¢; + /2 (see the
Appendix). For example, for the phase ¢, = 0°, the length
of the plateau would be the shortest for ¢; = 25° + j x 90°,
where j is an integer, while the longest plateau can be ex-
pected for ¢; = 67° + j x 90°. In the former case, the cutoff
appears close to 3.2U,, while in the latter case, it is at a much
higher energy close to 5U,. The symmetry with respect to
the change ¢; — ¢; + 7 /2 is broken when a few-cycle pulse
is employed to induce the process. Consequently, the charac-
teristics which appear in the harmonic yield due to the short
nature of the pump pulse can easily be examined by com-
paring the harmonic yields calculated for the driving pulse
with the phase ¢; + jm /2, j being an integer. In Fig. 9 we
present the logarithm of the harmonic intensity as a function
of the harmonic energy for the Ar atom exposed to the three-
cycle w-2w linearly polarized field with the absolute phases
¢, = 0° and ¢ as indicated in the panels. The intensity of the
driving-field components is E} = E3 = 10'* W/cm?, while
the fundamental carrier wavelength is 1600 nm. We have
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FIG. 9. Logarithm of the harmonic intensity as a function of the harmonic energy for the Ar atom exposed to the w-2w linearly polarized
field which consists of three optical cycles per pulse and for the values of the absolute phases ¢, = 0° and ¢, as indicated in the panels. The
intensity of the driving-field components is EZ = E3 = 10'* W /cm?, while the fundamental carrier wavelength is 1600 nm.

chosen a longer wavelength in order to obtain a longer plateau
and to make the conclusions about the investigated depen-
dences more plausible. The energy scale at the bottom (top) of
the panels is in electron volts (U). For example, in Figs. 9(a)

and 9(b) we compare the harmonic spectra calculated using
the driving pulse with ¢; = 15° 4+ j x 90°, j =0, 1, 2, 3. All
of these values of the absolute phase would lead to the same
harmonic spectrum with the cutoff around 3.2U 0 (see Fig. 12
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FIG. 10. Logarithm of the harmonic intensity / as a function of the absolute phase ¢; and the harmonic energy. The intensity of the
driving-field components is EZ = E7 = 10" W /cm?, while the fundamental carrier wavelength and the absolute phase ¢, are 800 nm and 0°,
respectively. The number of optical cycles per pulse is indicated above the panels.

in the Appendix) if the long pulse with a flat envelope is
employed to induce the process. Moreover, for the case of
the long pulse, the harmonic intensity rapidly decreases in
the low-energy region, after which it remains, on average,
constant for energy lower than 45 eV. Furthermore, for the
harmonic energy between 45 and 90 eV, the harmonic inten-
sity is higher than in the previous interval, but still, it is on
average constant. None of these characteristics are preserved
for the case of a few-cycle pump. In particular, the harmonic
intensity and the shape and the length of the spectrum pro-
foundly depend on the absolute phase ¢;. For example, for
@1 = 15° or 105°, the spectra have two plateaus, the one with
lower harmonic energy and higher harmonic intensity, and
the one with higher harmonic energy and lower harmonic
intensity [see the black and red (gray) lines in Fig. 9(a)]. This
remains true for the pump pulse with ¢; = 285°, with the
exceptions that the first plateau is longer than for the pump
with ¢; = 15° or 105°, and that the difference between the
harmonic intensity of the first and second plateaus is more
pronounced [see the brown (gray) line in Fig. 9(b)]. On the
other hand, for the phase ¢; = 195°, only one plateau appears
in the spectrum and the harmonic intensity is high. For all
these cases, the position of the cutoff is higher than 4U,,
i.e., it is much larger than for the pulse with one carrier
frequency.

