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Temporal nonreciprocity in gently modulated three-mode optomechanical systems
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We investigate temporal dynamics of nonreciprocal photon transmission between two optical modes in a
three-mode optomechanical system, where the optical modes are simultaneously driven by two independent
periodically amplitude-modulated lasers. We reveal that the nonreciprocal optical transmission oscillating with
time can be achieved in the modulated three-mode optomechanical system. By elaborately tuning the strength
of the modulation lasers, we can significantly improve the nonreciprocal optical transmission and shorten the
convergence time to reach an asymptotic oscillating regime. In particular, the dependence of the temporal photon
transmission on the phase difference between two independent amplitude-modulated lasers provides a flexible
controllability of optical communication based on optomechanical systems.
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I. INTRODUCTION

In general, Lorentz reciprocity refers to the invariant re-
sults of measurements when interchanging the positions of
source and detector [1]. However, breaking Lorentz reci-
procity leads to unique nonreciprocal phenomena, which
exhibit a direction-dependent optical transmission. Nonrecip-
rocal devices based on breaking the Lorentz reciprocity, such
as isolators and circulators, provide greatly desirable func-
tionalities for quantum information processing, as they can
improve information capacity and protect sensitive sources
from interfering signals [2]. The optical nonreciprocity serves
as a valuable tool in investigating exotic topological photonics
[3], achieving the realization of chiral edge states [4], pro-
viding topological protection [5], and facilitating ground-state
cooling [6].

Traditionally, the optical nonreciprocity is realized by
using the magneto-optical materials based on the Faraday ro-
tation effect [7]. Nevertheless, the schemes relying on highly
magnetic materials with large magnetic fields are too bulky to
be implemented on chip and even deleterious to superconduct-
ing devices. To overcome these challenges, many schemes
other than those based on the Faraday rotation effect have
been proposed to realize nonmagnetic nonreciprocity, such
as the Aharonov-Bohm effect in a photonic system [8,9], an-
gular momentum biasing [10,11], chiral quantum networking
[12–17], and optical nonlinearity [18–21]. Additionally, the
parity-time-symmetric optical structures with balancing gain
and loss have been used to realize the nonmagnetic nonre-
ciprocity [22–26].

Recently, cavity optomechanical systems, describing the
radiation-pressure induced parametric coupling, have been
exploited to achieve the nonmagnetic nonreciprocity due
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to their miniaturized and fully integrated features [27–29].
Many interesting phenomena in optomechanical systems have
been explored. For example, the optomechanically induced
transparency is generated when the optical cavity is driven
by a red-detuned field [30–33], while the optomechanically
induced absorbtion and amplification are created when a
blue-detuned field is used to drive the cavity [34–37]. To
strengthen the quantum features, much attention has been
paid to the ground-state cooling of mechanical oscillators
[38–42]. In particular, the optomechanical system provides
a versatile platform to realize the magnetless nonreciproc-
ity because it can be miniaturized and fully integrated. It
was shown that the nonreciprocal photon transmission can
be generated in optomechanical systems due to the interfer-
ence between the multipath coherent couplings [43–54]. This
comes from the fact that the constructive interference between
different paths can enhance transmission in one direction,
but the transmission in the opposite direction is suppressed
due to the destructive interference. For example, the nonmag-
netic optical nonreciprocity is generated by the interference
between the coherent coupling of optical cavities and their
optomechanical interactions with the mechanical resonators
[48–53]. Additionally, nonreciprocal photon transmission and
amplification in the optomechanical systems can be achieved
by directly engineering their reservoirs [55–57], or by elim-
inating auxiliary modes [58–60]. Besides the interference
mechanism leading to the nonmagnetic optical nonreciproc-
ity, the nonreciprocity aroused by the optical Sagnac effect
has been considered in a spinning optomechanical system
[61–63].

Subsequently, several schemes based on the time modu-
lation were proposed to investigate the nonreciprocity. Clerk
has proposed the means for inducing a time-independent ef-
fective Hamiltonian with a controllable phase in its hopping
coupling by modulating the hopping coupling between two
modes or their resonance frequencies harmonically in time
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to investigate the nonreciprocity [64]. A giant nonreciprocity
was observed by parametrically modulating the resonance
frequencies of three identical coupled resonators to lift the
degeneracy of counterpropagating resonant states [65]. It
was shown that the non-Hermitian time-Floquet system, in
which the complex coupling between lossless modes is not
only non-Hermitian, but periodic in time, can exhibit perfect
nonreciprocity [66].

In the above discussions, the time modulation used for
enhancing the nonreciprocity was realized by adjusting the
hopping coupling between two modes or their resonance
frequencies harmonically in time. Recently, Mari and Eis-
ert have introduced a framework of optomechanical systems
that are driven with a mildly amplitude-modulated light field
[67]. The squeezing with large degrees of a mechanical mi-
cromirror and entanglement dynamics can be achieved in a
framework of optomechanical systems that are driven with
a mildly amplitude-modulated light field. Subsequently, the
mechanical squeezing beyond the rotating wave approxima-
tion was analyzed by combining the Lyapunov approach with
Floquet techniques for time-dependent problems in optome-
chanics and electromechanics [68]. And the mode-locked,
multimode phonon lasing was established in a multimode
optomechanical system through Floquet dynamics induced by
a temporally modulated laser drive [69]. Recently, the Flo-
quet control of the optomechanical bistability in multimode
settings has been investigated [70]. Additionally, the distinct
steady state steered by thermo-optic nonlinearity effects [71],
and intriguing dynamics of the high-order sidebands [72–74],
can be realized in an optomechanical system. In particular,
it was shown that the time-dependent drivings would signif-
icantly improve both entanglement and squeezing in coupled
optomechanical systems [75–82].

