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Circularly polarized RABBITT applied to a Rabi-cycling atom
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We utilize the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT)
technique to study the phase of a Rabi-cycling atom using circularly polarized extreme ultraviolet and infrared
fields, where the infrared field induces Rabi oscillations between the 2s and 2p states of lithium. Autler-Townes
splittings are observed in sidebands of the photoelectron spectra and the relative phases of outgoing electron wave
packets are retrieved from the azimuthal angle. In this RABBITT scheme, more ionization pathways beyond
the usual two-photon pathways are required. Our results show that the polar-angle-integrated and polar-angle-
resolved RABBITT phases have different behaviors when the extreme ultraviolet and infrared fields have co-
and counter-rotating circular polarizations, which are traced back to the different ionization channels according
to the selection rules in these two cases and their competition relying on the propensity rule in laser-assisted
photoionization.
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I. INTRODUCTION

Rabi oscillations [1] are ubiquitous in nuclear physics
[2], atomic physics [3–5], condensed-matter physics [6], and
quantum information science [7]. In the semiclassical inter-
pretation, when a single atom is radiated by a laser field that
is nearly resonant with the transition from the ground state
to an excited bound state [8], the population is periodically
transferred via absorption and stimulated emission of a pho-
ton [9]. Furthermore, when Rabi oscillations are measured
by light-induced perturbative or nonperturbative transitions
to another bound or continuum state, Autler-Townes (AT)
splittings [10] are manifested in the energy domain [11–19],
in analogy with Ramsey interference [20,21] from the energy
domain to the time domain. The formation of the AT splitting
separated by the Rabi frequency �R can be understood by the
quasi-eigenenergies in Floquet theory [22,23]. In the Jaynes-
Cummings model, the spectral AT doublet is observed when
the atom-field interaction splits a pair of near-degenerated
“unperturbed” states [24,25].

With the advent of attosecond extreme ultraviolet (XUV)
pulses [26,27], attosecond pump-probe spectroscopy enables
monitoring and controlling the electronic motion on its nat-
ural timescale [28]. For instance, the RABBITT technique
is widely employed to investigate the electronic dynamics
in laser-assisted photoionization of atoms [29,30], molecules
[31], solids [32], and liquids [33]. In conventional RABBITT
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measurements, an XUV attosecond pulse train (APT) ion-
izes a target synchronized with a weak infrared (IR) probe
field [34,35]. Owing to the interference between the outgoing
electron wave packets, the photoelectron yield of sidebands
(SBs) located between the main peaks oscillates with the time
delay between the XUV and IR fields [27,36,37]. From the
modulations of the SB signals, the relative phase of the ion-
ized electron wave packets can be retrieved, which contains
two contributions, the phase of the laser fields [27,38] and
the phase related to the electronic dynamics in laser-matter
interaction [35,39–42].

In the conventional RABBITT scheme with resonant two-
photon ionization of atoms, photoelectrons are ionized from
the solely populated ground state and an abrupt phase vari-
ation around the resonance is observed in SB modulations
[43–45]. Recently, the RABBITT simulations on a lithium
atom have revealed AT splittings in the SB signals of the
photoelectron spectra when the IR field induces several cy-
cles of Rabi oscillations in the atom [13]. During each
Rabi cycle on the femtosecond timescale, electrons are pe-
riodically transferred between the ground (2s) and excited
(2p) states of lithium [13]. Meanwhile, a train of attosec-
ond XUV bursts assisted with the IR field samples this
Rabi process by simultaneously releasing the electrons from
both Rabi states every half IR period. Hence, the out-of-
phase feature of the temporal Rabi flopping is imprinted
in the spectral interference pattern of the emitted electron
wave packets in this self-referenced interferometry. Most
interestingly, it is revealed that this Rabi process leads
to a near π phase difference in SB modulations between
the AT doublet in both angle-integrated and angle-resolved
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[46] spectroscopies [13]. This real-time evolution of the
structured Rabi wave packets below the ionization threshold is
out of reach in the previous pump-probe schemes where only
one of the two Rabi states is measured [11,16,17]. In addition,
the influence of the ongoing Rabi oscillations on the phase of
the outgoing electron wave packets cannot be uncovered by
a one-color scheme where only an asymmetric AT doublet is
observed at a resonant laser frequency [12].

During Rabi oscillations, the atom is polarized by the res-
onant IR field and its dipole moment oscillates at the Rabi
frequency �R and beats at the energy spacing of the two
Rabi states. In the previous streaking [47–49] and RABBITT
measurements [50], it was revealed that a permanent dipole
moment of a polar target (either in its initial or ionic states)
leads to an additional term in the phase of the outgoing elec-
tron wave packet. Meanwhile, the induced dipole moment
related to the target’s polarizability only distorts the shape
of the modulation in the streaking spectrum [47]. However,
because there are no conceptual counterparts like permanent
dipole moment nor polarizability in the case of Rabi oscilla-
tions [51], the influence of the Rabi process on the phase of
the ejected electron wave packets is investigated by comparing
the two peaks in the AT doublet.

In this work, we revisit the RABBITT process of a Rabi-
cycling lithium atom and adopt circularly polarized XUV
[52] and IR fields to avoid scanning the time delay between
the two laser fields [53–55]. In this single time-delay RAB-
BITT measurement, the relative phases of outgoing electron
wave packets are retrieved from the photoemission anisotropy
along the azimuthal direction. This relative phase encodes
the information about the temporal Rabi dynamics in spite
of the contamination related to the bound-free and free-free
transitions in RABBITT measurements [35]. In accordance
with our previous work [13], a near π phase difference re-
lated to the Rabi dynamics is observed between each pair of
splitting SBs in AT doublets for both polar-angle-integrated
and polar-angle-resolved photoelectron spectroscopies. Fur-
thermore, the ionization channels are controlled by using co-
or counter-rotating XUV and IR fields according to the dipole
selection rules, as an advantage of utilizing circularly polar-
ized fields. Correspondingly, the polar-angle-integrated and
polar-angle-resolved RABBITT phases exhibit different be-
haviors due to different competition among partial waves. To
give a quantitative interpretation of this complex RABBITT
process, more ionization pathways with important roles are
considered in perturbation theory than the previous work [13],
which elaborates the modification on the Rabi-related phase
by the measurement process.

This paper is structured as follows: In Sec. II, we de-
scribe the numerical methods in our calculations, including
the atomic parameters (Sec. II A) and the numerical de-
tails (Sec. II B). In Sec. III, we introduce the theoretical
model, including the perturbative treatment of the ioniza-
tion amplitudes on the top of the Rabi model (Sec. III A),
the description of the ionization pathways (Sec. III B),
and the review of the RABBITT scheme using circu-
larly polarized laser fields (Sec. III C). In Sec. IV, we
present the numerical results, including the corotating case
in Sec. IV A and the counter-rotating case in Sec. IV B.
We finish with a summary in Sec. V. The paper is com-

TABLE I. The energies of the 2s, 2p, 3s, and 3d states of the
lithium atom calculated using the effective potential from Ref. [56].

Bound state Energy (eV)

2s −5.3821
2p −3.7114
3s −2.1822
3d −1.7960

pleted by Appendix A, which details the derivation of the
wave function for the Rabi process; Appendix B, which
gives the derivation of the Dyson series for the RABBITT
measurement on the Rabi process; Appendix C, which sup-
plements the formulas of the amplitudes for less contributing
ionization pathways; and Appendix D, which selects some
numerical results of the dipole transition matrix elements for
readers’ reference. Atomic units are used throughout this pa-
per unless otherwise stated.

II. METHODS

A. Atomic parameters

In this work, we consider a lithium atom to study the
Rabi-RABBITT scheme, where the IR field is resonantly tuned
to the transition between the 2s (m = 0) (|ψ2s〉) and 2p (m = 1
or m = −1) (|ψ2p〉) states of lithium and thus induces the Rabi
oscillations between these two states. The lithium atom has
a single electron outside a closed shell and thus the single-
active-electron approximation is reasonable for describing
the photoionization of the lithium atom. In this study, we
adopt the one-electron effective potential of the lithium atom
from Ref. [56] for the time-dependent Schrödinger equa-
tion (Sec. II B) and for perturbative calculations (Sec. III A).
Using this model potential, the calculated energies of the 2s,
2p, 3s, and 3d states of the lithium atom are given in Table I.
Note that in this model, the energy spacing between the 2s and
2p levels is 1.6707 eV. It deviates from the experimental value
given in NIST by 0.1771 eV [57].

Figure 1 shows the photoionization cross sections as a
function of the photoelectron energy for the 2s and 2p (m = 0)
states of the lithium atom ionized by a linearly polarized
laser field. As shown, the photoionization cross sections both
decrease monotonically with the photoelectron energy, but the
cross section of the 2p state decreases faster than that of the
2s state. The photoionization cross section of the 2p state is
larger (smaller) than that of the 2s state below (above) the
photoelectron energy of around 4 eV. For the laser parame-
ters in our Rabi-RABBITT scheme, we focus on the SBs of
the photoelectron energies ranging from 10 to 30 eV, where
single-photon ionization from the 2s state dominates over that
of the 2p state by less than an order of magnitude.

B. Time-dependent Schrödinger equation

To uncover the effects of Rabi oscillations on the phase
of the ejected wave packet, we solve the time-dependent
Schrödinger equation (TDSE) for the lithium atom. The
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FIG. 1. Photoionization cross sections from the 2s and 2p (m =
0) states of the lithium atom as the functions of the photoelectron
energy.

TDSE is written as

i
∂�(r, t )

∂t
= [

H0 + HV
int (t )

]
�(r, t ), (1)

where the atomic Hamiltonian is H0 = p2/2 + V (r). Here the
canonical momentum operator of the electron is p = −i∇ and
V (r) is the effective one-electron potential of the lithium atom
[56]. The atom-field interaction term is written in velocity
gauge as HV

int (t ; τ ) = A(t ; τ ) · p, where the external laser field
is described as

A(t ; τ ) = AIR(t ; τ ) + AXUV(t ). (2)

Here AIR(t ; τ ) and AXUV(t ) are the vector potentials of the IR
and XUV fields, respectively, and τ is the time delay between
the two fields. In our coordinates, the polarizations of both
fields are within the zOx plane and they propagate in the y
direction. The vector potential of the time-delayed IR field is
expressed as

AIR(t ; τ ) = Aω	A
IR(t ; τ )√

1 + ξ 2
{sin [ω(t − τ )]êz

− ξ cos [ω(t − τ )]êx}, (3a)

with the envelope function

	A
IR(t ; τ )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 − 1

2 cos
[

π (t−τ+τIR )
2T

]
, −τIR < t − τ < −τIR + 2T

1, −τIR + 2T � t − τ � τIR − 2T
1
2 − 1

2 cos
[

π (t−τ−τIR )
2T

]
, τIR − 2T < t − τ � τIR

0, otherwise.
(3b)

Here Aω is the amplitude of the field, and êx and êz are
the unit vectors along the x and z axes, respectively. In our
numerical simulations, the central frequency ω = 1.6707 eV
is used for the IR field, which corresponds to a period of
T = 2π/ω = 2.4963 fs. The duration of the IR field is 2τIR =
160T = 399.4080 fs, corresponding to a spectral width of
0.023 eV. The vector potential of the XUV field is modeled

as an APT [44]

AXUV(t )

=
120∑

n=−120

A0	
A,(n)
APT 	

A,(n)
XUV (t )√

1 + ξ 2
sin [ωXUV(t − nT/2)]êz

− ξ cos [ωXUV(t − nT/2)]êx}, (4a)

where the relative amplitude of the nth XUV pulse in the pulse
train is

	
A,(n)
APT = exp

[
−2 ln 2

(nT/2)2

τ 2
APT

]
, (4b)

and the envelope function of the nth XUV pulse is

	
A,(n)
XUV (t ) = (−1)n exp

[
−2 ln 2

(t − nT/2)2

τ 2
XUV

]
. (4c)

Here A0 is the amplitude of the field. In our simulations, the
central frequency ωXUV = 15ω is used for the XUV field.
τXUV = 0.08T = 0.1997 fs and τAPT = 50T = 124.8150 fs
are the durations of the XUV attosecond pulses and the APT,
respectively. The spectral width of the XUV field is 0.021 eV.
In our calculations, both the IR and XUV fields are circularly
polarized, with ξ = −1 and ξ = +1 corresponding to right-
and left-hand circularly polarized laser fields, respectively.

The wave function of the TDSE is expanded as a partial
wave series

�(r, t ) =
lmax∑
l=0

mmax∑
m=−mmax

Rl,m(r, t )

r
Yl,m(θ, ϕ), (5)

where Rl,m(r, t ) is the radial part of the wave function and
Yl,m(θ, ϕ) are spherical harmonics with polar angle θ and
azimuthal angle ϕ. The angular-momentum quantum number
and the magnetic quantum number are denoted as l and m,
respectively.