As a second example, in Figs. 9(c) and 9(d) we present
the harmonic spectra induced by the driving field with ¢; =
50°+ j x 90°, j =0,1,2,3. For these values of the phase
@1, the position of the harmonic cutoff is close to SU, (see
Fig. 12 in the Appendix) if the long pulse with a flat en-
velope is employed to induce the process. In addition, the
harmonic intensity is on average constant for a broad region
of the harmonic energies higher than 30 eV. For a few-cycle
pump pulse the situation is different. Not only is the harmonic
emission not the same for these values of the absolute phase
@1, but also the positions of the cutoff are far lower than
those obtained with a long pump pulse. For example, for
the values ¢; = 50°, 140°, and 320°, the cutoff appears at
different values of energy between 2U,o and 4U, while for
@1 = 230°, the position of the cutoff is lower than 1.5Uy, i.e.,

always lower than for a long pump pulse. Additionally, the
value of the harmonic intensity is different for different values
of ¢, =50°+ j x90°, j=0,]1,2,3. Finally, for the long
driving pulse with phase ¢; = 67° + j x 90°, j =0,1, 2, 3,
the harmonic spectra exhibit long plateaus (the cutoff energy
is higher than 5U,y) with, on average, constant harmonic
intensity (see Fig. 12 in the Appendix). However, for an ultra-
short three-cycle pulse, these phases correspond to the pump
pulse for which the plateau would be short [see Figs. 9(e) and
9(f)] with the cutoff energy below 2.5U,. In summary, the
ultrashort nature of the pulse drastically changes the shape and
the length of the harmonic plateau.

In conclusion, when an ultrashort pulse is employed to
induce the HHG process, the dependence of the harmonic
intensity on the phase ¢; may be completely different with
respect to the one obtained using a long pulse with a flat
envelope. We will now investigate how short the pulse should
be in order that the short-pulse-induced characteristics of the
spectra become pronounced. In Fig. 10 we present the loga-
rithm of the harmonic intensity as a function of the absolute
phase ¢; and the harmonic energy for the fixed value ¢, = 0°.
The intensity of the driving-field components is Ef = E5 =
10'* W/cm?, while the fundamental carrier wavelength is
800 nm. The number of optical cycles per pulse is indicated
above the panels. For the driving pulse which consists of three
optical cycles, the symmetry with respect to the transforma-
tion ¢; — ¢ + 7 /2 cannot be observed (see the left panel in
Fig. 10). In addition, the harmonic intensity is, on average,
a smooth function of the harmonic energy, particularly for
the values of the phase for which the harmonic intensity is
high. On the other hand, for the eight-cycle driving pulse,
the symmetry with respect to the change ¢; — ¢ + /2
becomes apparent (see the right panel in Fig. 10). In addition,
for all values of the absolute phase ¢, the harmonic inten-
sity is an oscillatory function of the harmonic energy. Even
though it is generally accepted that a flat envelope is a good
approximation for pulses longer than ten optical cycles, we
see that the characteristics of the long driving pulse with a
flat envelope become apparent even for shorter pulses. For
the driving-field intensity and carrier wavelength used for our
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example presented in Fig. 10, the short-pulse characteristics
are very pronounced for n, < 5.

Similarly as for the HATT process, it is also instructive to
analyze the dependence of HHG spectra on the absolute phase
¢, of the second-harmonic field, with a fixed phase ¢;. In
Fig. 11 we display the logarithm of the harmonic intensity as a
function of the absolute phase ¢, and the harmonic energy for
the fixed value ¢; = 0 and the driving pulse with three optical
cycles. The intensity of the driving-field components is E? =
E22 = 10'* W /cm?, while the fundamental carrier wavelength
is 900 nm. For a long bichromatic driving field with a flat
envelope, the HHG spectra depend on the value of the phase
¢, in such a way that the harmonic yield possesses the symme-
try property with respect to the transformation ¢, — ¢, + 7
(see the Appendix). This symmetry is broken for a few-cycle
pump, and the harmonic intensity strongly deviates from that
obtained using the long pulse with a flat envelope. For some
values of the phase ¢, the harmonic intensity is lower, while
for other values it is higher than the one obtained with a long
driving pulse.

The regions in the absolute phase-harmonic energy plane
where the harmonic intensity is maximal can be assessed
using the one-dimensional simple man’s model. In Fig. 11, we
added a curve (black line) which corresponds to Eq. (7) and
determines the maximal harmonic intensity. This curve nicely
follows the region with the maximal harmonic intensity. The
simple man’s model can be employed to qualitatively assess
the regions in the absolute phase-harmonic energy plane in
which the harmonic intensity is significant.