It is natural to wonder how the nonreciprocal transmission
behaves in the optomechanical systems driven with mildly
amplitude-modulated light fields, which are not subject to
classical feedback or squeezed input light. On the other
hand, the temporal behaviors (evolution with time) of the
quantum system are worth studying, as they not only illus-
trate the underlying physics structure but also reveal some
new features accumulated over time. To our knowledge, the
temporal behaviors of the optical nonreciprocity in the op-
tomechanical system, which is periodically driven by gentle
amplitude-modulated fields, have not yet been investigated. In
the present paper, we consider temporal optical nonreciprocity
in an amplitude-modulated three-mode optomechanical sys-
tem with two independent periodical lasers. The effects of
the powers of the zeroth- or first-order modulated driving
lasers, their phase difference and modulated frequencies on
the temporal nonreciprocal transmission amplitude, and the
transition from an initial stage to a steady oscillation with the
fixed amplitude in both symmetric and asymmetric settings
are investigated by using numerical simulation and analytical
findings. In contrast to the previous traveling-wave modu-
lation in the waveguide to produce an isolation (3 dB) and
large insertion loss (70 dB) [83], which requires intricate mod-
ulation, the present scheme can simplify the nonreciprocal
devices by employing a simple periodic modulation of driving
fields. This not only reveals the temporal behaviors of the
optical nonreciprocity under periodic driving, but provides a

(a)

(b)

FIG. 1. (a) The three-mode optomechanical system includes
common mechanical resonator b̂ and two optical cavities â1 and
â2, which are directly coupled with a coherent coupling strength J .
(b) Equivalent schematic diagram of the three-mode optomechan-
ical system, consisting of a dielectric membrane as a mechanical
resonator, separating an optical cavity into two cavities â1 and â2.
The two optical cavities are coupled with the dielectric membrane b̂
via the radiation pressure difference, and tunneling of photons can go
through the membrane.

flexible control in dynamical behaviors of the nonreciprocal
photon transmission, which may be useful in the real-time
photon communications.

This paper is organized as follows: In Sec. II, we introduce
the gently modulated three-mode optomechanical systems,
in which the optical modes are simultaneously driven by
two independent periodically amplitude-modulated lasers. In
Sec. III, we obtain the analytical solutions of the mean values
by using a perturbation method. We also analyze the dy-
namical characters of the mean values with both numerical
and analytical methods, where the analytical solutions are
perfectly consistent with the numerical results. Subsequently,
the temporal optical nonreciprocity in the gently modulating
three-mode optomechanical systems is discussed by numer-
ical simulation in Sec. IV. And in Sec. V, we study the
dependence of temporal nonreciprocal photon transmission
on the phase differences. The nonreciprocal behaviors are
analytically investigated in Sec. VI. Finally, we summarize
our results in Sec. VII.

II. MODEL AND DYNAMICS

As shown in Fig. 1(a), the system under our consider-
ation consists of two optical cavity modes â1 and â2 with
frequency ωc1 and ωc2, which are optomechanically cou-
pled to a common mechanical mode b̂ with frequency ωm.
Meanwhile, the two optical modes are directly coupled with
a photon tunneling-coupling strength J . Without loss of
generality, we assume that the parameter J is a real num-
ber. This three-mode optomechanical systems, which can
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be realized in a “membrane-in-the-middle” scheme shown
in Fig. 1(b), has been theoretically analyzed [84–86] and
experimentally implemented [87–92]. Furthermore, the two
cavities are driven by two external input lasers in the opposite
directions with carrier frequency ωl and modulated am-
plitudes Ej (t ) = Ej,0 + Ej,−1ei(�t−ϕ j ) + Ej,+1e−i(�t−ϕ j ) ( j =
1, 2) with ϕ j being its initial phase, respectively. And the
amplitude of Ej,n = √

2κPj,n/h̄ωl (n = 0,±1) is mainly de-
termined by the power Pj,n. We shall extend our discussions
under the assumption of gentle modulation on the system with
Pj,1/Pj,0 < 1. The decay rates of the optical cavities are given
by κi = πc/(2FiLi ) (i = 1, 2), in which Fi and Li denote the
corresponding cavity finesse and length, respectively, and c
is the vacuum speed of light. And � = 2π/τ (τ > 0) is the
modulated frequency of the lasers. Under the rotating frame
with respect to laser frequencies ωl , the Hamiltonian of the
system reads [67,90] as follows:

Ĥ = h̄�1â†
1â1 + h̄�2â†

2â2 + h̄ωmb̂†b̂ − h̄gâ†
1â1(b̂ + b̂†)

+ h̄gâ†
2â2(b̂ + b̂†) + h̄J (â†

1â2 + â†
2â1)

+ ih̄
∑

j

[Ej (t )â†
j − E∗

j (t )â j], (1)

where � j = ωc j − ωl ( j = 1, 2) is the detuning between the
cavity and the corresponding external driving field, â j (â†

j ) is
the annihilation (creation) operator of the jth cavity mode,
and b̂ (b̂†) is the annihilation (creation) operator of the
mechanical resonator. And g = √

h̄/mωmωc/L is the single-
photon optomechanical-coupling coefficient [27,67], where m
is the effective mass of the mechanical mode. The last terms
with Ej (t ) are periodically modulated drivings on the system.

The Heisenberg-Langevin equations of motion driven by
the Hamiltonian in Eq. (1) are given by

d

dt
b̂ = −(iωm + γm)b̂ + igâ†

1â1 − igâ†
2â2 +

√
2γmb̂in,

d

dt
â1 = −(i�1 + κ1)â1 + igâ1(b̂ + b̂†) − iJâ2

+ E1(t ) +
√

2κ1â1,in,

d

dt
â2 = −(i�2 + κ2)â2 − igâ2(b̂ + b̂†) − iJâ1

+ E2(t ) +
√

2κ2â2,in, (2)

where γm is the mechanical damping rate. Here, â1,in, â2,in,
and b̂in denote the input fields with zero mean values. The
spectra sô,in(ω) of the input fields are defined as [46,93]

〈ô†
in(t ′)ôin(t )〉 = 2πsô,in(t )δ(t − t ′),

〈ôin(t )ô†
in(t ′)〉 = 2π [sô,in(t ) + 1]δ(t − t ′), (3)

where ô = â1, â2, and b̂, and term 1 results from the effect of
vacuum noise. When the system is driven by the strong optical
fields, we can linearize the dynamics by using the standard
linearization approach of quantum optics, i.e., ô = 〈ô〉 + δô,
where δô are the zero-mean quantum-fluctuation operators
around classical c-number mean values 〈ô〉. Then the evo-
lution equations of the mean values of the variables can be
written as

d

dt
〈b̂〉 = −(iωm + γm)〈b̂〉 + ig|〈â1〉|2 − ig|〈â2〉|2,

d

dt
〈â1〉 = −(i�1 + κ1)〈â1〉 + ig〈â1〉(〈b̂〉 + 〈b̂†〉)

− iJ〈â2〉 + E1(t ),

d

dt
〈â2〉 = −(i�2 + κ2)〈â2〉 − ig〈â2〉(〈b̂〉 + 〈b̂†〉)

− iJ〈â1〉 + E2(t ). (4)