In our calculations, Rl,m(r, t ) is discretized by the finite-
element discrete variable representation method [58], where
the box size is rmax = 400 a.u.. The numerical convergence is
guaranteed with lmax = 15 and mmax = 5. The initial state of
the lithium atom is obtained by imaginary-time propagation.
The time propagation of the wave function �(r, t ) is imple-
mented by the split-Lanczos method [59,60] with the time step

t = 0.02 a.u.. In each propagation step, we apply an absorb-
ing mask function, F (r) = 1 − 1/[1 + e(200.0−r)/2.0], which
splits the wave function �(r, t ) into the inner part �in(r, t ) =
F (r)�(r, t ) and the outer part �out (r, t ) = [1 − F (r)]�(r, t ).
The inner part �in(r, t ) is kept in the propagation governed by
the full Hamiltonian H0 + HV

int (t ) and the outer part �out (r, t )
is approximately propagated by Coulomb-Volkov propagator
[61]. Specifically, the ionization amplitude of the photoelec-
trons with the momentum k at time ti is obtained by projecting
the outer part �out (r, ti ) on the set of Volkov states as

f (k, ti ) = 〈
ψV

k (r, ti )
∣∣�out (r, ti )

〉
. (6a)
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Then the total ionization amplitude at the final time t f is
expressed as

f (k) =
Nstep∑
i=1

Uk(ti, t f ) f (k, ti ), (6b)

where Nstep is the number of propagation steps and the time-
evolution factor,

Uk(ti, t f ) = e
−i

∫ t f
ti

[
k2

2 +A(τ )·k
]
dτ

, (6c)

is expressed in terms of the Volkov phase of the photo-
electrons accumulated from ti to t f . Finally, the ionization
probability distributions are obtained as

P(k) = | f (k)|2. (6d)

III. THEORY

A. Perturbative treatment of the ionization amplitudes
on the top of the Rabi model

In our perturbative calculations, we employ the length
gauge to describe the atom-field interaction term,

HL
int (t ; τ ) = E(t ; τ ) · r, (7)

where the external electric field E(t ; τ ) := −dA(t ; τ )/dt con-
tains the two contributions from the IR and XUV fields, i.e.,
E(t ; τ ) = EIR(t ; τ ) + EXUV(t ). To describe the physical pro-
cess in the Rabi-RABBITT scheme, we preferentially deal
with the Rabi oscillations within the two-level Rabi subspace
R = {|ψ2s〉, |ψ2p〉}, followed by a perturbative treatment of
the transitions from Rabi subspace R to its orthogonal com-
plement S in Hilbert space H = R

⊕
S . In doing so, the full

Hamiltonian in H space is repartitioned as

H := H0 + HL
int (t ; τ ) = HR(t ) + H⊥R

int (t ; τ ). (8)

Here the unperturbed Hamiltonian HR governs both Rabi
dynamics within R subspace and the field-free evolution dy-
namics within S subspace and it is written as

HR := RH0R + HR
int (t ; τ ) + SH0S, (9)

where R := |ψ2s〉〈ψ2s| + |ψ2p〉〈ψ2p| and S := 1 − R are the
two projectors corresponding to R and S subspaces, respec-
tively. The interaction term HR

int (t ; τ ) in the Rabi Hamiltonian
HR only contains the two rotating-wave terms related to the
excitation and stimulated emission processes induced by the
IR field within Rabi subspace R and it reads

HR
int (t ; τ ) = 1

2 Eω	E
IR(t ; τ )

× [e−iω(t−τ )|ψ2p〉〈ψ2p|(ε̂IR · r)|ψ2s〉〈ψ2s|
+ eiω(t−τ )|ψ2s〉〈ψ2s|(ε̂IR · r)|ψ2p〉〈ψ2p|], (10)

where Eω and 	E
IR(t ; τ ) are the amplitude and the envelope of

the IR electric field, respectively. The polarization vector of
the IR field is denoted as ε̂IR. The interaction term H⊥R

int (t ; τ )
of the full Hamiltonian H in Eq. (8) is treated as a perturbation
to the ongoing Rabi oscillations within R subspace. Using
the projection operators R and S, it can be further separated

as

H⊥R
int (t ; τ ) := HL

int (t ; τ ) − HR
int (t ; τ )

= [
RHL

int (t ; τ )R − HR
int (t ; τ )

] + SHL
int (t ; τ )S

+ [
RHL

int (t ; τ )S + SHL
int (t ; τ )R

]
, (11)

where the role of H⊥R
int has three aspects: within R, H⊥R

int is
responsible for the two counter-rotating-wave transitions in-
duced by the IR field, and all possible nonresonant transitions
induced by the XUV field; within S , H⊥R

int is responsible for
all possible transitions induced by both the IR and XUV fields;
crossing between R and S , H⊥R

int is responsible for all the
possible transitions induced by both the IR and XUV fields.

According to the Rabi model [1], the Rabi oscillations
within R subspace is described by the two-level wave function
as

|�R(t )〉 = C2s(t ; τ )e−iω2st |ψ2s〉 + C2p(t ; τ )e−iω2pt |ψ2p〉,
(12)

where H0|ψ2s,2p〉 = ω2s,2p|ψ2s,2p〉 with ω2s and ω2p the ener-
gies of the 2s and 2p states. Within the subspace R, the wave
function �R obeys the Schrödinger equation governed by
HR, i.e., i d

dt |�R(t )〉 = HR|�R(t )〉. Symbolically, the prop-
agator UR corresponding to HR is defined as

|�R(t )〉 := UR(t, t0)|�R(t0)〉. (13)

Considering that the system is initially in the 2s state at time t0,
i.e., |�R(t0)〉 = e−iω2st0 |ψ2s〉, the time-dependent coefficients
in Eq. (12) are solved as (see Appendix A)

C2s(t ; τ ) = cos

[
1

2

∫ t

t0

�R(t ′; τ )dt ′
]
,

C2p(t ; τ ) = −ieiωτ sin

[
1

2

∫ t

t0

�R(t ′; τ )dt ′
]
, (14)

where �R(t ; τ ) = �0
R	E

IR(t ; τ ) is the instantaneous Rabi
frequency with its maximum value of �0

R = Eω〈ψ2p|(ε̂IR ·
r)|ψ2s〉. The factor eiωτ in Eq. (14) comes from the time-
delayed IR field. Here and hereafter the initial time for
the evolution of the system is taken from minus infinity
t0 → −∞.

In the Rabi-RABBITT scheme, assuming HR
int (t0; τ ) = 0

and HL
int (t0; τ ) = 0, the system is initially in the 2s state within

R subspace at time t0 and thus the initial wave function of
Hilbert space H is �(t0) = �R(t0) = e−iω2st0 |ψ2s〉. Then the
wave function �(t ) describing the dynamics of the system at
time t in H space can be written in the form of the Dyson
series as [12] (see Appendix B)

|�(t )〉 := U (t, t0)|�(t0)〉
= UR(t, t0)|�(t0)〉

− i
∫ t

t0

dt1U (t, t1)H⊥R
int (t1)UR(t1, t0)|�(t0)〉

= |�R(t )〉 − i
∫ t

t0

dt1U (t, t1)H⊥R
int (t1)|�R(t1)〉,

(15)

where U is the propagator related to the full Hamiltonian
H . In the last line of Eq. (15), the first term describes the
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unperturbed Rabi oscillations within the two-level subspace
R; and the second term describes the transition from the Rabi
wave function �R of the subspace R outwards to its orthog-
onal complement S through the interaction H⊥R

int followed by
its full propagation under H , which contains the ionization
part of the wave function.

According to Eq. (8), the full propagator U (t, t1) can be
alternatively written as

U (t, t1) = U0(t, t1) − i
∫ t

t1

dt2U (t, t2)HL
int (t2)U0(t2, t1) (16)

where U0 is the propagator related to the field-free Hamil-
tonian H0. Here U0(t, t ′) can be expanded on the eigen-
states of H0 as U0(t, t ′) = ∑

ν

∫ |ψν〉〈ψν | exp[−iων (t − t ′)]
with H0|ψn〉 = ωn|ψn〉. Substituting Eq. (16) into Eq. (15), the
wave function can be expanded iteratively to arbitrary order in
the interaction term as

|�(t )〉 =
∞∑

N=0

|�̄ (N )(t )〉, (17)

where the zeroth-order wave packet is the Rabi wave function
|�̄ (0)(t )〉 = |�R(t )〉 in Eq. (12) and where the first-order wave
packet is |�̄ (1)(t )〉 = −i

∫ t
t0

dt1U0(t, t1)H⊥R
int (t1)|�R(t1)〉,

which describes the transition from the Rabi wave function
�R through the first-order interaction H⊥R

int . Likewise, for
the wave packets to higher orders N > 1, |� (N )(t )〉 originates
from the N th-order interaction and it is derived from Eq. (15)
as

|�̄ (N>1)(t )〉 = (−i)N
∫ t

t0

dt1

∫ t

t1

dt2 · · ·
∫ t

tN−1

dtN

× U0(t, tN )HL
int (tN )U0(tN , tN−1)HL

int (tN−1) × · · ·
× HL

int (t2)U0(t2, t1)H⊥R
int (t1)|�R(t1)〉, (18)

with the time order t > tN > tN−1 > · · · > t2 > t1 > t0. Here
in our perturbative treatment of the ionization process on
the top of the Rabi model, we assume the ongoing Rabi
oscillations with R are perfect: the energy shifts of the 2s
and 2p states, the population leakage to S subspace, and the
dampening in Rabi oscillations are all negligible. Moreover,
we assume the timescale of the process we are investigating is
much shorter than the lifetime of the 2s and 2p states.

The N th-order transition amplitude a(N )
f is obtained by

projecting the N th-order wave function |� (N )(t )〉 to the final
state |φ f 〉 of a specific energy ω f as [62]

a(N )
f = lim

t→∞〈φ f (t )|� (N )(t )〉, (19)

where |φ f (t )〉 = e−iω f t |ψ f 〉, with |ψ f 〉 satisfying H0|ψ f 〉 =
ω f |ψ f 〉. Here we take t → ∞ because the photoelectrons are
measured long after the interaction with the field is over. In
the case of ω f > 0, a(N>0)

f represents the N-photon ionization
amplitude from the Rabi wave function �R with all possible
combinations of photons in different time orders. To further
specify different ionization processes in the total N th-order
transition amplitude a(N )

f , the interaction terms HL
int and H⊥R

int
are separated into different laser components in Eq. (18).
For example, the interaction term is EIR(t ; τ )Ôω for the IR
photon and it is E�2q+1 (t )Ô� for the XUV harmonics of the
frequency �2q+1 = (2q + 1)ω, which contain both absorption
and emission terms. Here the transition operators are written
in the length gauge as Ôω := ε̂IR · r and Ô� := ε̂XUV · r, with
ε̂XUV the polarization vector of the XUV field, assuming all
XUV harmonics have the same polarization. In particular,
when considering the XUV, XUV + IR, and XUV + IR + IR
absorption processes, the corresponding ionization amplitudes
are derived as

a(1)
XUV = −i

∫ ∞

−∞
dωRC̃2s(ωR; τ )Ẽ�2q+1 (ω f − ω2s − ωR)〈ψ f |Ô�|ψ2s〉 − i

∫ ∞

−∞
dωRC̃2p(ωR; τ )

× Ẽ�2q+1 (ω f − ω2p − ωR)〈ψ f |Ô�|ψ2p〉, (20a)

a(2)
XUV+IR = − i√

2π

∫ ∞

−∞
dωRC̃2s(ωR; τ )

∫ ∞

0
d�ei(ω f −�−ω2s−ωR )τ ẼIR(ω f − � − ω2s − ωR)Ẽ�2q+1 (�)

×
∑
ν1

∫ 〈ψ f |Ôω

∣∣ψν1

〉〈
ψν1

∣∣Ô�|ψ2s〉
ω2s + ωR + � − ων1

− i√
2π

∫ ∞

−∞
dωRC̃2p(ωR; τ )

∫ ∞

0
d�ei(ω f −�−ω2p−ωR )τ

× ẼIR(ω f − � − ω2p − ωR)Ẽ�2q+1 (�)
∑
ν1

∫ 〈ψ f |Ôω

∣∣ψν1

〉〈
ψν1

∣∣Ô�|ψ2p〉
ω2p + ωR + � − ων1

, (20b)

a(3)
XUV+IR+IR = − i

2π

∫ ∞

−∞
dωRC̃2s(ωR; τ )

∫ ∞

0
dω

∫ ∞

0
d�ei(ω f −�−ω2s−ωR )τ ẼIR(ω f − ω − � − ω2s − ωR)ẼIR(ω)Ẽ�2q+1 (�)