In conclusion, an advanced coherent control of the HATI
and HHG processes can be achieved using the linearly polar-
ized few-cycle pulse with two carrier frequencies. This control
is far more sophisticated than the one accomplished with a
linearly polarized few-cycle pulse with one carrier frequency.

IV. CONCLUSIONS

In recent years, ultrashort pulses which consist of only a
few optical cycles per pulse become widely available. The
strong-field processes induced by these pulses exhibit many
new features in comparison with the scenarios in which the
process is induced using a long pulse with a flat envelope.
A particularly prominent example of these features is the
forward-backward asymmetry present in the photoelectron
spectra. The characteristics of the strong-field-induced pro-
cesses depend on the laser-field parameters which serve as
control knobs.

In the first part of our paper, we have analyzed the laser-
induced photoelectron emission in high-order above-threshold
ionization. In particular, we have investigated the dependence
of the photoelectron spectra on the values of the absolute
phases of the laser-field components and on the length of
the pulse. We have shown that the photoelectron yield de-
pends significantly on the values of the absolute phases. In
particular, the position of the cutoff and the photoelectron
yield are sensitive to the change of these parameters. The
similar conclusions hold for the shape of the spectra. Using the
saddle-point method, we have found the partial contributions
to the differential ionization probability. Usually, there are
two pairs which contribute significantly to the photoelectron
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FIG. 11. Logarithm of the harmonic intensity / as a function
of the absolute phase ¢, and the harmonic energy. The intensity
of the driving-field components is E? = EZ = 10 W /cm?, while
the fundamental carrier wavelength and the absolute phase ¢, are
900 nm and 0°, respectively. The number of optical cycles per pulse is
n, = 3. The black curve, obtained using the one-dimensional simple
man’s model, determines the optimal harmonic intensity.

yield, one in the high-energy and one in the medium-energy
part of the spectrum. Depending on the values of the absolute
phases, the contributions of these solutions change. For some
values of the absolute phases the high-energy contribution
is dominant, while for others, the total spectrum can be re-
produced using the medium-energy pair alone. In addition,
there are intervals of values of the absolute phases in which
both pairs contribute equally to the photoelectron spectra. We
have shown that the electron trajectories which correspond to
these solutions are qualitatively different. This means that by
changing the values of the absolute phases we actually control
the electron dynamics in the laser field.

Besides the dependence on the values of the absolute
phases, we have also investigated the dependence on the
length of the pulse. We have found that the dependence on
the absolute phases is significantly changed when the pulse
length is changed. This remains true for the pulses shorter than
five optical cycles. For longer sine-squared pulses, the spectra
resemble the characteristics of those induced by the long pulse
with a flat envelope. If the length of the pulse is very short,
the values of the absolute phases for which the rescattering
part of the photoelectron spectra is suppressed or pronounced
strongly depend on the actual length of the pulse. Sometimes,
the rescattering part of the spectrum can be completely absent.

In the second part of our paper, we have analyzed the
dependence of the high-order harmonic spectra on the pa-
rameters of the employed ultrashort pulses. Similarly as for
the high-order above-threshold ionization, the harmonic yield
induced by a few-cycle sine-squared pulse is radically dif-
ferent from the one generated using a long pulse with a flat
envelope. We have analyzed the symmetry properties of the
harmonic spectra induced by the long pulse which are broken
when an ultrashort pump is employed. We have concluded
that the broken symmetry is most pronounced for a very short
pulse with duration which covers only a few optical cycles.
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When the number of optical cycles per pulse increases, the
spectra exhibit oscillatory character as a function of the har-
monic energy. We have also illustrated that the regions with
large harmonic intensity can successfully be assessed using
the simple man’s model based on the solution of the Newton
equation of motion.