Correspondingly, the linearized quantum Langevin equa-
tions are given by

d

dt
δb̂ = −(iωm + γm)δb̂ + i(G1(t )δâ†

1 + G∗
1(t )δâ1)

− i(G2(t )δâ†
2 + G∗

2(t )δâ2) +
√

2γmb̂in,

d

dt
δâ1 = −(i�̃1(t ) + κ1)δâ1 + iG1(t )(δb̂ + δb̂†)

− iJδâ2 +
√

2κ1â1,in,

d

dt
δâ2 = −(i�̃2(t ) + κ2)δâ2 − iG2(t )(δb̂ + δb̂†)

− iJδâ1 +
√

2κ2â2,in, (5)

where �̃1 = �1 − δ and �̃2 = �2 + δ with δ ≡ g(〈b̂(t )〉 +
〈b̂†(t )〉) are the effective driving detunings including the fre-
quency shifts caused by the optomechanical interaction. The
parameters G1(t ) = g〈â1(t )〉 and G2(t ) = g〈â2(t )〉 represent
the effective optomechanical-coupling strength related to the
cavity intensity. For convenience, the linearized fluctuation
Eq. (5) can be concisely expressed as

d

dt
v = Av + Lvin, (6)

where the fluctuation vector is v =
(δb̂, δâ1, δâ2, δb̂†, δâ†

1, δâ†
2)T , and the input field vector is

vin = (b̂in, â1,in, â2,in, b̂†
in, â†

1,in, â†
2,in )T with decay matrix

L = diag(
√

2γm,
√

2κ1,
√

2κ2,
√

2γm,
√

2κ1,
√

2κ2). The
coefficient matrix A is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(iωm + γm) iG∗
1(t ) −iG∗

2(t ) 0 iG1(t ) −iG2(t )

iG1(t ) −(i�̃1(t ) + κ1) −iJ iG1(t ) 0 0

−iG2(t ) −iJ −(i�̃2(t ) + κ2) −iG2(t ) 0 0

0 −iG∗
1(t ) iG∗

2(t ) iωm − γm −iG1(t ) iG2(t )

−iG∗
1(t ) 0 0 −iG∗

1(t ) i�̃1(t ) − κ1 iJ

iG∗
2(t ) 0 0 iG∗

2(t ) iJ i�̃2(t ) − κ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)
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The stability of this optomechanical system can be influenced
by the gently modulated lasers. According to the Routh-
Hurwitz criterion [94], the dynamics of the system is stable
when all eigenvalues of the matrix (7) have a negative real
part. However, the corresponding expressions indicating the
stability of the system are too cumbersome to be shown here.
We have verified that the parameter values considered here
fulfill the stability condition.

III. DYNAMIC CHARACTERS OF THE MEAN VALUES

The time evolution of the mean values is crucial for study-
ing the dynamic characters of the quantum fluctuations, shown
in Eq. (4). By introducing the dimensionless position and
momentum quadratures of the mechanical mode q̂ = (b̂ +
b̂†)/

√
2, and p̂ = −i(b̂ − b̂†)/

√
2, the time evolution of the

mean values in Eq. (4) can be rewritten as

d

dt
〈â1〉 = −(i�1 + κ1)〈â1〉 + i

√
2g〈â1〉〈q̂〉 − iJ〈â2〉 + E1(t ),

d

dt
〈â2〉 = −(i�2 + κ2)〈â2〉 − i

√
2g〈â2〉〈q̂〉 − iJ〈â1〉 + E2(t ),

d

dt
〈p̂〉 = −ωm〈q̂〉 +

√
2g|〈â1〉|2 −

√
2g|〈â2〉|2 − γm〈p̂〉,

d

dt
〈q̂〉 = ωm〈p̂〉 − γm〈q̂〉. (8)

In general, Eq. (8) is nonlinear and difficult to find the
exact solutions directly. However, when the system is far
away from instabilities and multistabilities [67,79,81], the
gently modulated field can be regard as a perturbation term.
Therefore, the asymptotic solutions of the mean values are
expected to have the same periodicity τ of the modulated field
Ej (t + τ ) = Ej (t ). In particular, it is reasonable to perform
a double Fourier expansion for the mean value 〈ô(t )〉 in the
power of the optomechanical-coupling constant

√
2g, i.e.,

〈ô(t )〉 =
∞∑

l=0

∞∑
n=−∞

on,l ein�t (
√

2g)l . (9)

Correspondingly, the periodically modulated amplitude
Ej (t ) ( j = 1, 2) can be expressed as

Ej (t ) =
∞∑

n=−∞
Ej,nein�t , (10)

where � = 2π/τ is the fundamental modulation frequency.
By substituting Eqs. (9) and (10) into Eq. (8), we can get the
time-independent coefficients on,0, given by

qn,0 = 0, pn,0 = 0,

a0,0
1 = (κ2 + i�2)E1,0 − iJE2,0

J2 + (κ1 + i�1)(κ2 + i�2)
,

a0,0
2 = (κ1 + i�1)E2,0 − iJE1,0

J2 + (κ1 + i�1)(κ2 + i�2)
,

a±1,0
1 = e∓iϕ2

{
[κ2 + i(�2 ± �)]E1,∓1e∓iϕ − iJE2,∓1

}
J2 + [κ1 + i(�1 ± �)][κ2 + i(�2 ± �)]

,

a±1,0
2 = e∓iϕ2

{
[κ1 + i(�1 ± �)]E2,∓1 − iJE1,∓1e∓iϕ

}
J2 + [κ1 + i(�1 ± �)][κ2 + i(�2 ± �)]

, (11)

where ϕ = ϕ1 − ϕ2 is the phase difference between the two
modulated lasers. The zeroth-order perturbation (l = 0) with
respect to

√
2g is given by an,0

j = 0 for n 
= 0,±1. Also, we
can get the following recursive relations of the coefficients on,l

for l � 1:

pn,l = in� + γm

ωm
qn,l ,

qn,l = ωm

l−1∑
k=0

∞∑
m=−∞

(
am,k

1

)∗
an+m,l−k−1

1 − (
am,k

2

)∗
an+m,l−k−1

2

ω2
m + (in� + γm)2

,

an,l
1 = i

l−1∑
k=0

∞∑
m=−∞

am,k
1 qn−m,l−k−1 − Jan,l

2

κ1 + i(�1 + n�)
,

an,l
2 = −i

l−1∑
k=0

∞∑
m=−∞

am,k
2 qn−m,l−k−1 + Jan,l

1

κ2 + i(�2 + n�)
. (12)

By truncating the series to the terms with j � 10 and n =
−1, 0, 1, we find that the obtained analytical approximations
for the asymptotic mean values 〈ô(t )〉 exhibit excellent con-
sistency with the numerical results. This is further confirmed
by comparing the time evolution of the mean values of the
cavity fields by truncating the series at l = 10 in Eq. (12) with
those for the case of l � 12, which is not shown here. Thus,
it becomes convenient to evaluate the linearized quantum
dynamics with a good enough degree of accuracy by using
the truncated Fourier expansions in Eq. (9). In order to make
the following results within experimental realizations, we
use the parameters from the state-of-the-art experiments
[27,67]: L = 25 mm, m = 150 ng, F = 1.4 × 104, Q =
ωm/γm = 105, ωm = 2π × 106 Hz, κ = 2π × 215 kHz, T =
0.1 K, and λ = 1064 nm. Additionally, the two cavities are
driven under red-sideband resonance with �1 = �2 = ωm

with a small sinusoidal modulation frequency being �/ωm =
2.