×
∑
ν1,ν2

∫ 〈ψ f |Ôω

∣∣ψν2

〉〈
ψν2

∣∣Ôω

∣∣ψν1

〉〈
ψν1

∣∣Ô�|ψ2s〉(
ω2s + ωR + � + ω − ων2

)(
ω2s + ωR + � − ων1

) − i

2π

∫ ∞

−∞
dωRC̃2p(ωR; τ )

∫ ∞

0
dω

×
∫ ∞

0
d�ei(ω f −�−ω2p−ωR )τ ẼIR(ω f − ω − � − ω2p − ωR)ẼIR(ω)Ẽ�2q+1 (�)

×
∑
ν1,ν2

∫ 〈ψ f |Ôω

∣∣ψν2

〉〈
ψν2

∣∣Ôω

∣∣ψν1

〉〈
ψν1

∣∣Ô�|ψ2p〉(
ω2p + ωR + � + ω − ων2

)(
ω2p + ωR + � − ων1

) , (20c)
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FIG. 2. The schematic of ionization pathways for Ph with the photoelectron energy of 2qω − I2s
p + ωR (ωR ≈ �0

R/2). The purple and red
arrows indicate the transition by exchanging the XUV and IR photons, respectively. The essential pathways are drawn in thick-line arrows.
The less-contributed pathways are represented by thin-line arrows.

where νi identifies the intermediate unperturbed states |ψνi〉 of
the energy ωνi as H0|ψνi〉 = ωνi |ψνi〉; ω and � are the frequen-
cies of the IR photon and the (2q + 1)th-order XUV harmon-
ics, respectively. Here, we use the relation of the delta function
δ(ω) = ∫ ∞

−∞ eiωt dt/(2π ) and the Fourier transform (FT):
f̃ (ω) = 1√

2π

∫ ∞
−∞ f (t )eiωt dt , f (t ) = 1√

2π

∫ ∞
−∞ f̃ (ω)e−iωt dω,

and f̃ (ω; τ ) := 1√
2π

∫ ∞
−∞ f (t ; τ )eiωt dt = f̃ (ω)eiωτ . The FT of

the Rabi amplitudes [Eq. (14)] are C̃2s,2p(ωR; τ ) := 1√
2π

∫ ∞
−∞

C2s,2p(t ; τ )e−iωRt dωR = C̃2s,2p(ωR)eiωRτ (see Appendix A),
where ωR is the frequency component of the Rabi ampli-
tudes. For the long IR field of flat-top envelope [Eq. (3b)],
the Rabi amplitudes mainly distribute at ωR ≈ ±�0

R/2 in the
frequency domain. Equation (20a) describes the one-photon
transition from the zeroth-order Rabi wave function |�R〉
to the continuum state |φ f 〉 by absorbing an XUV photon
of the frequency � = ω f − ω2s,2p − ωR; Eq. (20b) describes
the two-photon transition through the absorption of an XUV
photon followed by the absorption of an IR photon, where
the energy-preserving condition ω f = ω2s,2p + ωR + � + ω

is satisfied; and Eq. (20c) describes the three-photon transition
through the absorption of an XUV photon followed by the
absorption of two IR photons, where the energy-preserving
condition ω f = ω2s,2p + ωR + � + 2ω is satisfied.

As indicated by the term ωR in the denominators in
Eqs. (20), the ionization from the Rabi state |�R〉 can be
understood to start from the dressed states of |ψ2s〉 and |ψ2p〉,
which spilt into two quasienergies considering the sign of
ωR. More specifically, the first (second) term in Eqs. (20)
corresponds to the ionization from the dressed 2s (2p) states

with the quasienergies of ω2s + ωR (ω2p + ωR), where ωR ≈
−�0

R/2 for |φl
2s〉 (|φl

2p〉) and ωR ≈ �0
R/2 for |φh

2s〉 (|φh
2p〉),

respectively. In the photoelectron spectra, the peak of a lower
(higher) photoelectron energy in the AT doublet, namely, Pl

(Ph), is formed by the interference among all the ionization
pathways initiated from |φl

2s〉 and |φl
2p〉 (|φh

2s〉 and |φh
2p〉).

B. Ionization pathways

As an example, we display the ionization pathways con-
tributing to Ph with the photoelectron energy of 2qω − I2s

p +
ωR (ωR ≈ �0

R/2) in Fig. 2. Pathways 1 to 4 are initiated
from |φh

2s〉, among which pathways 1 and 3 are reminiscent
of the well-known two-photon transitions in the traditional
RABBITT cases [63]. Pathways 1 and 2 denote the absorption
of one (2q − 1)st-order XUV harmonic �2q−1 and one IR
photon ω in different time orders. Note that, as indicated by
the term H⊥R

int in Eq. (18), ψ2p needs to be excluded from the
intermediate summation in calculating the transition ampli-
tude of pathway 2 since this transition has been handled in the
nonperturbative treatment of the Rabi oscillations. Pathways
3 and 4 denote the absorption of one (2q + 1)st-order XUV
harmonic �2q+1 and the emission of one IR photon ω in
different time orders. In our case, because the 2p state is also
populated during Rabi oscillations, there are also pathways
initiated from |φh

2p〉, as denoted by pathways 5 to 11 in Fig. 2.
Pathway 5 indicates the absorption of one (2q − 1)st-order
XUV harmonic �2q−1. Pathways 6 to 8 refer to the absorption
of one (2q − 3)rd-order XUV harmonic �2q−3 and two IR
photons in different time orders. Pathways 9 to 11 denote
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the absorption of one XUV photon �2q+1 and the emission
of two IR photons in different time orders. Similarly as path-
way 2, in calculating the transition amplitude of pathways 10
and 11, ψ2s needs to be excluded from the first intermediate
summation. Pathways of essential contribution are pathways
1, 3, 5, 6, and 9, whose numbers are highlighted in red in
Fig. 2.

In our calculations, the XUV and flat-top IR fields are both
spectrally narrow enough and display no spectral overlap.
Therefore, the convolution can be reasonably dismissed
and both laser fields are approximated as monochromatic:
let EIR(t ; τ ) = Eω cos[ω(t − τ )] and E�2q+1 (t ) = E2q+1

cos(�2q+1t − φ2q+1), with the amplitude E2q+1 and the phase
φ2q+1 associated with the (2q + 1)st-order XUV harmonic;
and let C̃2s(ωR; τ ) = √

π/2eiωRτ [δ(ωR + |�0
R|/2) + δ(ωR −

|�0
R|/2)] and C̃2p(ωR; τ ) = −√

π/2 �0
R

|�0
R |e

i(ω+ωR )τ [δ(ωR +
|�0

R|/2) − δ(ωR − |�0
R|/2)]. Then each term in Eqs. (20) can

be approximately calculated by multiplying the corresponding
IR (Eω) and XUV (E2q+1) electric-field amplitudes to the
residual integration of wave functions. For example, the
ionization amplitudes AP for SB2q, where P characterizes
the specific pathway, i.e., P ∈ {pathway (i)|i = 1, . . . , 11},
are given as (see Appendix C for the other pathways)

A(1)(�k±, τ ) = − iπ

4
ei[(ω± |�0

R |
2 )τ+φ2q−1]EωE2q−1

∑
ν1

∫ 〈ψ f ±|Ôω

∣∣ψν1

〉〈
ψν1

∣∣Ô�|ψ2s〉

ω2s ±
∣∣�0

R

∣∣
2 + �2q−1 − ων1

, (21a)

A(3)(�k±, τ ) = − iπ

4
e−i[(ω∓ |�0

R |
2 )τ−φ2q+1]EωE2q+1

∑
ν1

∫ 〈ψ f ±|Ô†
ω

∣∣ψν1

〉〈
ψν1

∣∣Ô�|ψ2s〉

ω2s ±
∣∣�0

R

∣∣
2 + �2q+1 − ων1

, (21b)

A(5)(�k±, τ ) = ∓ iπ�0
R

2|�0
R|ei[(ω± |�0

R |
2 )τ+φ2q−1]E2q−1〈ψ f ±|Ô�|ψ2p〉, (21c)

A(6)(�k±, τ ) = ∓ iπ�0
R

8
∣∣�0

R

∣∣ei[(3ω± |�0
R |

2 )τ+φ2q−3]E2
ωE2q−3

∑
ν1,ν2

∫ 〈ψ f ±|Ôω

∣∣ψν2

〉〈
ψν2

∣∣Ôω

∣∣ψν1

〉〈
ψν1

∣∣Ô�|ψ2p〉(
ω2p ± |�0

R|
2 + �2q−3 + ω − ων2

)(
ω2p ± |�0

R|
2 + �2q−3 − ων1

) , (21d)

A(9)(�k±, τ ) = ∓ iπ�0
R

8
∣∣�0

R

∣∣e−i[(ω∓ |�0
R |

2 )τ−φ2q+1]E2
ωE2q+1

×
∑
ν1,ν2

∫ 〈ψ f ±|Ô†
ω

∣∣ψν2

〉〈
ψν2

∣∣Ô†
ω

∣∣ψν1

〉〈
ψν1

∣∣Ô�|ψ2p〉(
ω2p ± |�0

R|
2 + �2q+1 − ω − ων2

)(
ω2p ± |�0

R|
2 + �2q+1 − ων1

) , (21e)

where ψ f + (ψ f −) is the final continuum state related to
the peak Ph (Pl) of the AT doublet. The energy and the

asymptotic momentum of ψ f ± are E± = 2qω − I2s
p ± |�0

R|
2 =

k2
±/2 and �k± := k±k̂±, respectively. Here, as indicated by

Eqs. (12) and (14), the zeroth-order Rabi wave function �R
evolving with the time-delayed IR field leads to the factors
exp[±i(|�0

R|/2)τ ] and exp[i(ω ± |�0
R|/2)τ ] in Eqs. (21), re-

spectively for the ionization pathways from the 2s and 2p
states. In addition, the initial phase of the electron wave packet
generated from |φl

2p〉 has an additional term of π compared
with that for |φh

2p〉, as implied by the beginning sign ∓ of the
ionization amplitudes for pathways 5 to 11. These different
initial phases between the dressed 2p states stem from the
sine-like Rabi amplitude of the 2p state, as indicated by Eq.
(14).

In calculation, the incoming final continuum state
ψ−

�k±
(�r ) := 〈�r |ψ f ±〉 [64,65] can be further expanded on the

partial wave series as [66]

ψ−
�k±

(�r ) = 1

k1/2
±

∞∑
L=0

L∑
M=−L

iLe−i(σL±+δL± )

× Y ∗
L,M (k̂±)RE±,L(r)YL,M (r̂), (22)

where L and M are the angular-momentum quantum num-
ber and the magnetic quantum number of the partial wave,
respectively. Here the phase shift due to the short-range po-
tential is δL± in lithium atom [56]. The Coulombic phase
is σL± := arg[�(1 + L − iZ/k±)] with the effective nuclear
charge Z = 1. The energy-normalized radial wave function is
RE±L(r) with its asymptotic behavior of

√
2/(πk±r) sin[k±r −

Lπ/2 − Z ln(2k±r)/k± + σL± + δL±] when r → ∞.

C. The Rabi-RABBITT scheme using circularly
polarized laser fields

In the traditional RABBITT scheme with linearly polarized
XUV and IR fields [63], absorbing (emitting) an IR photon
from the retarded (τ > 0) IR field EIR(t − τ ) with respect to
the XUV field EXUV(t ) contributes a phase like e+iωτ (e−iωτ )
with ω > 01. Therefore, the number of exchanged IR photons
in each ionization pathway is imprinted in the τ -related phase
of the outgoing electron wave packet. Thus, the relative phase

1Alternatively, absorbing an XUV photon from the XUV field
EXUV(t + τ ) in advance of the IR field EIR(t ) corresponds to an
interaction phase of e−i�2q+1τ with �2q+1 > 0. The equivalence of
these two perspectives is established upon the energy-preserving
condition during the ionization process.
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TABLE II. The magnetic quantum number of the final continuum state (M) for pathways 1 to 11 (denoted as P1 to P11), the oscillation
components in SBs as a function of azimuthal angle ϕ, and the phase matching situation in experiments, under nine combinations of the laser
field polarizations (denoted as Cases 1 to 9). The polarization of the fields is characterized by the dipole selection rules for the magnetic
quantum number (
m): 
m = 0, 
m = +1, and 
m = −1 denote the linearly, left-hand circularly, and right-hand circularly polarized fields,
respectively.