In conclusion, an ultrashort linearly polarized pulse with
two carrier frequencies can successfully be used to achieve
advanced control over the photoelectron and high-order har-
monic spectra and to efficiently control the electron dynamics
in the applied field. These pulses can experimentally be cre-
ated using a two-color Mach-Zehnder interferometer in which
the fundamental beam is split into two parts one of which re-
mains unchanged while the frequency of the other is doubled
when it passes through a BBO crystal [41,74]. The fundamen-
tal beam can have stabilized CEP which is inherited by the
second-harmonic beam and the additional relative phase be-
tween the two beams can be controlled. Finally, the few-cycle
pulses with two carrier frequencies can also be synthesized us-
ing two CEP-stabilized, few-cycle optical parametric chirped
pulse amplifiers centered at different carrier frequencies [75].
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APPENDIX: SYMMETRIES OF THE HHG AND HATI
SPECTRA INDUCED BY A TWO-COLOR
LINEARLY POLARIZED FIELD

In this Appendix, we investigate the symmetry proper-
ties of the HHG and HATT spectra, in the framework of the
strong-field approximation, with respect to the change of the
phases ¢; and ¢, for a long driving pulse with a flat enve-
lope [f(t) =1 in Eq. (8)]. For the long driving pulse with a
flat envelope, the integral over time ¢, which appears in the
expressions for the 7-matrix element, Egs. (1), (2), and (5),
reduces to the integral over one optical period, i.e., over the
interval [ty, 79 + T ], where 7 is an arbitrary constant time. In
addition, since the pulse is long, the upper limit of the integral
in Egs. (2) and (6) can be, after the substitution T =t — 1,
set to infinity, i.e., [*_ dtof(t,t0) — [, dtf(t,t — 7). By
choosing 79 = —¢,/(sw), and using the substitutions ' =
t — 19 and 1) = 1) — 79, we get f;“” dt [[dTf(t,t—1)=

Jydt' [°def(t’ + 1.t + 1 — 1), so that sw(t'+ 1)+
¢y = swt’, i.e., the function f(t' + 19, + 190 — ) and the
T-matrix elements Tgq, and Mp,, do not depend on the phase
@2, since sw(t” + 19) + @2 = swt”, t" =t', ' — 1. Therefore,
we can set ¢, = 0° and explore how the T-matrix elements
behave as a function of ¢;. Analogously, it is possible to
choose ) = —¢;/(rw) and explore the dependence of the
T -matrix element on the phase ¢, alone. For HHG, this type
of analysis was performed in [76,77].

Let us denote our field by E(¢) = E(¢, ¢;)é, and analyze
how the spectra change with respect to the shift of the phase
¢1. The HHG and HATT spectra do not change if the corre-
sponding T -matrix element is invariant with respect to some
transformation up to a sign. The translation of the time ¢ does
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FIG. 12. Logarithm of the harmonic intensity as a function of
the absolute phase ¢; and the harmonic energy (¢, = 0°) for the
Ar atom exposed to the w-2w long driving field with the component
intensity E? = E3 = 10" W/cm?, and the fundamental wavelength
of 1600 nm.

not change the value of the integral and the corresponding
T -matrix element. Therefore, in order to investigate how the
shift of the phase affects the HATI and HHG spectra, we
should find whether such a shift of the time exists that has
the same effect on the subintegral function (up to a sign) as
the investigated phase transformation.

It can be shown that

E(t, ¢ +m) = —E; sin(rot 4+ ¢1) + E; sin(swt),
E(t+T/2,¢1) = (=1)E;sin(rot + ¢;)

+(—1)°E, sin(sot) (A1)

with analogous relations for A(¢, ¢;) and «(¢, ¢;). Therefore,
for r odd and s even we have E(¢t, o1 + 1) =E({ +T/2, ¢1),
and both the HHG and HATI spectra are invariant with respect
to the shift of the phase ¢; by m. On the other hand, for
r even and s odd we have E(t, ¢, + )= —-E(t +T/2, ).
In this case the HHG spectra are invariant, while the HATI
spectra are not invariant with respect to the transformation
@1 — @1 + 7. The reason is that the subintegral function for
HATI contains the term [p + A(z )]2. This term changes when
the vector potential changes the sign. Only if simultaneously
p — —p we have the symmetry (—p, ¢; + 7) < (p, ¢1).