The time evolution of the mean values n1(t ) = 〈â†
1(t )â1(t )〉

(red solid lines) and n2(t ) = 〈â†
2(t )â2(t )〉 (blue solid line) for

the different phase difference ϕ = 0, 0.4π , π , and −0.4π

is shown Fig. 2. It indicates that the results of numerical
simulations (solid lines) for the time evolution of the mean
values are consistent with those of analytical results in the
long-time limit, which further verifies the accuracy and rea-
sonability of our discussions. Specifically, in Fig. 2(a) we see
that in the case of symmetric modulations with their ampli-
tudes of E1(t ) = E2(t ) and the red-sideband resonance �1 =
�2 = ωm, the asymptotic periodic evolution of the cavity
field n1(t ) exhibits the limit-cycle oscillation and synchro-
nizes with the field n2(t ), which agrees well with the results
shown in Refs. [79,81,82]. The synchronized evolutions of
the two classical fields n j (t ) = 〈â†

j (t )â j (t )〉 ( j = 1, 2) can be
illustrated by the expressions in Eqs. (11) and (12) in detail,
which are given by

qn,0 = pn,0 = 0,

a0,0
1 = a0,0

2 = κ + iωm − iJ

J2 + (κ + iωm)2 E1(2),0,

a±1,0
1 = a±1,0

2 = κ + i(ωm ± �) − iJ

J2 + [κ + i(ωm ± �)]2 E1(2),∓1(t )e∓iϕ2 ,

pn,l = qn,l = an,l
1 = an,l

2 = 0. (13)
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（d）φ = -0.4�（c） φ = �

（b）φ = 0.4�（a） φ = 0�
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FIG. 2. (a)–(d) Time evolution of the mean values of the cavity
fields n1(t ) = 〈â†

1(t )â1(t )〉 (red solid lines) and n2(t ) = 〈â†
2(t )â2(t )〉

(blue solid lines) for different phases ϕ: (a) ϕ = 0, (b) ϕ = 0.4π ,
(c) ϕ = π , and (d) ϕ = −0.4π . All the lines are based on the nu-
merical solutions with Eq. (8) and the markers correspond to the
analytical solutions Eqs. (11) and (12). Other parameters are J/κ =
1, P1,0 = P2,0 = 10 mW, P1,±1 = P2,±1 = 2.2 mW, and κ1 = κ2 = κ .

Furthermore, the synchronized behaviors of the fields n1(t )
and n2(t ) are remarkably dependent on the phase difference ϕ.
The synchronized state can be broken when the phase differ-
ence ϕ is not equal to zero, as demonstrated in Figs. 2(b)–2(d).
If the phase difference is set as ϕ = π in Fig. 2(c), n1(t ) and
n2(t ) oscillate in an antiphase synchronization state with a
period of τ = 2π/�. In addition, it is shown that the maxi-
mum value of n1(t ) is greater than that of n2(t ) at ϕ = 0.4π in
Fig. 2(b), while it is smaller than that of n2(t ) at ϕ = −0.4π in
Fig. 2(d). Therefore, the comparison of these figures implies
that the synchronized state and their oscillating strengths of
n1(t ) and n2(t ) can be flexibly controlled by adjusting the
phase difference ϕ.

IV. TEMPORAL NONRECIPROCAL PHOTON
TRANSMISSION

Now, we shall investigate the temporal nonreciprocal trans-
mission in the three-mode optomechanical systems under
the periodical drivings of the amplitude-modulated lasers.
Without loss of generality, we assume that the optomechan-
ical coupling with the forward input â1,in and that with the
backward input â2,in are identical: κ1 = κ2. We neglect the
cavity intrinsic loss and consider the case of overcoupled
cavities with κex, j = κ j, ( j = 1, 2). Based on the standard
input-output relation [95], the amplitude of the output field
δâ j,out is related to the corresponding cavity field δâ j as
follows: δâ j,out = √

2κ jδâ j − δâ j,in, ( j = 1, 2). According to
Eq. (6), the output amplitude at the â2 port is described by
δâ2,out = √

2κ2δâ2 in the case of the forward photon trans-
mission from â1 to â2 (â1,in 
= 0 and â2,in = 0). Similarly,
the output amplitude at the â1 port is given by δâ1,out =√

2κ1δâ1 for the backward transmission from â2 to â1

(â1,in = 0 and â2,in 
= 0). Accordingly, transmissions coeffi-
cients in the forward and backward directions are defined as
T1→2 = 2κ2|δâ2/â1,in|2 and T2→1 = 2κ1|δâ1/â2,in|2, respec-
tively.

To show the temporal nonreciprocity between the two
optical modes â1 and â2, we plot the transmissions coef-
ficients versus the normalized time t/τ for the different
powers of modulated driving laser P1,±1 = P2,±1 = 2.2, 2.4,
and 2.6 mW with a fixed zeroth-order modulated laser P1,0 =
P2,0 = 10 mW in Fig. 3, where the red and blue curves cor-
respond to the transmission coefficients of T1→2 and T2→1,
respectively. We find that there exists a temporal nonrecip-
rocal transmission between â1 and â2, which periodically
oscillates with time. It is shown in Fig. 3(a) for P1,±1 =
P2,±1 = 2.2 mW that the amplitude of T1→2 ≈ 1.6 is larger
than T2→1 ≈ 0.32 around t = 50τ . As the strength of the
powers of the modulated driving lasers increases, the tempo-
ral nonreciprocity is more effective. In Fig. 3(b) for P1,±1 =
P2,±1 = 2.2 mW, we can get that the amplitude of T1→2 ≈ 6.8
is much larger than T2→1 ≈ 0.92 within the steady oscillation
region.