Case XUV field IR field P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 ϕ oscillations Phase matched

1 
m = +1 
m = +1 2 2 0 0 2 4 4 4 0 0 0 2ϕ, 4ϕ Yes
2 
m = +1 
m = −1 0 0 2 2 0 −2 −2 −2 2 2 2 2ϕ, 4ϕ Yes
3 
m = −1 
m = +1 0 0 −2 −2 0 2 2 2 −2 −2 −2 2ϕ, 4ϕ Yes
4 
m = −1 
m = −1 −2 −2 0 0 −2 −4 −4 −4 0 0 0 2ϕ, 4ϕ Yes
5 
m = 0 
m = +1 1 1 −1 −1 1 3 3 3 −1 −1 −1 2ϕ, 4ϕ No
6 
m = 0 
m = −1 −1 −1 1 1 −1 −3 −3 −3 1 1 1 2ϕ, 4ϕ No
7 
m = +1 
m = 0 1 1 1 1 1 1 1 1 1 1 1 No No
8 
m = −1 
m = 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 No No
9 
m = 0 
m = 0 0 0 0 0 0 0 0 0 0 0 0 No Yes

of the outgoing electron wave packets at the same energy
via different pathways, named the RABBITT phase, can be
retrieved from the 2ωτ modulation of SBs [36]. As discussed
in Ref. [54], by using different combinations of the XUV
and IR fields with either linear or circular polarizations2, it is
possible to extract the RABBITT phases from the modulation
of SBs as a function of azimuthal angle ϕ. The mechanism
behind this alternative way3 to extract the RABBITT phases is
based on the dipole selection rules: exchanging one circularly
polarized IR photon will increase or decrease the magnetic
quantum number M. Finally, the number of exchanged circu-
larly polarized IR photons is encoded in the ϕ-related phase of
the outgoing wave packet via eiMϕ originating from Y ∗

L,M (k̂±)
in Eq. (22).

In principle, we have nine possible combinations of the
polarizations of the XUV and IR fields, as listed by Cases
1 to 9 in Table II. The corresponding transition operators
Ôω and Ô� used in Eqs. (21) are r cos θ , r sin θeiϕ/

√
2,

and r sin θe−iϕ/
√

2 for linear, left-hand circular, and right-
hand circular polarizations, respectively [67]. Note that phase
matching is only achievable in experiments for Cases 1, 2, 3,
4, and 9. Table II gives that, if only the circularly polarized
IR field is used (Cases 1 to 6), the RABBITT phases can be
successfully extracted from the 2ϕ oscillations of SBs without
scan of the time delay between the XUV and IR fields. In
addition, Cases 1 to 6 all give the same interference scheme

2Note that in the coordinate system used here, the xOy plane is
defined as the polarization plane of the circularly polarized fields;
and the z axis is defined as the propagation direction of the circularly
polarized fields and the polarization axis of the linearly polarized
fields. This definition of the coordinate system for the circularly
polarized fields differs from that used in our TDSE calculations
[Eqs. (3a) and (4a)], however, the observed physical quantities are
unchanged under the rotation [C : (êx, êy, êz ) → C ′ : (êz, êx, êy )] of
the coordinate system fixed with an observer.

3According to the dipole selection rules, the involved ionization
channels are different in the cases of linearly and circularly polarized
fields and thus the retrieved RABBITT phases are inequivalent.

as using both linearly polarized XUV and IR fields (Case
9). More specifically, 2ϕ signal (4ϕ signal) results from the
interference of pathways 1, 2, 5 versus 3, 4, 6, 7, 8, 9, 10, 11
(pathways 3, 4, 9, 10, 11 versus 6, 7, 8). As a demonstration,
we show as follows how to extract the RABBITT phases from
the 2ϕ oscillations in the Rabi-RABBITT scheme for Case 1
(Sec. IV A) and Case 2 (Sec. IV B).

Substituting Eq. (22) into Eqs. (21), the ionization ampli-
tude of pathway i can be written as

A(i)(�k±, τ ) =
∑
Q

A(i),Q(�k±, τ ). (23)

Here A(i),Q is the amplitude of a specified ionization
channel for pathway i ∈ {1, 2, . . . , 11}, which is unambigu-
ously characterized by the quantum numbers throughout
all the states in transition. In N-photon transition, the
ensemble of these quantum numbers is defined as Q =
(li, mi ), (λ1, μ1), . . . , (λN−1, μN−1), (L, M ), where li, λN−1,
and L (mi, μN−1, and M) respectively label the angular
(magnetic) quantum numbers of the initial, the (N − 1)st in-
termediate, and the final states. The specific quantum numbers
in Q are determined by the selection rules, taking Case 1
as an example, we have 
m = +1 (
m = −1) for absorp-
tion (emission) with l � m. For a single time-delay (τ = 0)
RABBITT measurement in Case 1, A(i),Q can be written
as

A(i),Q(�k±, τ = 0) = π

k1/2
±

YL,M (k̂±)M(i),Q(E±), (24)

where k̂± = (θ, ϕ) indicates the emission direction of pho-
toelectrons. The amplitudes M(i),Q(E±) can be further
separated into its angular and radial parts in coordi-
nate representation as (see Appendix C for the other
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pathways)

M(1),Q(E±) = π

3
EωE2q−1i−(L+1)ei(σL±+δL±+φ2q−1 )〈YL,M |Y1,1

∣∣Yλ1,μ1

〉〈
Yλ1,μ1

∣∣Y1,1|Y0,0〉
∑
ν1

∫ 〈RE±,L|r∣∣Rν1,λ1

〉〈
Rν1,λ1

∣∣r|R2,0〉
ω2s ± |�0

R|
2 + �2q−1 − ων1

, (25a)

M(3),Q(E±) = −π

3
EωE2q+1i−(L+1)ei(σL±+δL±+φ2q+1 )〈YL,M |Y1,−1

∣∣Yλ1,μ1

〉〈
Yλ1,μ1

∣∣Y1,1|Y0,0〉
∑
ν1

∫ 〈RE±,L|r∣∣Rν1,λ1

〉〈
Rν1,λ1

∣∣r|R2,0〉
ω2s ± |�0

R|
2 + �2q+1 − ων1

, (25b)

M(5),Q(E±) = −
(π

3

) 1
2 �0

R∣∣�0
R

∣∣E2q−1i−(L±1)ei(σL±+δL±+φ2q−1 )〈YL,M |Y1,1|Y1,1〉〈RE±,L|r|R2,1〉, (25c)

M(6),Q(E±) = −
(π

3

) 3
2 �0

R∣∣�0
R

∣∣E2
ωE2q−3i−(L±1)ei(σL±+δL±+φ2q−3 )〈YL,M |Y1,1

∣∣Yλ2,μ2

〉〈
Yλ2,μ2

∣∣Y1,1

∣∣Yλ1,μ1

〉〈
Yλ1,μ1

∣∣Y1,1|Y1,1〉

×
∑
ν1,ν2

∫ 〈RE±,L|r∣∣Rν2,λ2

〉〈
Rν2,λ2

∣∣r∣∣Rν1,λ1

〉〈
Rν1,λ1

∣∣r|R2,1〉(
ω2p ±

∣∣�0
R

∣∣
2 + �2q−3 + ω − ων2

)(
ω2p ±

∣∣�0
R

∣∣
2 + �2q−3 − ων1

) , (25d)

M(9),Q(E±) = −
(π

3

) 3
2 �0

R∣∣�0
R

∣∣E2
ωE2q+1i−(L±1)ei(σL±+δL±+φ2q+1 )〈YL,M |Y1,−1

∣∣Yλ2,μ2

〉〈
Yλ2,μ2

∣∣Y1,−1

∣∣Yλ1,μ1

〉〈
Yλ1,μ1

∣∣Y1,1|Y1,1〉

×
∑
ν1,ν2

∫ 〈RE±,L|r∣∣Rν2,λ2

〉〈
Rν2,λ2

∣∣r∣∣Rν1,λ1

〉〈
Rν1,λ1

∣∣r|R2,1〉(
ω2p ±

∣∣�0
R

∣∣
2 + �2q+1 − ω − ων2

)(
ω2p ±

∣∣�0
R

∣∣
2 + �2q+1 − ων1

) , (25e)

where Ô� and Ôω (Ô†
� and Ô†

ω) are replaced by
−√

4π/3rY1,1(r̂)[
√

4π/3rY1,−1(r̂)] for absorbing (emitting)
each photon. Here the wave functions in Eqs. (21)
are separated into their radial part and spherical har-
monics in coordinate presentation: 〈�r |ψ2s〉 = Y0,0(r̂)R2,0(r),
〈�r |ψ2p〉 = Y1,1(r̂)R2,1(r), and 〈�r |ψνi〉 = Yλi,μi (r̂)Rνi,λi (r) with
r̂ = (θr, ϕr ).

In our calculation, for the two- and three-photon transition
amplitudes in Eqs. (25), the infinite summation in the radial
part is evaluated with the Dalgarno-Lewis method [68]. Then
the radial part can be calculated using perturbed wave func-
tions [69], which satisfy the inhomogeneous equation with
its boundary conditions described in Ref. [70]. Particularly,
the integration of two continuum wave functions appearing
in Eqs. (25) is calculated by using the complex coordinate
rotation method [71]. Additionally, verification of the matrix
elements has been performed by the extrapolation method
[72]. We select some numerical results of dipole transition
matrix elements in Appendix D, where their radial and angular
parts are separately shown.

IV. RESULTS

A. Case 1: Rabi-RABBITT using the left-hand circularly
polarized XUV and IR fields

Figure 3(b) shows the populations of the 2s (m = 0), 2p
(m = 1), and 3d (m = 2) states of the lithium atom as a
function of the atom-field interaction time, which are ap-
proximately obtained by projecting the time-dependent TDSE
solution to the eigenstates of the field-free Hamiltonian H0

near the zero values of the vector potential of the external
field. Within the dipole approximation, the time-dependent
coefficients obtained by projecting the wave function onto the

unperturbed eigenstates can be interpreted as probability am-
plitudes when using the full Hamiltonian written in the length
gauge [73]. Moreover, when using the velocity gauge, the cal-
culated projection coefficients coincide with those employing
the length gauge near the zeros of the vector potential [74].
Here the intensities of the left-hand circularly polarized XUV
and IR fields are 1 × 1013 and 1 × 1010 W/cm2, respectively.
As shown in Fig. 3(b), the populations of the 2s and 2p states
oscillate out of phase with the interaction time, as a demon-
stration of Rabi oscillations [1]. As the IR intensity increases,
the Rabi oscillations between the 2s and 2p states become
faster, as shown in Figs. 3(c) and 3(d) for the IR intensities of
3 × 1010 and 1 × 1011 W/cm2, respectively. As displayed in
Fig. 3(a), the 3d (m = 2) state [the 3s state (m = 0)] is allowed
(forbidden) to be populated through absorbing two IR photons
from the 2s state (m = 0) according to the dipole selection rule

m = +1 for the left-hand circular polarization. Due to the
large detuning in the 2p − 3d transition, adopting the circular
polarized IR field prevents the population leakage from the
Rabi subspace R, as shown in Figs. 3(b)–3(d).

During the entire interaction time, the Rabi oscillations
shown in Figs. 3(b)–3(d) are smooth and uniform for the three
IR intensities, respectively validating the rotating wave ap-
proximation in solving the Rabi amplitudes [Eq. (10)] and the
monochromatic approximation for the IR field in Eqs. (21).
Moreover, there is nearly no dampening in the Rabi oscilla-
tions for the three IR intensities due to the relatively negligible
transition (including ionization) from R to S , as indicated by
the total population of the 2s, 2p, and 3d states after the laser
pulses end in Figs. 3(b)–3(d). Therefore, it is a good approxi-
mation to treat the ionization perturbatively on the top of the
Rabi wave function �R [Eq. (12)] which describes perfectly
ongoing Rabi oscillations within R subspace. In addition, the
incomplete Rabi oscillations are owing to the energy shifts
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FIG. 3. (a) The schematic of the essential states of the lithium atom coupled to the IR field. The double-side (single-side) red arrows denote
the strong (weak) coupling. The thick horizontal solid (dashed) lines indicate the states that are allowed (forbidden) to be populated according
to the dipole selection rules. The detuning of the 2p − 3d transition is 
 := ω − E3d + E2p, with E2p and E3d the energies of the 2p and 3d
states of the lithium atom, respectively. (b)–(d) The populations of the 2s (red-solid lines), 2p (orange-dashed lines), 3d states of lithium
(bluish-gray-dotted lines) and their summation (thin-purple-solid lines) as a function of the atom-field interaction time (the beginning time is
set as zero). The intensities of the left-hand circularly polarized IR field are (b) 1 × 1010 (corresponding to the energy spacing of 0.0367 eV),
(c) 3 × 1010 (corresponding to the energy spacing of 0.0642 eV), and (d) 1 × 1011 W/cm2 (corresponding to the energy spacing of 0.1154 eV).

of the 2s and 2p states in the presence of the external fields,
which are neglected in our analytical treatment owing to their
small effects.

