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Refined nuclear magnetic octupole moment of 113In and 115In
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The refined values of the magnetic octupole moments of 113In and 115In are obtained by combining high-
precision atomic calculations with the corresponding hyperfine structure (HFS) spectrum. We perform ab initio
calculations of HFS properties for the low-lying states of the In atom using the single- and double-approximated
relativistic coupled-cluster method. The HFS properties includes first-order HFS constants and the second-
order magnetic dipole-magnetic dipole, magnetic dipole-electric quadrupole, and electric quadrupole-electric
quadrupole effects caused by the off-diagonal hyperfine interaction (HFI). Based on our theoretical results, we
reanalyze the previously measurements of hyperfine splitting in the 5p3/2 state of 113In and 115In [T. G. Eck and P.
Kusch, Phys. Rev. 106, 958 (1957)], determining the corresponding hyperfine-structure constants A, B, and C. By
combining these undated HFS constants and our theoretical results, the magnetic octupole moments of 113In and
115In nuclei are extracted to be �(113In) = 0.456(44) μN × b, and �(115In) = 0.447(42) μN × b, respectively.
The refined values of the magnetic octupole moments are about 21% smaller than the previously reported results
by Eck and Kusch [T. G. Eck and P. Kusch, Phys. Rev. 106, 958 (1957)]. Additionally, we also determine the
electric quadrupole moment of 115In nuclei to be Q(115In) = 0.758(12)b by combining our theoretical result and
the measured value for the HFS constant of the 5p3/2 state. Our results are compared with available experimental
and theoretical results.
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I. INTRODUCTION

The nuclear electromagnetic multipole moments are funda-
mental quantities that describe the shape and electromagnetic
distribution of atomic nuclei. It is crucial to have accurate
knowledge of these quantities to better understand nucleon-
nucleon interactions [1–3]. While magnetic dipole moments
and electric quadrupole moments are well known for many
nuclei [4,5], the magnetic octupole moments of many nuclei
remain poorly understood. Although it is theoretically possi-
ble to evaluate these nuclear multipole moments using nuclear
model theory, the accuracy of this approach heavily relies on
the specific nuclear model used. A more model-independent
alternative to determine the electromagnetic multipole mo-
ments of the nucleus is to combine the hyperfine-structure
spectrum with corresponding high-precision atomic or molec-
ular calculations. This method is currently one of the most
accurate ways to determine the quadrupole moment Q and
the octupole moment � of heavy nuclei and unstable nuclei.
In fact, the nuclear quadrupole moment Q of many nuclei
has been determined accurately using this method [5]. With
advancements in spectroscopic techniques and computational
methods, magnetic octupole moments have been determined
using this approach for an increasing number of nuclei, such
as 133Cs [6,7], 135,137Ba+ [8,9], 87Rb [10], and 171Yb [11–13].

Indium (Z = 49) possesses a proton hole in its nuclear
closed shell, making it exhibit rich nuclear properties [14,15].
The stable isotopes 113In and 115In, both having considerable
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high nuclear spin (I = 9/2), offer favorable conditions for
investigating the effects of high-order hyperfine interactions
on hyperfine splitting. In 1957, Eck and Kusch conducted
precise measurements of hyperfine splitting in the 5p3/2 state
of 115In and 113In using the conventional atomic-beam tech-
niques [16]. They determined the hyperfine-structure (HFS)
constants A, B, and C of the 5p3/2 state through a combi-
nation of experimental data and semi-empirical theoretical
analysis. They also reported estimated values for the nu-
clear magnetic octupole moments of 115In and 113In, which
were approximately half of those predicted by the nuclear
single-particle model. In 2009, Gunawardena et al. utilized a
two-step, two-color laser spectroscopy technique to measure
the hyperfine splitting of the 6p3/2 state of 115In [17]. The
corresponding HFS constants A, B, and C of the 6p3/2 state
were also determined. Interestingly, the HFS constant C for
the 6p3/2 state exhibited an opposite sign compared to that of
the 5p3/2 state. It should be noted that Gunawardena et al. did
not consider the correction from second-order effects caused
by the off-diagonal hyperfine interaction. Additionally, there
have been some theoretical and experimental investigations
on the hyperfine structure of indium atoms [18–21], however,
most of these studies focused on the magnetic dipole HFS
constants.