On the other hand, the transition from an initial stage to a
steady oscillation with the fixed amplitude relies on the pow-
ers of the modulated driving lasers. For example, it is shown
from the insets in Fig. 3(a) for P1,±1 = P2,±1 = 2.2 mW that
the oscillation amplitude of the transmission coefficient in-
creases up to a maximal value, after which it quickly decreases
to a steady-state oscillation with a small amplitude. However,
it is shown in Fig. 3(b) for P1,±1 = P2,±1 = 2.4 mW that the
nonreciprocal oscillation amplitude gently becomes larger in
the initial stage of time evolution, and then it reaches the
steady oscillation with a fixed amplitude. When the power
of the modulated driving lasers becomes larger, shown in
Fig. 3(c) for P1,±1 = P2,±1 = 2.6 mW, the nonreciprocal os-
cillation amplitude quickly increases and remains at the steady
oscillation.

In Figs. 3(a)–3(c), we consider the dependence of the
temporal nonreciprocity on the first-order modulated laser
with a fixed zeroth-order laser. Now, we shall exhibit the
effects of the strength of the zeroth-order laser on the
temporal nonreciprocal transmission in the case of a fixed
first-order modulated laser, which are illustrated in Fig. 4.
From Figs. 4(a)–4(c) with different powers of the zeroth-order
laser P1,0 = P2,0 = 8, 9, and 10 mW with the fixed first-order
modulated laser, we can see that the oscillation maximum
values of the transmission coefficient T1→2 increase while
those of the coefficient T2→1 decrease with the zeroth-order
laser P1,0, which implies that the zeroth-order laser will make
the temporal nonreciprocity more effective. Subsequently, we
consider the case of the fixed strength ratio of the first-order
modulated laser to the zeroth-order laser, i.e., P1,±1/P1,0 or
P2,±1/P2,0. It is shown in Figs. 5(a)–5(c) that the temporal
nonreciprocity becomes more effective as the zeroth-order
laser P1,0 increases.

Now we consider the asymmetric-driven case where P1,0 
=
P2,0, P1,±1 
= P2,±1. In Fig. 6, we plot the transmission co-
efficients versus the normalized time t/τ when the system
is driven by asymmetric-driven lasers. It is found that the
temporal nonreciprocity behaves in different patterns when
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FIG. 3. The temporal nonreciprocal transmission coefficients T1→2 (red solid curves) and T2→1 (blue solid curves) for different power P1 of
the modulation driving laser: (a) P1,±1 = P2,±1 = 2.2 mW, (b) P1,±1 = P2,±1 = 2.4 mW, and (c) P1,±1 = P2,±1 = 2.6 mW. The insets show the
corresponding temporal nonreciprocal transmission in the long-time limit t/τ ∈ [0, 200]. Other parameters are the same as in Fig. 2 except for
ϕ = 0.4π , P1,0 = P2,0 = 10 mW, and J/κ = 1.

the system is asymmetrically driven by the lasers. Following
the comparison of Figs. 6(a)–6(c) where P1,0 = 9.2, 9.5, and
9.8 mW with fixed P2,0 = 10 mW, one can see that the max-
imal transmission in the steady oscillating regime increases
with the zeroth-order driving laser and its time to reach the
steady regime becomes longer. On the other hand, the trans-
mission takes on contrary behaviors when the modulated laser
P1,±1 becomes stronger with the modulated laser P2,±1 being
fixed at 2.4 mW, which are shown in Figs. 6(d)–6(f).
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FIG. 4. The temporal transmission coefficients T1→2 (red solid
curves) and T2→1 (blue solid curves) at a fixed first-order modulated
laser P1,±1 = P2,±1 = 2.4 mW with different powers of the zeroth-
order modulated laser: (a) P1,0 = P2,0 = 8 mW, (b) P1,0 = P2,0 =
9 mW, and (c) P1,0 = P2,0 = 10 mW. Other parameters are the same
as in Fig. 2 except ϕ = 0.4π .

It is well known that the optomechanically induced
nonreciprocity can be generated by the optomechanical-
coupling interaction and becomes stronger with the effective
optomechanical-coupling interaction enhanced by the driving
lasers [34]. This is confirmed by the fact that the transmission
coefficients increase with the power P1,0 or P2,0, which is
shown in Figs. 4, 5, and 6(a)–6(c). It takes longer time to reach
the larger saturated value (the oscillation maximal value) of
the transmission coefficient, shown in Figs. 6(a)–6(c). On the
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FIG. 5. The temporal transmission coefficients T1→2 (red solid
curves) and T2→1 (blue solid curves) at a fixed ratio P1,±1/P1,0 =
P2,±1/P2,0 = 0.24 with different power of driving laser: (a) P1,0 =
P2,0 = 8 mW, (b) P1,0 = P2,0 = 9 mW, and (c) P1,0 = P2,0 = 10 mW.
Other parameters are the same as in Fig. 2 except for ϕ = 0.4π .
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FIG. 6. The temporal transmission coefficients T1→2 (red solid curves) and T2→1 (blue solid curves) for different powers of the zeroth-order
driving lasers: P1,0 = 9.2, 9.5, and 9.8 mW in (a)–(c) with P1,±1 = P2,±1 = 2.4 mW and P2,0 = 10 mW, respectively. The temporal transmission
coefficients for different powers of the modulated lasers are P1,±1 = 2.5, 2.6,and 2.8 mW in (d)–(f) with P2,±1 = 2.4 mW and P1,0 = P2,0 =
10 mW, respectively. Other parameters are the same as those in Fig. 2 except for ϕ = 0.4π .

other hand, it is shown in Figs. 6(d)–6(f) that the saturated
value of the transmission coefficient decreases with the power
P1,±1 of the modulated laser, in which it takes shorter time to
reach the saturated value. Combining the effects of the powers
of the driving lasers and modulated lasers on the transition
from an initial stage to a steady oscillation, which play op-
posite roles in the transition time, the transition time is only
determined by the fixed ratio Pj,±1/Pj,0 of the power of the
driving laser to that of the modulated laser. This is illustrated
in Fig. 5, in which the transition time remains unchanged at a
fixed ratio even for different powers of driving and modulated
lasers.