1. Comparison of TDSE and perturbation theory: RABBITT
phases extracted from the photoelectron spectra within

the polarization plane

Figure 4 shows the RABBITT phases as a function of pho-
toelectron energy, which are extracted from the 2ϕ oscillation
of SBs in the photoelectron spectra within the polarization
plane of the XUV and IR fields. Note that the TDSE sim-
ulations and the perturbation theory (PT) calculations are
performed in different coordinates without changing the phys-
ical observables. Here and hereafter the polarization plane
refers to the xOy plane with θ = π/2 as defined in the PT cal-
culations. Figures 4(a1) and 4(a2) respectively show the RAB-
BITT phases φl (π/2) and φh(π/2) of the peaks with the lower
(Pl) and higher (Ph) energies in the AT doublet for the three
IR intensities, which are calculated by solving the TDSE.
Despite the tiny energy spacing between the AT doublet Pl

and Ph, φl (π/2), and φh(π/2) behave quite differently as a
function of the photoelectron energy, which reveals the influ-
ence of the Rabi dynamics on the phase of the ionized electron
wave packets. For both φl (π/2) and φh(π/2), their specific

variations with the photoelectron energy rely on the
IR intensity. In addition, φl (π/2) and φh(π/2) obvi-
ously show a change in its slope before and after SB
16. Figure 4(a3) shows the relative RABBITT phase

φ(π/2) = φh(π/2) − φl (π/2) as a function of the photo-
electron energy for the three IR intensities, which are obtained
by solving the TDSE. For all the three IR intensities here,

φ(π/2) varies in a similar way as the photoelectron energy
and it is close to π . In addition, 
φ(π/2) deviates more
from π for the higher IR intensity. Likewise, there is an
obvious change in the slope of 
φ(π/2) around SB 16. Fig-
ures 4(b1), 4(b2), and 4(b3) respectively show the RABBITT
phases φl (π/2), φh(π/2), and 
φ(π/2) calculated by PT
including all pathways shown in Fig. 2 and using the same
laser intensities and polarizations as the TDSE simulations.
By comparing Figs. 4(b1), 4(b2), and 4(b3) separately with
Figs. 4(a1), 4(a2), and 4(a3), their agreement validates the PT
in Sec. III A on describing the physics process in the Rabi-
RABBITT scheme for all the three IR intensities. In addition,
the agreement between the PT and TDSE results are better at
lower IR intensities when the Rabi oscillations within R are
more accurately described by the zeroth-order wave function
�R [Eq. (12)] due to smaller energy shifts of the 2s and 2p
states, less population leakage to S , and less dampening in the
Rabi oscillations [Fig. 3].
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FIG. 4. From top to bottom: (a1), (b1) The RABBITT phases extracted from the photoelectron spectra within the polarization plane of the
left-hand circularly polarized XUV and IR fields for Pl as a function of the photoelectron energy. (a2), (b2) The same as panels (a1), (b1), but
for Ph. (a3), (b3) The relative RABBITT phases between Ph and Pl, as a function of the photoelectron energy. The different columns correspond
to the results obtained (a1), (a2), (a3) by solving the TDSE and (b1), (b2), (b3) by perturbation theory including all pathways, respectively. The
purple circles, blue rhombuses and orange squares correspond to the IR intensities of 1 × 1010, 3 × 1010, and 1 × 1011 W/cm2, respectively.

To specifically reveal the underlying physics in the Rabi-
RABBITT scheme, we analyze the PT results based on the
two reduced subsets containing important ionization pathways
in Fig. 2: Subset five consists of the essential pathways 1, 3,
5, 6, and 9; and Subset three is composed of pathways 1, 3,
and 5. As a demonstration, Figs. 5(a) and 5(b) show the possi-
ble ionization channels of several essential pathways in Case
1 and their relative strengths, which are determined by the
dipole selection rules and the propensity rule in laser-assisted
photoionization [75,76]. Pathway 1 has only one partial wave
εd2 (here and hereafter the continuum partial wave is denoted
as εlm with l the angular quantum number and m the magnetic
quantum number) via one channel and pathway 3 has two
partial waves εs0 and εd0 via two possible channels, as shown
in Fig. 5(a). Pathway 5 (not shown) has the same partial wave
as pathway 1. Pathway 6 has only one partial wave εg4 via one
channel and pathway 9 has three partial waves εs0, εd0, and
εg0 via four possible channels, as shown in Fig. 5(b).

The two rightmost columns in Fig. 5 show the RABBITT
phases extracted from the 2ϕ oscillations of SBs in the photo-
electron spectra within the polarization plane of the XUV and
IR fields (xOy plane with θ = π/2) as a function of the pho-
toelectron energy, which are calculated by PT including part
of pathways in Fig. 2 and using the same laser intensities and
polarizations as the TDSE simulations. Figures 5(c1), 5(c2),
and 5(c3) respectively show the RABBITT phases φl (π/2),
φh(π/2), and 
φ(π/2) calculated only including pathways

of Subset five, which exhibits an excellent agreement with the
PT results including all pathways plotted in Figs. 4(b1), 4(b2),
and 4(b3). Their further agreement with the TDSE results
plotted in Figs. 4(a1), 4(a2), and 4(a3) indicates that the TDSE
results can be accurately interpreted by only analyzing the
interference among pathways of Subset five. Our calculations
show that, in the formation of the 2ϕ-oscillation signal, the
interference of pathways 3 and 5 has the most dominant con-
tribution throughout all the photoelectron energy for the three
IR intensities, followed by the interference of the usual RAB-
BITT pathways 3 and 1 which has the second most important
contribution. Furthermore, when comparing the phase of the
2ϕ-oscillation signal between the AT doublet Pl and Ph, the
interference of pathways 3 and 5 (3 and 1) will give a π (zero)
difference between the AT doublet Pl and Ph, recalling that
there is a π difference between the initial phases of the elec-
trons ionized from the dressed 2p states |φl

2p〉 and |φh
2p〉 due to

the sine-like Rabi amplitude sin(�0
Rt/2) ∼ ei�0

Rt/2 − e−i�0
Rt/2

of the 2p state [Eq. (14)]. Therefore, the dominance of the
interference of pathways 3 and 5 explains why 
φ(π/2) is
very close to π throughout all photoelectron energies for all
the three IR intensities as shown in Figs. 4(a3), 4(b3), and
5(c3), which is in qualitative accordance with the explanations
only based on Subset three in Ref. [13]. In contrast with the
Rabi-RABBITT scheme using the linearly polarized fields in
Ref. [13], adopting the circularly polarized IR field prevents
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FIG. 5. (a) The schematic of the ionization channels for pathways 1 and 3 when using the left-hand circularly polarized (denoted σ+) XUV
and IR fields. (b) The same as panel (a), but for pathways 6 and 9. The purple and red arrows indicate the transition via exchanging the XUV
and IR photons, respectively. The solid (dashed) arrows denote the relatively more (less) probable transition according to the propensity rule in
laser-assisted photoionization when comparing each step of absorption and emission from the same state. The partial waves of each ionization
channel are illustrated as the real spherical harmonics represented on polar plots. Pathway 5, having the same partial waves as pathway 1,
is not shown. From top to bottom of the two rightmost columns: (c1), (d1) The RABBITT phases extracted from the photoelectron spectra
within the polarization plane of the circularly polarized fields for Pl as a function of the photoelectron energy. (c2), (d2) The same as panels
(c1), (d1), but for Ph. (c3), (d3) The relative RABBITT phases between Ph and Pl, as a function of the photoelectron energy. The different
columns correspond to the results obtained by perturbation theory only including (c1), (c2), (c3) pathways 1, 3, 5, 6, 9 and (d1), (d2), (d3)
pathways 1, 3, 5, respectively. The purple circles, blue rhombuses, and orange squares correspond to the IR intensities of 1 × 1010, 3 × 1010,
and 1 × 1011 W/cm2, respectively.

the 3s (m = 0) from being populated and thus we have a more
perfect two-level Rabi system within R, as mentioned in the
previous section. So here we aim to make a quantitative inter-
pretation of the energy- and polar-angle-dependent RABBITT
phases (time delays) including more processes.

For comparison, Figs. 5(d1), 5(d2), and 5(d3) respectively
show the RABBITT phases φl (π/2), φh(π/2), and 
φ(π/2)
calculated with only pathways of Subset three included.
The RABBITT phases φl (π/2), φh(π/2), and 
φ(π/2) all
change monotonically with the photoelectron energy for the
three IR intensities. In particular, the relative phase 
φ(π/2)
deviates more from π at higher photoelectron energies and
for higher IR intensities because the relative contribution of
the interference of pathways 3 and 1 with respect to that
between pathways 3 and 5 increases with the photoelectron
energy and with the IR intensity. This relatively increasing
contribution of the interference between pathways 3 and 1
with the photoelectron energy results from a slower decline
in the radial integral of the dipole moment matrix element
associated with pathway 1 starting from the 2s state compared
with that of pathway 5 initiated from the 2p state, as implied
by the one-photon ionization cross sections from the 2s and
2p states for the photoelectron energies from 10 to 30 eV
shown in Fig. 1. The relatively increasing contribution of the
interference between pathways 3 and 1 with the IR intensity
is attributed to a higher order of exchanging IR photons in
the continuum for pathway 1 than pathway 5. Note that the
photoelectrons with higher kinetic energies also interact more
strongly with the laser field.

Compared with the monotonic tendencies of φl (π/2),
φh(π/2), and 
φ(π/2) in the PT results for Subset three, the

PT results for Subset five show some extra “bending” struc-
tures from SB 14 to SB 20 in the cases of φl (π/2), φh(π/2),
and 
φ(π/2), which implies the non-negligible influence of
the interference of pathways 5 with pathways 6 and 9. Indeed,
our calculations indicate that these “bending” structures are
attributed to the competition between the interference of path-
ways 5 and 6 versus the interference of pathways 1 and 3.
Similar to the interference of pathways 1 and 3 both starting
from the 2s state, the interference of pathways 5 and 6 both
initiated from the 2p state also gives a zero difference in the
phase of the 2ϕ oscillations between the AT doublet Pl and
Ph. However, the interference between the zeroth-IR-order
pathway 5 and the third-IR-order pathway 6 has an additional
≈π phase compared with the interference between the two
first-IR-order usual RABBITT pathways 1 and 3 due to the
interaction phase shift accumulated during the absorption or
emission of IR photons in multiphoton above-threshold ion-
ization [77]. In this sense, the interference of pathways 5 and 6
will cancel in strength with the interference of pathways 1 and
3. As the photoelectron energy increases, the strength of the
interference between pathways 5 and 6 becomes more compa-
rable with (but still weaker than) the interference of pathways
1 and 3 from SB 16 to SB 20 for the three IR intensities,
which is mainly determined by the relative amplitudes of the
absorbed XUV harmonics in pathways 3 and 6 [e.g., E2q−3,
E2q−1, and E2q+1 for SB2q in Eqs. (21)]. Hence, the summed
strength of the interferences of pathways 1, 3 and of pathways
5, 6 increases from SB 10 to SB 14 and then decreases from
SB 16 to SB 20. Recall that the most dominant interference of
pathways 3 and 5 contributes a Rabi π phase in the formation
of the 2ϕ oscillations between the AT doublet Pl and Ph. As a

043104-12



CIRCULARLY POLARIZED RABBITT APPLIED TO A … PHYSICAL REVIEW A 109, 043104 (2024)

0 20 40 60 80 100

-0.04

-0.02

0

0.02

P
ha

se
 (

un
its

 o
f 

)

(a1) l, 1.0 1010 (PT, all pathways)

SB10
SB12
SB14

SB16
SB18
SB20

0 20 40 60 80 100
-0.06

-0.04

-0.02

0

0.02

0.04

P
ha

se
 (

un
its

 o
f 

) (a2) h, 1.0 1010 (PT, all pathways)

SB10
SB12
SB14

SB16
SB18
SB20

0 20 40 60 80 100
Angle  (degree)

0.9

0.92

0.94

0.96

0.98

1

P
ha

se
 (

un
its

 o
f 

) (a3) h- l, 1.0 1010 (PT, all pathways)

SB10
SB12
SB14

SB16
SB18
SB20

0 20 40 60 80 100

-0.04

-0.02

0

0.02
(b1) l, 1.0 1010 (PT, pathways 1,3,5,6,9)

SB10
SB12
SB14

SB16
SB18
SB20

0 20 40 60 80 100
-0.06

-0.04

-0.02

0

0.02

0.04
(b2) h, 1.0 1010 (PT, pathways 1,3,5,6,9)

SB10
SB12
SB14

SB16
SB18
SB20

0 20 40 60 80 100
Angle  (degree)

0.9

0.92

0.94

0.96

0.98

1 (b3) h- l, 1.0 1010 (PT, pathways 1,3,5,6,9)

SB10
SB12
SB14

SB16
SB18
SB20

0 20 40 60 80 100

-0.04

-0.02

0

0.02
(c1) l, 1.0 1010 (PT, pathways 1,3,5)

SB10
SB12
SB14

SB16
SB18
SB20

0 20 40 60 80 100
-0.06

-0.04

-0.02

0

0.02

0.04
(c2) h, 1.0 1010 (PT, pathways 1,3,5)

SB10
SB12
SB14

SB16
SB18
SB20

0 20 40 60 80 100
Angle  (degree)

0.9

0.92

0.94

0.96

0.98

1 (c3) h- l, 1.0 1010 (PT, pathways 1,3,5)

SB10
SB12
SB14

SB16
SB18
SB20

FIG. 6. From top to bottom: (a1), (b1), (c1) The relative polar-angle-resolved RABBITT phases for Pl as a function of polar emission angle
of photoelectrons, with the intensities of the left-hand circularly polarized XUV and IR fields 1 × 1013 and 1 × 1010 W/cm2, respectively. (a2),
(b2), (c2) The same as (a1), (b1), (c1), but for Ph. (a3), (b3), (c3) The relative phases between Ph and Pl, as a function of the polar emission
angle of photoelectrons. The different columns respectively correspond to the results obtained by perturbation theory including (a1), (a2), (a3)
all pathways; (b1), (b2), (b3) only pathways 1, 3, 5, 6, and 9; and (c1), (c2), (c3) only pathways 1, 3, and 5. The circles, pluses, squares,
rhombuses, crosses and triangles correspond to SBs 10, 12, 14, 16, 18 and 20, respectively.

superposition effect of the three pairs of interferences among
pathways 1, 3, 5, and 6, 
φ(π/2) is near π while it is driven
further from π from SB 10 to SB 14 and then becomes closer
to π from SB 16 to SB 20, as shown in Figs. 4(a3), 4(b3), and
5(c3).