Analogously, foroddr =2n+1,n=0, 1,2, ...,itcanbe
shown that

Elt,p1 +2j+ D /2] = —E[t + 2q+ DT /4, 11, (A2)
forj+1=n+qgands=4m+2,m=0,1,2,..., while
Elt,p+Q2j+ Dr /2l =E[t + 2q+ 1)T /4,011, (A3)

for j=n+4+¢q and s =4m+ 4, with j and ¢ integers. In
this case, the HHG T-matrix element is invariant (up to a
sign) and the corresponding spectrum does not change upon
the transformation ¢; — ¢; + (2j + 1) /2. An example (for
n=m=0,qg =1, j=0)is shown in Fig. 12. Due to the fact
that the phase transformation (A2) changes the sign of the
vector potential A(f, ¢;) with respect to the time translation
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TABLE I. Symmetries of the HHG and HATI spectra with re-
spect to the shift of the rw-sw field phase ¢, by Ap =7 /2, 7.

r s s/2 HHG HATI
Odd Even Odd /2 b4
Odd Even Even /2 /2
Even Odd b/ 2w

t >t+ Q2g+ 1)T/4 for s = 4m + 2, the HATI spectra are
not invariant. However, the HATT spectra are invariant with
respect to the phase transformation (A3), for which s/2 is
even.

Finally, the most challenging case is when both r = 2n + 1
and s = 2m + 1 are odd. In this case, the phase transformation
o> o1 +27/2k+ 1), k=1,2,..., can be related with
the time translation t — ¢t 4+ T /(2k + 1) for some values of
n and m. In particular, in order for the time translation t —
t + T /(2k + 1) to induce the same change (up to a sign) as the
phase transformation ¢; — ¢; + 27 /(2k + 1), it is necessary
that the following two pairs of conditions are satisfied:

sin[2r(2m + 1)/(2k + 1)] = 0,

cos[2r(2m + 1)/(2k + 1)] = =1, (Ad)

cos[27 /(2k + 1)] = = cos[27 (2n + 1)/ (2k + 1)],
sin[277 /(2k + 1)] = +sin[27(2n 4+ 1)/2k + 1)]. (AS)

For every k, we find the integer values of n and m (i.e., of r
and s) for which the conditions (A4) and (AS5) are satisfied.
For the values of r and s such that we have the plus sign
in Egs. (A4) and (AS), both the HHG and HATI spectra
are invariant with respect to the phase transformation ¢; —
©1 + 27 /(2k + 1), while for the values for which we have the
minus sign, the transformation ¢; — ¢ + 27 /(2k + 1) is the
symmetry transformation only for the HHG spectra. However,
it is easy to see that, in the latter case, no integer m satisfies the
second condition in (A4). This means that for r and s both odd,
both the HHG and HATT spectra possess the same symmetry
property. For example, for k = 1, the conditions (A4) and
(A5) with the plus sign are satisfied for r = 1,7, 13, ... and
s =3,9,15, ..., so that in this case both the HHG and HATI
spectra are invariant with respect to the phase transformation
@1 — @1+ 27 /3.

In conclusion, we have shown that, for an rw-sw infinitely
long pulse with a flat envelope, for r odd and s even, the HHG
spectrum is invariant with respect to the shift of the phase ¢,
by jm/2, j =1,2,3, while the HATI spectrum is invariant
with respect to the shift by 7 /2 if 5/2 is even, and with respect
to the shift by 7 if 5/2 is odd. On the other hand, for r even
and s odd we found only the HHG-spectrum symmetry ¢; —
@1 + m. These results are summarized in Table 1. In the end,
for both r and s odd, various symmetries with respect to the
phase shift can be present in both the HHG and HATT spectra,
depending on the exact values of r and s. For the frequently
used w-3w field both the HHG and HATTI spectra are invariant
with respect to the phase transformation ¢; — ¢ + 27 /3.
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