V. DEPENDENCE OF TEMPORAL NONRECIPROCAL
PHOTON TRANSMISSION ON PHASE DIFFERENCE

Now, we consider the dependence of the temporal non-
reciprocal photon transmission on the phase difference ϕ

between the two modulated lasers. It is shown in Fig. 7 that
the transmissions coefficients T1→2 and T2→1 evolve within
a given time interval t/τ ∈ [560, 570] for different phase
differences: ϕ = 0.14π (2π − 0.14π ), 0.28π (2π − 0.28π ),
and 0.42π (2π − 0.42π ). It is clearly seen that the maxi-
mal amplitudes of the temporal nonreciprocal transmissions
T1→2 and T2→1 strongly rely on the phase difference ϕ. As
illustrated by respective red curves in Figs. 7(a)–7(c), the
forward transmission T1→2 ≈ 1.9 (red curve) for ϕ = 0.28π

in Fig. 7(b) is obviously larger than T1→2 ≈ 0.86 (red curve)
for ϕ = 0.14π . Also, it is shown that T1→2 ≈ 13.2 (red
curves) for ϕ = 0.42π in Fig. 7(c) is remarkably larger than

T1→2 ≈ 1.9 (red curve) for ϕ = 0.28π in Fig. 7(b). The com-
parison of Figs. 7(a)–7(c) indicates that the temporal photon
nonreciprocity becomes more effective with the phase dif-
ference. And the optimal nonreciprocal photon transmission
can be realized in the case shown in Fig. 7(c), where the
forward photon transmission T1→2 becomes larger than the
backward transmission T2→1 within the whole given time in-
terval. Meanwhile, the forward transmission T1→2 ≈ 13.2 is
greatly stronger than the backward transmission T2→1 ≈ 2.1.

On the other hand, the dominant direction of the temporal
nonreciprocal photon transmission can be switched by mod-
ulating the phase difference ϕ → 2π − ϕ. Specifically, the
forward photon propagation (T1→2 > T2→1) is dominant over
the backward photon propagation when the phase difference
is located within the regime of 0 < ϕ < π , while the back-
ward dominant propagation (T2→1 > T1→2) occurs when the
phase difference is modulated in the regime π < ϕ < 2π .
For examples, the forward photon transmission T1→2 becomes
larger than the backward transmission T2→1 in Fig. 7(c) for
ϕ = 0.42π , while the backward transmission T2→1 is larger
than the forward photon transmission T1→2 in Fig. 7(f) for
ϕ = (2 − 0.42)π .

Additionally, by comparing the temporal nonreciprocities
shown in Figs. 7(a)–7(c) for ϕ = 0.14π, 0.28π , and 0.42π

with those in Figs. 7(d)–7(f) for ϕ = (2 − 0.14)π, (2 −
0.28)π , and (2 − 0.42)π , respectively, we can see that the
temporal photon nonreciprocity for the phase difference ϕ is
exchange symmetric with that in the case of the phase 2π − ϕ.
This can be further demonstrated by the temporal photon
transmission shown in Fig. 8, which depicts the temporal
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FIG. 7. The temporal transmission coefficients T1→2 (red solid curves) and T2→1 (blue solid curves) for the different phase difference ϕ:
(a) ϕ = 0.14 π , (b) ϕ = 0.28 π , (c) ϕ = 0.42 π , (d) ϕ = (2 − 0.14) π , (e) ϕ = (2 − 0.28) π , and (f) ϕ = (2 − 0.42) π . Other parameters are
the same as in Fig. 2 except for P1,±1 = P2,±1 = 2.4 mW and P1,0 = P2,0 = 10 mW.

transmission coefficients T1→2 and T2→1 as functions of the
phase ϕ/π and the times t/τ . Also, we can realize another
temporal feature that the dominant photon nonreciprocities in
the forward and backward directions are commutative with
time evolving, which is shown in Fig. 9.

The isolation parameter R = 10 log10[T1→2/T2→1] is
mainly determined by the ratio of the transmission coeffi-
cients in two opposite directions. The photon nonreciprocity is
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φ/ �0 21.510.5
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T�→�

15
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FIG. 8. The temporal transmission coefficients T1→2 and T2→1 as
functions of the phase ϕ/π and the time t/τ . Other parameters are
the same as those in Fig. 2.

produced if R 
= 0 or T1→2(t ) 
= T2→1(t ). The nonreciprocal
photon transmission can be described by only the isolation
parameter [96–98]. Next, we compare the effects of periodic
and aperiodic pump modulations on the optical nonreciprocity
by calculating time evolution of the isolation rate R in Fig. 10.
It is evident that the isolation rate undergoes oscillations over
time in the steady regime when the system is subjected to a
periodically modulated laser with (� 
= 0), while the rate is
steady in the case of aperiodic modulation (� = 0), which are
shown by the red and blue solid curves in Fig. 10, respectively.
Also, it is shown that the isolation rate in the presence of
periodic modulation (� 
= 0) becomes larger than that in the
case of aperiodic modulation.

On the other hand, the isolation parameter R is used to
illustrate the dependence of the optical nonreciprocity on the
modulation frequencies of the driving lasers. We plot the
time evolution of the isolation rate for different modulation
frequencies in Fig. 11. When the modulation frequencies of

t/τ 570569568567

T�
→

� 
&

 T
�→

�

0.19

0.08

FIG. 9. The time evolution of the temporal transmission coef-
ficients T1→2 (red solid curves) and T2→1 (blue solid curves) for
J/κ = 2, ϕ = π . Other parameters are the same as those in Fig. 2.
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FIG. 10. The scaled isolation parameter R as a function of time.
Periodic modulation (red curve) can lead to a more significant iso-
lation rate compared to the absence of periodic modulation with
� = 0 (blue curve). Other parameters are the same as in Fig. 2
in the main text except for ϕ = 0.42π , P1,0 = P2,0 = 10mW, and
P1,±1 = P2,±1 = 2.4mW.

the two driving lasers are different, the isolation rate collapses
and revives with the periods of t = 25τ and 50τ , which are
respectively shown in Figs. 11(a) and 11(b). However, the
isolation rate periodically oscillates in the case of two iden-
tical frequencies of the modulated lasers, which is shown in
Fig. 11(c). These dynamical behaviors are remarkably analo-
gous to the entanglement beating in a cavity optomechanical
system generated by the interference between two waves with
slightly different frequencies [80]. Additionally, it is found
that the two modulated driving fields with the same frequen-
cies can significantly improve the temporal nonreciprocity

Ω�/Ω	 = 0.98

Ω�/Ω	 = 0.96

(c)

(b)

(a)
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FIG. 11. The time evolutional isolation rate R for different
modulation frequencies of the driving lasers: (a) �2/�1 = 0.96,
(b) �2/�1 = 0.98, and (c) �2/�1 = 1. Other parameters are the
same as in Fig. 2 except for ϕ = 0.42π , P1,0 = P2,0 = 10 mW,
P1,±1 = P2,±1 = 2.4 mW, and �1 = �.

with an increase of the maximum value R = 42, as shown
in Fig. 11(c).