2. Detailed analysis of perturbation theory results:
polar-angle-resolved RABBITT phases

As shown in Sec. IV A 1, our PT in Sec. III A is reli-
able to quantitatively reproduce the TDSE results, especially
for low IR intensities in Case 1. Compared with the TDSE
simulations, PT has the advantage of specifying the ampli-
tude and the phase of each ionization channel so that the
essential processes can be accurately identified in order to
uncover the underlying mechanism. In the following, we
apply PT for more detailed examinations on the polar-angle-
integrated and polar-angle-resolved RABBITT phases in Case
1 (Sec. IV A 2) and Case 2 (Sec. IV B). Our PT calculations
for Case 1 show that, the phases extracted from the 2ϕ os-
cillations in SBs of the polar-angle-integrated photoelectron
spectra (polar-angle-integrated RABBITT phases) have simi-
lar behaviors as the RABBITT phases φl (π/2), φh(π/2), and


φ(π/2) due to the similar competition among the essential
pathways of Subset five. In this sense, only the polar-angle-
resolved RABBITT phases for the lowest IR intensity will be
discussed in this section.

Figure 6 shows the RABBITT phases as a function of
polar emission angle θ of photoelectrons, which are extracted
from the 2ϕ oscillation of SBs in the three-dimensional
photoelectron spectra. Here the intensities of the left-hand
circularly polarized XUV and IR fields are 1 × 1013 and 1 ×
1010 W/cm2, respectively. Figure 6(a1) [Fig. 6(a2)] shows the
polar-angle-resolved RABBITT phases φl (θ ) [φh(θ )] of the
peak Pl (Ph) in the AT doublet for SBs 10 to 20, which are
calculated with all pathways in Fig. 2 included. The phases
φl (θ ) and φh(θ ) are given relative to a small polar angle
θ0 = 0.25◦. Note that only the partial waves associated with
the zero magnetic quantum number (M = 0) contribute to the
signal along the propagation direction (θ = 0◦) in the photo-
electron spectra and thus there is no 2ϕ oscillation for θ = 0◦.
The RABBITT phases φl (θ ) and φh(θ ) both gently vary with
polar angle θ for all SBs. For each SB, the obvious and
counterintuitive discrepancy between the behaviors of φl (θ )
and φh(θ ) as a function of polar angle θ uncovers the influence
of the Rabi dynamics on the phase of the ionized electron
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wave packets. Besides, the specific behaviors of both φl (θ )
and φh(θ ) depend on the photoelectron energy. For SBs 10 to
14, φl (θ ) and φh(θ ) both change smoothly and monotonically
with polar angle θ . For SBs 16 to 20, however, φl (θ ) and φh(θ )
both exhibit some fluctuations and bendings in the vicinities
of θ = 20◦ and θ = 80◦ as a function of polar angle θ . In
addition, the curvatures of their bendings depend on the pho-
toelectron energy. Figure 6(a3) shows the relative RABBITT
phases 
φ(θ ) = φh(θ ) − φl (θ ) as a function of polar angle θ

for SBs 10 to 20. The relative phase 
φ(θ ) is close to π at
all polar emission angles θ for all SBs and it increases with
polar angle θ for all SBs. Similarly, 
φ(θ ) varies smoothly
with polar angle θ for SBs 10 to 14 while 
φ(θ ) shows a
downward and an upward bendings separately near θ = 20◦
and θ = 80◦ for SBs 14 to 20. In addition, the slope of the
increase of 
φ(θ ) becomes sharper and the curvatures of the
twice bendings become bigger as the photoelectron energy
increases. Figures 6(b1), 6(b2), and 6(b3) respectively show
the RABBITT phases φl (θ ), φh(θ ), and 
φ(θ ) as a function
of polar angle θ for SBs 10 to 20, which are calculated with
only pathways of Subset five included. By comparing the first
two columns in Fig. 6, it is seen that Subset five can already
reproduce well the results in the first column (including all
pathways in Fig. 2) for both the location of the “bending”
structures and their dependence on the photoelectron energy.

For comparison, we calculate the RABBITT phases φl (θ ),
φh(θ ), and 
φ(θ ) for SBs 10 to 20 by only including
pathways in Subset three, which are respectively shown in
Figs. 6(c1), 6(c2), and 6(c3). In Figs. 6(c1) and 6(c2), φl (θ )
and φh(θ ) both decrease monotonically with polar angle θ .
In Fig. 6(c3), 
φ(θ ) is flat as a function of polar angle θ for
all SBs. Our calculations show that the interference between
pathways 3 and 5 (3 and 1) has the most (second most)
important contribution in the formation of the 2ϕ-oscillation
signal throughout all emission polar angles θ for all SBs.
This dominance of the interference between pathways 3 and
5 explains why 
φ(θ ) is close to a Rabi π phase throughout
all emission polar angles θ for all SBs in Figs. 6(a3), 6(b3),
and 6(c3), rather than the usual near zero RABBITT phase at
high photoelectron energies in consideration of the interaction
phase shift [77]. Furthermore, the relative strength of the
interference between pathways 3 and 1 compared with that
between pathways 3 and 5 increases with the photoelectron
energy and thus 
φ(θ ) deviates more from π at higher pho-
toelectron energies in Fig. 6(c3) [and at higher IR intensities
(not shown)]. For each SB, because pathways 1 and 5 have the
same partial wave εd2, the relative strength of the interference
between pathways 3 and 1 with respect to that between path-
ways 3 and 5 keeps constant as a function of polar angle θ and
thus 
φ(θ ) is flat with polar angle θ in Fig. 6(c3).

The discrepancy between the two rightmost columns sug-
gests that the interferences between pathways 5, 6 and
between pathways 5, 9 are responsible for the observed “bend-
ing” structures in Figs. 6(a3) and 6(b3). Similarly to the
interference of pathways 5 and 6, the interference of pathways
5 and 9 also gives a zero difference in the phase of the 2ϕ

oscillations between the AT doublet Pl and Ph and it also
cancels in strength with the interference of pathways 1 and 3
due to the π interaction phase existing in the third-IR-order
pathway 9. At small polar angles θ , the amplitude of the

partial wave εg4 of pathway 6 is nearly zero [Fig. 5(b)] and
so as the strength of the interference of pathways 5 and 6.
Therefore, the behavior of 
φ(θ ) near θ = 20◦ in Figs. 6(a3)
and 6(b3) is mainly determined by the cancellation on the in-
terference of pathways 1 and 3 by the interference of pathways
5 and 9, which depends on the relative strength of these two
pairs of interferences. For SBs 10 and 12, the relative strength
of the interference between pathways 5 and 9 monotonically
increases with polar angle θ and thus there is no bending for
SBs 10 and 12. For SBs 14 to 20, their relative strength shows
a dip in the vicinity of θ = 20◦ and this dip becomes deeper
with the increasing photoelectron energy. Correspondingly,
the curvatures of the downward bending around θ = 20◦ are
bigger at higher energies for SBs 14 to 20. At big polar angles
θ , the interference of pathways 5 and 6 dominates over that
of pathways 5 and 9 for SBs 16 to 20 (which is mainly
determined by the relative amplitudes of the absorbed XUV
harmonics). Hence, the upward shape of the bending structure
near θ = 80◦ for SBs 16 to 20 in Figs. 6(a3) and 6(b3) is
mainly attributed to the cancellation on the interference of
pathways 1 and 3 by the interference of pathways 5 and 6. For
SBs 16 to 20, the relative strength of the interference between
pathways 5 and 6 monotonically increases with polar angle
θ and its increase becomes more gentle as θ approaches 80◦.
Moreover, the slope of its increase in their relative strength is
sharper for the SBs at higher energies and thus the curvature
of the upward bending near θ = 80◦ is bigger with increasing
photoelectron energy, as shown in Figs. 6(a3) and 6(b3). Note
that for the emission pathways 3 and 9, the partial wave εd0

(εg0) has a node at θ ≈ 54.58◦ (two nodes at θ ≈ 34.54◦ and
θ ≈ 69.85◦). Nevertheless, no abrupt phase jumps occur in the
interference of pathway 3 with pathway 1 nor 5 because the
εs0 wave dominates over the εd0 wave in pathway 3 according
to the propensity rule in laser-assisted photoionization [75].
Likewise, in pathway 9 where two IR photons are emitted in
the continuum, each step of emission favors decreasing the
electron angular momentum [76] and thus there is also no
phase jump in the interference between pathways 5 and 9.

B. Case 2: Rabi-RABBITT using the left-hand circularly
polarized XUV field and right-hand circularly polarized IR field

As shown in Table II, the RABBITT phases can be re-
trieved from the 2ϕ oscillations of SBs when the circularly
polarized IR field is used. According to the dipole selection
rules, the ionization channels differ when changing the polar-
izations of the laser fields in the Rabi-RABBITT scheme and
so do the behaviors of the RABBITT phases. As demonstrated
in Sec. IV A, when the circularly polarized XUV and IR fields
are corotating, the behaviors of the RABBITT phases are
mainly determined by the interferences among pathways of
Subset five. As a comparison, in this section, we apply PT
to examine the polar-angle-resolved (Sec. IV B 1) and polar-
angle-integrated (Sec. IV B 2) RABBITT phases in Case 2 of
Table II where the XUV and IR fields have opposite circular
polarizations (counter-rotating).

1. Polar-angle-resolved RABBITT phases

As a demonstration, Figs. 7(a) and 7(b) show the possi-
ble ionization channels of several pathways in Case 2 and
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FIG. 7. (a) The schematic of the ionization channels for pathways 1 and 3 when using the left-hand circularly polarized (denoted σ+)
XUV field and the right-hand circularly polarized (denoted σ−) IR field. (b) The same as panel (a), but for pathways 6 and 9. The purple
and red arrows indicate the transition via exchanging the XUV and IR photons, respectively. The solid (dashed) arrows denote the relatively
more (less) probable transition according to Fano’s propensity rule and the propensity rule in laser-assisted photoionization when comparing
each step of absorption and emission from the same state. The partial waves of each ionization channel are illustrated as the real spherical
harmonics represented on polar plots. Pathway 5, having the same partial waves as pathway 1, is not shown. From top to bottom of the two
rightmost columns: (c1), (d1) The polar-angle-resolved RABBITT phases for Pl as a function of polar emission angle of photoelectrons, with
the intensities of the XUV and the IR fields 1 × 1013 and 1 × 1010 W/cm2, respectively. (c2), (d2) The same as (c1), (d1), but for Ph. (c3), (d3)
The relative RABBITT phases between Ph and Pl, as a function of the polar emission angle of photoelectrons. The different columns corres-
pond to the results obtained by perturbation theory including (c1), (c2), (c3) all pathways and (d1), (d2), (d3) only pathways 1, 3, 5, respectively.
The circles, pluses, squares, rhombuses, crosses and triangles correspond to SBs 10, 12, 14, 16, 18 and 20, respectively.

their relative strengths, which are determined by the dipole
selection rules, Fano’s propensity rule [78], and the propensity
rule in laser-assisted photoionization [75,76]. Pathway 1 has
two partial waves εs0 and εd0 via two possible channels and
pathway 3 only has one partial wave εd2 via one channel, as
shown in Fig. 7(a). Pathway 5 (not shown) has the same two
partial waves as pathway 1. Pathway 6 has two partial waves
εd−2 and εg−2 via four possible channels and pathway 9 has
two partial waves εd2 and εg2 via four possible channels, as
shown in Fig. 7(b).