In this work, our focus is on investigating the nuclear
magnetic octupole moments of the 115In and 113In. For this
purpose, we performed ab initio calculations of first- and
second-order HFS constants of 5p1/2,3/2, 6s1/2, and 6p1/2,3/2

states in the In atom using the relativistic coupled-cluster
method at the single and double approximations. Based on our
theoretical findings, we reanalyze the experimental results for
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FIG. 1. Schematic diagram of HFS in 115In for states of 5p3/2

and 6p3/2, where �EFF ′ denotes the energy difference between two
adjacent hyperfine levels determined by experiment [16,17].

the 5p3/2 and 6p3/2 states [16,17], and extract the correspond-
ing HFS constants A, B, and C. By combining these undated
HFS constants and our theoretical results, we are able to deter-
mine the magnetic octupole moments of 115In and 113In nuclei.
To assess the uncertainty of our results, we also compare the
ionization energies, magnetic dipole, and electric quadrupole
HFS constants for the 5p1/2,3/2, 6s1/2, and 6p1/2,3/2 states,
with available experimental and theoretical values. Detailed
numerical results and discussions are presented in Sec. III.
The following Sec. II provides a brief overview of the hyper-
fine structure theory, and compiles the HFS expressions for
the first-order HFS constants and the second-order corrects
caused by the off-diagonal hyperfine interaction. A summary
is given in Sec. IV.

II. THEORETICAL METHODS

The hyperfine interaction between the nucleus and the
electrons causes the fine-energy level EJ of the atom to split
further into hyperfine levels EF , F = I + J, where I, J, and
F are the nuclear, atomic, and total angular momenta. We
take the 5p3/2 and 6p3/2 states of 115In as examples to in-
troduce how to determine the nuclear moment by measuring
and calculating the hyperfine structure of atoms. Figure 1
shows the hyperfine structure of 115In of 5p3/2 and 6p3/2. The
hyperfine interval �EFF ′ = EF − EF ′ can be determined ex-
perimentally, where EF is the hyperfine level of total quantum
number of F . When considering second-order HFI, EF can be
expressed as

EF = EJ + E (1)
F + E (2)

F , (1)

where E (1)
F represents the first-order correction of HFI to the

energy,

E (1)
F = (−1)I+J+F

∑
k

{
F J I
k I J

}

× 〈γ J‖T (k)‖γ J〉〈I‖M (k)‖I〉, (2)

where the operators M (k) and T (k) represent spherical tensors
of rank k (k > 0) in the nuclear and electronic coordinates,
respectively. The upper limit of k is determined both by the
electronic and the nuclear wave functions, subject to both
parity and the angular selection rules. According to these
rules, when k > 2I or k > 2J , the diagonal matrix elements
in Eq. (2) with respect to the quantum numbers I and J must
vanish [12,22]. Thus, for the p3/2 state of 113,115In discussed

in this paper, k is constrained to be k � 3. Consequently, E (1)
F

can be expressed in terms of first-order HFS constants, such as
the magnetic dipole (M1) HFS constant A, electric quadrupole
(E2) HFS constant B, and magnetic octupole (M3) constant C,

E (1)
F = 1

2
KA︸ ︷︷ ︸

M1: k=1

+ 1

2

3K (K + 1) − 4I (I + 1)J (J + 1)

2I (2I − 1)2J (2J − 1)
B︸ ︷︷ ︸

E2: k=2

+ 1

[I (I − 1)(2I − 1)J (J − 1)(2J − 1)]
× {

(5/4)K3

+ 5K2 + K × [−3I (I + 1) × J (J + 1) + I (I + 1)