VI. INTERPRETATION OF TRANSMISSION
NONRECIPROCITY

In the above discussion, we have studied the time-
dependent nonreciprocal responses by numerical simulation
of the output field without any approximation. Now we
provide analytical findings to interpret the nonreciprocal
transmission behaviors. According to Eq. (9), the cavity fields
â1 and â2 to the zeroth order of g can be approximately written
as

〈â j (t )〉 = a0,0
j + a+1,0

j ei�t + a−1,0
j e−i�t , (14)

where j = 1, 2 and we have omitted the higher-order terms
for n � 2. Correspondingly, the effective optomechanical cou-
pling strength can be effectively expanded as [76,80]

Gj (t ) = Gj,0 + Gj,+1e−i�t + Gj,−1ei�t , (15)

where Gj,k = ( 1√
2

)
∑∞

l=0(
√

2g)l+1a−k,l
j , with k = −1, 0,+1.

The cavity is driven in resonance with the red sideband
�1 = �2 ≈ ωm, and the modulated frequency is set as � =
2ωm. By transforming the variables as δ̃b̂ = δb̂eiωmt , δ̃â1 =
δâ1eiωmt , and δ̃â2 = δâ2eiωmt in the interaction picture at the
mechanical frequency ωm, the corresponding linearized quan-
tum Langevin equations in Eq. (5) read

d

dt
δ̃b̂ = −γmδ̃b̂ + iG1,+1δ̃â

†
1 + iG∗

1,0δ̃â1

− iG2,+1δ̃â
†
2 − iG∗

2,0δ̃â2 +
√

2γm
˜̂bin,

d

dt
δ̃â1 = iδδ̃â1 − κ1δ̃â1 + iG1,0δ̃b̂ + iG1,+1δ̃b̂

†

− iJ δ̃â2 +
√

2κ1̃â1,in,

d

dt
δ̃â2 = −iδδ̃â2 − κ2δ̃â2 − iG2,0δ̃b̂ − iG2,+1δ̃b̂

†

− iJ δ̃â1 +
√

2κ2̃â2,in. (16)

We can obtain the effectively linearized Hamiltonian cor-
responding to Eq. (16), which is given by (here h̄ = 1)

Ĥeff = − δδ̃â
†
1δ̃â1 + δδ̃â

†
2δ̃â2 + ωmδ̃b̂

†
δ̃b̂

+ J (δ̃â
†
1δ̃â2 + δ̃â1δ̃â

†
2) − (G1,0δ̃â

†
1δ̃b̂ + G∗

1,0δ̃â1δ̃b̂
†
)

+ (G2,0δ̃â
†
2δ̃b̂ + G∗

2,0δ̃â2δ̃b̂
†
)−|G1,+1|(δ̃â

†
1δ̃b̂

† + δ̃â1δ̃b̂)

+ |G2,+1|(δ̃â
†
2e−iφδ̃b̂

† + δ̃â2δ̃b̂eiφ ), (17)

where φ = φ2 − φ1, φ1 = arg[G1,+1], and φ2 = arg[G2,+1].
The phase of φ1 and φ2 can be controlled by tuning the phases
ϕ1(2) of two periodically modulation driving fields. Actually,
the phases of φ1 and φ2 have been absorbed by redefining

the operators δ̃âi and δ̃b̂, and only the phase difference φ

between them has physical effects. Similar situations have
been extensively studied in cavity optomechanical systems
[46,50–52,59].
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It is seen that the terms with Gj,−1 ( j = 1, 2) and even
higher-frequency components are far from the cavity reso-
nance, thus the temporal transmission nonreciprocity of the
system will be mainly determined by the two driving com-
ponents with Gj,0 and Gj,+1. Specifically, in the case of
resonance with the red-sideband resonance � j ≈ ωm, there

exists the beam-splitter-like part of δ̃â
†
j δ̃b̂ + δ̃â j δ̃b̂

†
and the

photon-phonon pair generation one δ̃â
†
j δ̃b̂

† + δ̃â j δ̃b̂ to dom-
inate the evolution of the system. The interference between
the direct coupling of the two cavities and the optomechanical

coupling of the beam-splitter-like part bridged by the mechan-
ical mode leads to the appearance of photon nonreciprocity
[34,35], while the photon-phonon pair generation part pro-
duces the directional amplification [36,37].

This interference can be shown by the dependence of
the photon transmission on the phase difference φ between
the effective optomechanical coupling probabilities G1,+1

and G2,+1. In terms of the transmission elements T1→2 =
2κ2|δâ2/â1,in|2 and T2→1 = 2κ1|δâ1/â2,in|2 discussed in the
previous section, we get the transmission ratio in the stale
regime, which is given by

T1→2

T2→1
=

∣∣∣∣∣ |G1,0|2[ϒ4 − iJ (Jγm + 2|G1,+1G2,+1| sin φ)] + ϒ2{|G1,+1G2,+1| cos φ + i[Jγm + |G1,+1G2,+1| sin φ]}
|G1,0|2[ϒ4 − iJ (Jγm − 2|G1,+1G2,+1| sin φ)] + ϒ2{|G1,+1G2,+1| cos φ + i[Jγm − |G1,+1G2,+1| sin φ]}

∣∣∣∣∣
2

, (18)

where ϒ1 = 2J|G1,+1G2,+1| cos φ + |G1,+1|2(δ + iκ1) − |G2,+1|2(δ − iκ1) − iγm(J2 + δ
2 + κ2

1 ), ϒ2 = ϒ1 − 2iκ1|G1,0|2, ϒ3 =
(2J + iκ1)(|G1,+1|2 + |G2,+1|2) + δ(|G1,+1|2 − |G2,+1|2) − iγm(δ

2 + κ2
1 ), and ϒ4 = 2|G1,0|2(J + iκ1) − ϒ3. Without loss of

generality, it is assumed that G1,0 = G2,0 in the case of symmetric modulations with the red-sideband resonance. If the phase
difference is given by φ = π/2, we have

T1→2

T2→1
=

∣∣∣∣∣ |G1,0|2[ϒ4 − iJ (γmJ + 2|G1,+1G2,+1|)] + iϒ2(Jγm + |G1,+1G2,+1|)
|G1,0|2[ϒ4 − iJ (γmJ − 2|G1,+1G2,+1|)] + iϒ2(Jγm − |G1,+1G2,+1|)