The two rightmost columns in Fig. 7 show the RABBITT
phases as a function of polar emission angle θ of photoelec-
trons, which are extracted from the 2ϕ oscillations of SBs in
the three-dimensional photoelectron spectra. Here the inten-
sities of the left-hand circularly polarized XUV field and the
right-hand circularly polarized IR field are 1 × 1013 and 1 ×
1010 W/cm2, respectively. Figure 7(c1) [Fig. 7(c2)] shows the
polar-angle-resolved RABBITT phases φl (θ ) [φh(θ )] of the
peak Pl (Ph) in the AT doublet for SBs 10 to 20, which are
calculated by including all pathways in Fig. 2. Here φl (θ ) and
φh(θ ) are given relative to a small polar angle θ0 = 0.25◦. In
contrast with corotating Case 1, when adopting the counter-
rotating XUV and IR fields in Case 2, φl (θ ) and φh(θ ) both
exhibit an obvious phase jump around θ ≈ 40◦ for all SBs, as
shown in Figs. 7(c1) and 7(c2). In addition, the steepness of
the phase jump in φh(θ ) is slightly sharper than that of φl (θ )
for all SBs. For both φl (θ ) and φh(θ ), the steepness of the

phase jump becomes more gentle and the amplitude of the
phase jump becomes smaller with the increasing photoelec-
tron energy. Figure 7(c3) shows the relative RABBITT phases

φ(θ ) = φh(θ ) − φl (θ ) as a function of polar angle θ for SBs
10 to 20. For all SBs, the relative phase 
φ(θ ) is close to π

and exhibits a phase jump of around 0.25π near θ ≈ 40◦. As
the photoelectron energy increases, the amplitude of the phase
jump in 
φ(θ ) becomes bigger.

Figures 7(d1), 7(d2), and 7(d3) respectively show the
RABBITT phases φl (θ ), φh(θ ), and 
φ(θ ) calculated by
only involving pathways in Subset three. The results agree
excellently with the PT results including all pathways. This
agreement implies that, in Case 2, only the interferences of
pathway 3 with pathways 1 and 5 have the determinant in-
fluence on the behaviors of the RABBITT phases. Indeed,
different from Case 1 where pathways 5 and 6 only have a
single partial wave (Fig. 5), pathways 5, 6, and 9 all have
two partial waves in Case 2. More importantly, for each of
pathways 5, 6, and 9 in Case 2, their two partial waves will
interfere destructively due to the opposite signs of their dipole
moment matrix elements originating from the angular inte-
grals. Thus, the interferences of pathway 5 with pathways 6
and 9, as coherent summations of all the ionization channels,
are negligible compared with that of the interferences of path-
way 3 with pathways 1 and 5. Focusing on the interferences
among pathways in Subset three, the interference of pathways
3 and 5 dominates over that of pathways 3 and 1 throughout
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FIG. 8. From top to bottom: (a1), (b1) The polar-angle-integrated RABBITT phases for Pl as a function of the photoelectron energy. (a2),
(b2) The same as panels (a1), (b1), but for Ph. (a3), (b3) The relative RABBITT phases between Ph and Pl, as a function of the photoelectron
energy. The different columns correspond to the results obtained by perturbation theory including (a1), (a2), (a3) all pathways and (b1),
(b2), (b3) only pathways 1, 3, and 5, respectively. The purple circles, blue rhombuses, and orange squares correspond to the IR intensities of
1 × 1010, 3 × 1010, and 1 × 1011 W/cm2, respectively.

all polar angles θ for all SBs except in the vicinity of θ ≈ 40◦
where the interference of pathways 3 and 5 has a minimum in
strength. Correspondingly, the relative phase 
φ(θ ) is close
to a Rabi π phase in Figs. 7(c3) and 7(d3). In addition, the
abrupt jumps of φl (θ ) and φh(θ ), respectively, in Figs. 7(d1)
and 7(d2) for all SBs are attributed to the dominance of the
εd0 wave over the εs0 wave in pathway 5 according to Fano’s
propensity rule favoring to increase angular quantum number
in absorption of one photon from the dressed 2p states [78].
As the εd0 wave changes its sign as a function of polar
angle around its node θ ≈ 54.5◦, the εd0 wave destructively
(constructively) interferes with the nodeless εs0 wave in path-
way 5 at the angles smaller (bigger) than 54.5◦, reminiscent
of the opposite signs of the dipole moment matrix elements
related to the εs0 and εd0 waves. Therefore, the phase jumps
occur in the vicinity of θ = 40◦ smaller than the εd0 node at
54.5◦ where the interference between pathways 3 and 5 has
a minimum in strength. Note that this differs from the case
in Ref. [75] where the phase jumps locate around θ = 75◦
larger than the εd0 node at 54.5◦ because their εs0 and εd0

waves have the same signs when using the linearly polarized
XUV and IR fields. In Figs. 7(d1) and 7(d2), no phase jump is
observed for either φl (θ ) or φh(θ ) in the vicinity of θ = 15◦
where the interference of pathways 3 and 1 has a minimum
in strength due to its negligible contribution compared with
the interference of pathways 3 and 5. Furthermore, the exact
behaviors of the phase jumps are mainly determined by the

relative strength and the phase of the interferences of pathway
3 with pathways 1 and 5. In particular, the slightly sharper
steepness of the phase jump in φh(θ ) compared with that of
φl (θ ) emphasizes the fact that there is a π difference between
the initial phases of the electrons ionized from the dressed 2p
states |φl

2p〉 and |φh
2p〉 [Eq. (14)].

2. Polar-angle-integrated RABBITT phases

Figure 8 shows the RABBITT phases as a function of
the photoelectron energy, which are extracted from the 2ϕ

oscillations in the photoelectron spectra integrated along po-
lar emission angle θ of photoelectrons. Figures 8(a1) and
8(a2) respectively show the polar-angle-integrated RABBITT
phases φ̄l and φ̄h of the peaks the AT doublet Pl and Ph in the
AT doublet, which are calculated by including all pathways in
Fig. 2. Here the intensity of the left-hand circularly polarized
XUV field is 1 × 1013 W/cm2. The intensities of the right-
hand circularly polarized IR field are 1 × 1010, 3 × 1010, and
1 × 1011 W/cm2, respectively. In Fig. 8(a1), φ̄l decreases with
the photoelectron energy for the three IR intensities and it is
less positive for the higher IR intensity. In Fig. 8(a2), φ̄h is
less negative for the higher IR intensity and it shows a differ-
ent dependence on the photoelectron energy for different IR
intensities. At the highest (lowest) IR intensity, φ̄h increases
(decreases) with the photoelectron energy. At the moderate IR
intensity, φ̄h keeps nearly constant with the photoelectron en-
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ergy. Figure 8(a3) shows the relative RABBITT phase 
φ̄ =
φ̄h − φ̄l as a function of the photoelectron energy for the three
IR intensities. For all the three IR intensities here, 
φ̄ is close
to a Rabi π phase for all the photoelectron energies, which
is explained by the dominance of the interference between
pathways 3 and 5.

As a comparison, Figs. 8(b1), 8(b2), and 8(b3) respectively
show the RABBITT phases φ̄l, φ̄h, and 
φ̄ calculated by only
including pathways of Subset three, which shows an excel-
lent agreement with the PT results including all pathways
in Figs. 8(a1), 8(a2), and 8(a3). This agreement stresses the
determinant roles of the interferences of pathway 3 with path-
ways 1 and 5 in Case 2. Furthermore, the relative contribution
of the interference of pathways 1 and 3 with respect to that
of pathways 3 and 5 increases with the photoelectron energy
and with the IR intensity. Correspondingly, the relative phase

φ̄ deviates more from a Rabi π phase at higher photoelec-
tron energies and for higher IR intensities in Figs. 8(a3) and
8(b3). Moreover, the opposite dependence of the φ̄l and φ̄h

on the photoelectron energy shown in Figs. 8(a2) and 8(b2) is
attributed to the π difference between the initial phases of the
electrons ionized from the dressed 2p states |φl

2p〉 and |φh
2p〉.

V. CONCLUSION

We have carefully examined the RABBITT technique
applied to a Rabi-cycling atom by utilizing circularly polar-
ized XUV and IR fields. In the RABBITT measurements,
the circularly polarized IR field induced Rabi oscillations
between the 2s and 2p states of lithium, which ensured
minimal population leakage to the other bound states. Be-
sides, the use of circularly polarized laser fields circumvented
repetitive RABBITT measurements by scanning the time
delay between the XUV and IR fields, which may make
experimental verification more feasible for the proposed
phase-matched Cases 1 and 2. In a single time-delay RAB-
BITT measurement, the interference phase of the ionized
electron wave packets was retrieved from the photoemis-
sion anisotropy along the azimuthal direction. As expected,
both polar-angle-integrated and polar-angle-resolved photo-
electron spectra exhibited a near π phase difference between
each AT doublet, as a manifestation of the modulating pop-
ulations of the two Rabi states [13]. In addition, adopting
the circular polarizations exhibits a potential to steer the
phase of the emitted electron wave packets by controlling the
ionization channels. By using co- or counter-rotating XUV
and IR fields, the polar-angle-integrated and polar-angle-
resolved RABBITT phases exhibited different behaviors,
which was traced back to different competition among par-
tial waves determined by propensity rules [75,76,78]. In the
corotating case, the polar-angle-integrated RABBITT phases
showed a bending structure as a function of the photo-
electron energy while the polar-angle-resolved RABBITT
phases showed no phase jumps as a function of polar angle.
These complex phenomena were captured by the competition
among the essential ionization channels of Subset five. In the
counter-rotating case, the polar-angle-integrated RABBITT
phases varied monotonically with the photoelectron energy
while the polar-angle-resolved RABBITT phases showed
phase jumps near θ = 40◦, which were explained by the

competition among the essential ionization channels of Subset
three.

We discussed how the interference pattern in photoelectron
spectra encoded the information of the modulating popula-
tions of the two Rabi states. We believe the underlying physics
can be generalized to the Rabi process studied by other similar
interferometric schemes [79] and in more complicated molec-
ular [80,81] and solid systems [82]. Besides, the pump-probe
interferometry used here can also be adopted to investigate
the modulating population in a multilevel system [83–85].
In addition, the analysis of the interference among multiple
pathways is also applicable in other interferometric schemes
[86–88].

Furthermore, the periodicity of the RABBITT process is
determined by both the physical process of interest and the
measurement process. In the RABBITT measurement on the
autoionization process [89], the broken periodicity leads to a
broadening [39] and a frequency modulation [90,91] of the
spectral SB peaks. In the RABBITT measurement of Rabi
oscillations, the periodic Rabi process manifests itself as a
splitting of the observed SB peaks in the energy domain,
and the periodicity of the RABBITT process is characterized
commonly by the Rabi frequency and the laser probe fre-
quency. When these two frequencies are incommensurable,
there is no repetitive interference pattern as a function of the
time delay between the two fields in the photoelectron spectra
due to the nonperiodic RABBITT process. This breakdown
of the periodicity becomes visible when the two SB peaks
overlap in the AT doublet by using the laser fields with broader
spectral widths (e.g., the Rainbow RABBITT method [39]).
In this case, assuming the IR field is monochromatic, the
modulations are like |�0

R|τ within the overlap of the two SB
peaks [11] while the modulations are like 2ωτ outside of their
overlap according to Eqs. (21). Furthermore, the modulation
frequency of SB peaks should include the finite-pulse effect
[90,91] when both laser fields are spectrally broad.
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APPENDIX A: SOLVING THE SCHRÖDINGER EQUATION
WITHIN THE RABI SUBSPACE

In the two-level Rabi subspace R, the Schrödinger equa-
tion is written as

i
d

dt
|�R(t )〉 = HR|�R(t )〉, (A1)
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where the Hamiltonian HR is defined in Eq. (9). The ansatz of
this equation is a superposition of the 2s and 2p states,

|�R(t )〉 = C2s(t ; τ )e−iω2st |ψ2s〉 + C2p(t ; τ )e−iω2pt |ψ2p〉,
(A2)

which encodes the unitary transform Ur = exp(iω2st )|ψ2s〉
〈ψ2s| + exp(iω2pt )|ψ2p〉〈ψ2p|. In the condition at resonance
ω = ω2p − ω2s, the full transform can be decomposed into
two successive unitary transforms as Ur = S0Sr , where S0 =
exp[i(ω2s + ω2p)t/2]I subtracts the global energy offset
(ω2s + ω2p)/2 with I = |ψ2s〉〈ψ2s| + |ψ2p〉〈ψ2p| and where
Sr = exp(iωσ̂z/2) encodes the change into a rotating frame
[92,93] with σ̂z = |ψ2s〉〈ψ2s| − |ψ2p〉〈ψ2p| the Pauli matrix
for R subspace.

Inserting Eq. (A2) into Eq. (A1), the coefficient equa-
tions are obtained as

d

dt
Ȳ (t ) = Ā(t )Ȳ (t ), (A3a)

where the coefficient matrix is

Ȳ (t ) :=
(

C2s(t ; τ )
C2p(t ; τ )

)
, (A3b)

and the interaction matrix is

Ā(t ) := − i

2
�R(t ; τ )M̄ (A3c)

with the skew hermitian matrix

M̄ :=
(

0 e−iωτ

eiωτ 0

)
. (A3d)

Note here that �R(t ; τ ) = �∗
R(t ; τ ) is used considering that

�R(t ; τ ) is real number. According to Magnus expansion [94],
the solution of Eq. (A3a) is

Ȳ (t ) = U ′
R(t, t0)Ȳ (t0), (A4a)

with the propagator

U ′
R(t, t0)

= exp

(∫ t

t0

Ā(t1)dt1−1

2

∫ t

t0

dt1

∫ t1

t0

dt2[Ā(t2), Ā(t1)]+· · ·
)

.

(A4b)

Here U ′
R is the propagator corresponding to a unitary-

transformed Hamiltonian H ′
R = UrHRU †

r − iUr∂tU †
r . Due to

the commutation relation [Ā(t ), Ā(t ′)] = 0, only the first-order
term is kept in the exponential, i.e.,

U ′
R(t, t0) = exp

(∫ t

t0

Ā(t ′)dt ′
)

=
∞∑

n=0

1

n!

(∫ t

t0

Ā(t ′)dt ′
)n

=
∞∑

n=0

1

n!

(
− i

2

∫ t

t0

�R(t ′; τ )dt ′
)n

M̄n. (A5)

Note that M̄ satisfies

M̄n =
{

M̄, for odd n
I, for even n,

(A6)

and thus

U ′
R(t, t0) = cos

[
1

2

∫ t

t0

�R(t ′; τ ) dt ′
]
I

− i sin

[
1

2

∫ t

t0

�R(t ′; τ ) dt ′
]

M̄. (A7)

Note that Eq. (A7) can also be derived from Eq. (A5) by
directly using the relations

M̄ = �σ · n̂, (A8a)

exp

[
−i

1

2

∫ t

t0

�R(t ′; τ ) dt ′ �σ · n̂

]

= cos

[
1

2

∫ t

t0

�R(t ′; τ ) dt ′
]
I

− i sin

[
1

2

∫ t

t0

�R(t ′; τ ) dt ′
]
�σ · n̂, (A8b)

where �σ = [σ̂x, σ̂y, σ̂z] is related to Pauli matrices for R sub-
space and where n̂ = [cos(ωτ ), sin(ωτ ), 0] is the unity vector
within the xOy plane in the representation of Bloch sphere
[92,95,96].

Then the Rabi amplitudes in accordance with the area
theorem [97] are given as

C2s(t ; τ ) = cos

[
1

2

∫ t

t0

�R(t ′; τ )dt ′
]
, (A9a)

C2p(t ; τ ) = −ieiωτ sin

[
1

2

∫ t

t0

�R(t ′; τ )dt ′
]
, (A9b)

which is obtained by using Ȳ (t ) = U ′
R(t, t0)Ȳ (t0) with Ȳ (t0)

corresponding the boundary condition of C2s(t0) = 1 and
C2p(t0) = 0. Here we take the initial time to infinity t0 →
−∞. Furthermore, the Fourier transform of the Rabi coeffi-
cients is defined as

C̃2s(ωR; τ ) := 1√
2π

∫ ∞

−∞
C2s(t ; τ )e−iωRt dωR

= 1√
2π

∫ ∞

−∞
cos

[
1

2

∫ t

−∞
�R(t ′ − τ )dt ′

]

× e−iωRt dωR

= 1√
2π

∫ ∞

−∞
cos

[
1

2

∫ t−τ

−∞
�R(t ′)dt ′

]

× e−iωR (t−τ )dωReiωRτ

= C̃2s(ωR)eiωRτ , (A10a)

C̃2p(ωR; τ ) := 1√
2π

∫ ∞

−∞
C2p(t ; τ )e−iωRt dωR

= − ieiωτ

√
2π

∫ ∞

−∞
sin

[
1

2

∫ t

−∞
�R(t ′ − τ )dt ′

]

× e−iωRt dωR

= −iei(ω+ωR )τ

√
2π

∫ ∞

−∞
sin

[
1

2

∫ t−τ

−∞
�R(t ′)dt ′

]

× e−iωR (t−τ )dωR

= C̃2p(ωR)eiωRτ . (A10b)
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APPENDIX B: DERIVATIONS OF THE DYSON SERIES
IN THE RABI-RABBITT SCHEME

In verifying that the wave function |�(t )〉 in Eq. (15) satis-
fies the Schrödinger equation

i
d

dt
|�(t )〉 = H (t )|�(t )〉. (B1)

We directly substitute into the Schrödinger equation by the
ansatz [98,99]

|�(t )〉 = U (t, t0)|�(t0)〉. (B2a)

U (t, t0) = UR(t, t0) − i
∫ t

t0

dt ′U (t, t ′)H⊥R
int (t ′)UR(t ′, t0).

(B2b)

Considering the initial condition |�R(t0)〉 = |�(t0)〉 =
e−iω2st0 |ψ2s〉, we obtain

i
d

dt
|�(t )〉 = i

d

dt
U (t, t0)|�(t0)〉

= i
d

dt
UR(t, t0)|�R(t0)〉 + U (t, t )H⊥R

int (t )UR(t, t0)|�R(t0)〉

− i
∫ t

t0

dt ′i
d

dt
U (t, t ′)H⊥R

int (t ′)UR(t ′, t0)|�R(t0)〉 − i
∫ t

t0

dt ′H (t )U (t, t ′)H⊥R
int (t ′)UR(t ′, t0)|�R(t0)〉

= [
HR(t ) + H⊥R

int (t )
]
UR(t, t0)|�R(t0)〉 − iH (t )

∫ t

t0

dt ′U (t, t ′)H⊥R
int (t ′)UR(t ′, t0)|�R(t0)〉

= H (t )

[
UR(t, t0) − i

∫ t

t0

dt ′U (t, t ′)H⊥R
int (t ′)UR(t ′, t0)

]
|�R(t0)〉

= H (t )U (t, t0)|�(t0)〉
= H (t )|�(t )〉. (B3)

Note that in our derivation, we use

i
d

dt
|�R(t )〉 = HR(t )|�R(t )〉, (B4a)

|�R(t )〉 = UR(t, t0)|�R(t0)〉, (B4b)

i
d

dt
UR(t, t0)|�R(t0)〉 = HR(t )UR(t, t0)|�R(t0)〉, (B4c)

i
d

dt
U (t, t ′) = H (t )U (t, t ′), (B4d)

where the propagator of the full Hamiltonian is U (t, t ′) := T̂ exp[−i
∫ t

t ′ H (τ )dτ ] with T̂ the time-ordering operator and
U (t, t ) = 1.

APPENDIX C: THE IONIZATION AMPLITUDES OF THE OTHER PATHWAYS

The ionization amplitudes A(i) and their reduced amplitudes M(i),Q of pathways 2, 4, 7, 8, 10, and 11 in Fig. 2 are

A(2)(�k±, τ ) = − iπ

4
ei[(ω± |�0

R |
2 )τ+φ2q−1]E2q−1Eω

∑∫
ν1 �=2p

〈ψ f ±|Ô�

∣∣ψν1

〉〈
ψν1

∣∣Ôω|ψ2s〉

ω2s ±
∣∣�0

R

∣∣
2 + ω − ων1

, (C1a)

A(4)(�k±, τ ) = − iπ

4
e−i[(ω∓ |�0

R |
2 )τ−φ2q+1]E2q+1Eω

∑∫
ν1

〈ψ f ±|Ô�

∣∣ψν1

〉〈
ψν1

∣∣Ô†
ω|ψ2s〉

ω2s ±
∣∣�0

R

∣∣
2 − ω − ων1

, (C1b)

A(7)(�k±, τ ) = ∓ iπ

8

�0
R∣∣�0
R

∣∣ei[(3ω± |�0
R |

2 )τ+φ2q−3]E2
ωE2q−3

×
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ψν2

∣∣Ô�
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R|
2 + ω + �2q−3 − ων2

)(
ω2p ± |�0

R|
2 + ω − ων1

) , (C1c)
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A(8)(�k±, τ ) = ∓ iπ

8

�0
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2 )τ+φ2q−3]E2
ωE2q−3

×
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A(10)(�k±, τ ) = ∓ iπ
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×
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A(11)(�k±, τ ) = ∓ iπ
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M(2),Q(E±) = π
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TABLE III. The radial and angular integrals of the dipole transition matrix elements of pathways 1 to 11 for the higher-energy peak of SB
10 in Case 1.

Pathway Ionization channel Radial integral Angular integral

1 (li, λ1, L) = (0, 1, 2) 41.031722524570355 + 53.198466268618446i 0.365148371670111
2 (li, λ1, L) = (0, 1, 2) 3.823833748129400 0.365148371670111
3 (li, λ1, L) = (0, 1, 0) 13.544666666666670 + 44.780000000000015i 0.333333333333333
3 (li, λ1, L) = (0, 1, 2) −12.984548602944278 − 11.427350863413425i −0.149071198499986
4 (li, λ1, L) = (0, 1, 0) −1.398733333333334 0.333333333333333
4 (li, λ1, L) = (0, 1, 2) 0.852016435026670 −0.149071198499986
5 (li, L) = (1, 2) 0.213074268742145 0.632455532033676
6 (li, λ1, λ2, L) = (1, 2, 3, 4) 4656.010341994734 + 3491.179677824839i 0.276026223736942
7 (li, λ1, λ2, L) = (1, 2, 3, 4) 4082.151822845632 + 1288.738836005407i 0.276026223736942
8 (li, λ1, λ2, L) = (1, 2, 3, 4) −839.4509516287872 0.276026223736942
9 (li, λ1, λ2, L) = (1, 2, 1, 0) −2362.517301523949 − 1025.027667919262i 0.230940107675850
9 (li, λ1, λ2, L) = (1, 2, 1, 2) 1004.238761782608 − 123.4397252103228i −0.103279555898864
9 (li, λ1, λ2, L) = (1, 2, 3, 2) 277.7039715897753 − 23.54641086493669i −0.044262666813799
9 (li, λ1, λ2, L) = (1, 2, 3, 4) 169.0151673747687 + 39.07506621875388i 0.032991443953693
10 (li, λ1, λ2, L) = (1, 0, 1, 0) 276.6854940046418 + 869.2200752739551i 0.192450089729875
10 (li, λ1, λ2, L) = (1, 0, 1, 2) −256.6496964086782 − 221.8186661817862i −0.086066296582387
10 (li, λ1, λ2, L) = (1, 2, 1, 0) 20.244209838865040 + 63.312230519334360i 0.038490017945975
10 (li, λ1, λ2, L) = (1, 2, 1, 2) −17.338916109487684 − 16.156881592225183i −0.017213259316477
10 (li, λ1, λ2, L) = (1, 2, 3, 2) −219.8836499309096 + 75.62719251805706i −0.044262666813799
10 (li, λ1, λ2, L) = (1, 2, 3, 4) −98.482759346168690 − 11.215441372057903i 0.032991443953693
11 (li, λ1, λ2, L) = (1, 0, 1, 0) −21.007851794913194 0.192450089729875
11 (li, λ1, λ2, L) = (1, 0, 1, 2) 0.800098112918845 −0.086066296582387
11 (li, λ1, λ2, L) = (1, 2, 1, 0) 0.049998533311822 0.038490017945975
11 (li, λ1, λ2, L) = (1, 2, 1, 2) −1.710240592647929 −0.017213259316477
11 (li, λ1, λ2, L) = (1, 2, 3, 2) −4.063799702841705 −0.044262666813799
11 (li, λ1, λ2, L) = (1, 2, 3, 4) −8.459336144166398 0.032991443953693

APPENDIX D: THE SELECTED NUMERICAL RESULTS OF THE DIPOLE TRANSITION MATRIX ELEMENTS

Table III gives the radial and angular integrals of the dipole transition matrix elements of pathways 1 to 11 in Fig. 2 for the
photoelectron energy of 2qω − I2s

p + �0
R/2 with q = 5 and �0

R = 0.0367 eV (the higher-energy peak of SB 10) in Case 1.
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