∣∣∣∣∣
2

. (19)

For the phase difference φ = −π/2, we get

T1→2

T2→1
=

∣∣∣∣∣ |G1,0|2[ϒ4 − iJ (γmJ − 2|G1,+1G2,+1|)] + iϒ2(Jγm − |G1,+1G2,+1|)
|G1,0|2[ϒ4 − iJ (γmJ + 2|G1,+1G2,+1|)] + iϒ2(Jγm + |G1,+1G2,+1|)

∣∣∣∣∣
2

. (20)

In Fig. 12, we plot the analytical result (green solid line)
of the steady transmission ratio T1→2/T2→1 and the numer-
ical one (purple solid lines) of the temporal transmission
ratio. It is shown that when the temporal transmission ratio
reaches its stable regime, the analytical result coincides with
the envelope of the numerical results (see green curve in
Fig. 12). The nonreciprocal behaviors shown in the above

T�
→

� 
/ T

�→
� 4

t/τ
100 500400300200

2

6

0

FIG. 12. Temporal evolution and steady value of the transmis-
sion ratio T1→2/T2→1. The green (purple) solid lines indicate the
analytical steady solutions (numerical simulations) for the phase
differences φ = 0.5 π . Other parameters are the same as those in
Fig. 2 except for P1,±1 = P2,±1 = 2.4 mW, P1,0 = P2,0 = 10 mW, and
δ/ωm = 0.

discussions can be explained by the interference between
the direct coupling of the two cavities and the optomechan-
ical couplings, which are demonstrated by the terms with
Jγm ± |G1,+1G2,+1| and Jγm ± 2J|G1,+1G2,+1| in Eqs. (19)
and (20). When the phase difference is set as φ = π/2, the
constructive interference between the direct and optomechani-
cal couplings, as shown by the terms with Jγm + |G1,+1G2,+1|
and Jγm + 2J|G1,+1G2,+1| in the numerator of Eq. (19), leads
the photon propagation from the cavity â1 to â2 dominant
over that from the cavity â2 to â1. Correspondingly, the de-
structive interference between the two couplings, as described
by the terms Jγm − |G1,+1G2,+1| and Jγm − 2J|G1,+1G2,+1|
in the denominator of Eq. (19), makes the photon propaga-
tion from the cavity â2 to â1 dominant over that from the
cavity â1 to â2. Therefore, we can achieve the temporal non-
reciprocal photon transmission and directional amplification
in our gently optomechanical system by flexibly modulat-
ing the phase difference ϕ, which can be shown in Figs. 7
and 8.

VII. CONCLUSION

In conclusion, we have theoretically studied the tempo-
ral nonreciprocal photon transmission in gently modulated
three-mode optomechanical systems, in which the two optical
modes are simultaneously driven by independent periodically
amplitude-modulated lasers. We find that in such a system
one can readily achieve the temporal nonreciprocal photon
transmission by using the experimentally existing technique.
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By elaborately tuning the strengths of modulation lasers, one
can effectively improve the nonreciprocal optical transmission
and shorten the convergence time to reach an asymptotic os-
cillating regime. Additionally, it is shown that the degrees of
temporal nonreciprocity remarkably rely on the laser ampli-
tude and the phase difference. Therefore, the optomechanical
system under the periodically modulated-amplitude driving
provides a versatile platform for quantum information pro-
cessing.
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APPENDIX: THE EFFECTIVE HAMILTONIAN OF AN
OPTOMECHANICS: A MEMBRANE INSIDE A CAVITY

As shown in Fig. 1(b), we assume the suspended mem-
brane with a very small displacement x around its equilibrium
position between the two cavities with independent optical
modes â1 and â2. If the membrane moves to the left, the fre-
quency of the â1 cavity induced by the mechanical membrane
decreases, e.g., −h̄gâ†

1â1(b̂ + b̂†), while that of the â2 cavity
increases, i.e., +h̄gâ†

2â2(b̂ + b̂†). If the membrane moves to
a certain side of the cavity, the displacement of one optical
cavity â1 is decreased (L − x), while that of the other cav-
ity â2 is increased (L + x) and vice versa [91]. Thus, the
Hamiltonian of this three-mode system can be represented

by

Ĥ0 = h̄(ωc1 + x∂ωc1/∂x)â†
1â1 + h̄(ωc2 + x∂ωc2/∂x)â†

2â2

+ h̄ωmb̂†b̂ + h̄J (â†
1â2 + â†

2â1), (A1)

where ωci (i = 1, 2) is the resonance frequency of the corre-
sponding cavities with the suspended membrane in the middle
(x = 0). Here, only the linear order frequency shift remains
since x � L. For simplicity, the resonant frequencies of the
two cavities are ωn = nπc/L, where the mode number is
n = 2L/λn with λn = 2πc/ωn [99,100]. Then, the frequencies
of the two cavities are expanded to the linear order as

ωc1(x) = 2πc

λ
= nπc

L(1 − x/L)
≈ ωc

(
1 + x

L

)
, (A2)

ωc2(x) = 2πc

λ
= nπc

L(1 + x/L)
≈ ωc

(
1 − x

L

)
. (A3)

The Hamiltonian of the three-mode systems is rewritten as

Ĥ0 = h̄ωc

(
1 + x

L

)
â†

1â1 + h̄ωc

(
1 − x

L

)
â†

2â2 + h̄ωmb̂†b̂

+ h̄J (â†
1â2 + â†

2â1)

= h̄(ωc − g0x̂)â†
1â1 + h̄(ωc + g0x̂)â†

2â2

+ h̄ωmb̂†b̂ + h̄J (â†
1â2 + â†

2â1), (A4)

where x̂ = √
h̄/mωm(b̂ + b̂†). Thus, the Hamiltonian of the

three-mode optomechanical systems is given by

Ĥ = h̄ωcâ†
1â1 + h̄ωcâ†

2â2 + h̄ωmb̂†b̂ − h̄gâ†
1â1(b̂ + b̂†)

+ h̄gâ†
2â2(b̂ + b̂†) + h̄J (â†

1â2 + â†
2â1), (A5)

where g = g0
√

h̄/mωm. Accordingly, this three-mode op-
tomechanical system, which can be realized in a membrane-
in-the-middle scheme, has been theoretically analyzed
[84–86] and experimentally implemented [87–92].
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tonics, Nat. Photon. 8, 821 (2014).

[4] Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, Ob-
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