+J (J + 1) + 3] − 5I (I + 1)J (J + 1)}C︸ ︷︷ ︸
M3: k=3

, (3)

where K = F (F + 1) − I (I + 1) − J (J + 1), and the con-
stants A, B, C are defined as

A = μ

I

〈γ J‖T (1)‖γ J〉√
J (J + 1)(2J + 1)

, (4)

B = 2Q

[
2J (2J − 1)

(2J + 1)(2J + 2)(2J + 3)

]1/2

〈γ J‖T (2)‖γ J〉, (5)

C = �

[
J (2J − 1)(J − 1)

(J + 1)(J + 2)(2J + 1)(2J + 3)

]1/2

〈γ J‖T (3)‖γ J〉,
(6)

where μ, Q, and � are the nuclear magnetic dipole moment,
electric quadrupole moment, and magnetic octupole moment,
respectively. These nuclear moments are proportional to the
corresponding nuclear matrix elements 〈I‖M (k)‖I〉. E (2)

F rep-
resents the second-order correction of HFI to the energy

E (2)
F =

∑
γ ′J ′

1

Eγ J − Eγ ′J ′

∑
k1,k2

{
I J F
J ′ I k1

}{
I J F
J ′ I k2

}

× 〈I‖M (k1 )‖I〉〈I‖M (k2 )‖I〉〈γ J‖T (k1 )‖γ ′J ′〉
× 〈γ J‖T (k2 )‖γ ′J ′〉. (7)

Here we keep magnetic dipole and electric quadrupole
contributions, then E (2)

F can be parameterized in terms of
the second-order HFS constants such as magnetic dipole-
magnetic dipole (M1-M1) HFS constant η, magnetic dipole-
electric quadrupole (M1-E2) HFS constant ζ , and electric
quadrupole-electric quadrupole (E2-E2) second-order HFS
constants ξ as

E (2)
F ≈

∑
J ′

∣∣∣∣
{

F J I
k1 I J ′

}∣∣∣∣
2

η

︸ ︷︷ ︸
M1−M1: k1=k2=1

+
∑

J ′

{
F J I
k1 I J ′

}{
F J I
k2 I J ′

}
ζ

︸ ︷︷ ︸
M1−E2: k1=1,k2=2

+
∑

J ′

∣∣∣∣
{

F J I
k1 I J ′

}∣∣∣∣
2

ξ

︸ ︷︷ ︸
E2−E2: k1=k2=2

, (8)
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where

η = (I + 1)(2I + 1)

I
μ2 |〈γ J ′‖T (1)‖γ J〉|2

Eγ J − Eγ J ′
, (9)

ζ = (I + 1)(2I + 1)

I

√
2I + 3

2I − 1

× μQ
〈γ J ′‖T (1)‖γ J〉〈γ J ′‖T (2)‖γ J〉

Eγ J − Eγ J ′
, (10)

ξ = (I + 1)(2I + 1)(2I + 3)

4I (2I − 1)
Q2 |〈γ J ′‖T (2)‖γ J〉|2

Eγ J − Eγ J ′
. (11)

Equation (7) shows that we need to sum over all possible
intermediate states obeying both the parity and the angular
selection rules. Consequently, for M1-M1 and M1-E2 terms,
three distinct J ′ values are feasible, whereas for the E2-E2
term, four possible distinct J ′ values are feasible. Within the
set of the |γ J〉 intermediate states, the primary contribution
arises from neighboring fine-structure levels, i.e., J ′ = J ± 1.
This dominance is due to the significantly small energy de-
nominators involved. In Eqs. (4) to (11), 〈γ ′J ′‖T (k)‖γ J〉 is
the reduced matrix element of the spherical tensor operators
of rank k (k > 0) [22], where γ represents the remaining
electronic quantum numbers, and Eγ J − Eγ J ′ in Eqs. (9) to
(11) represents the interval between two nearby fine-structure
levels obtained from Ref. [23].

With these relationships, we can solve for A, B, and C in
terms of the HFS intervals �EFF ′ , as well as η, ζ , and ξ . The
following expressions are the A, B, and C constants for the
states np3/2:

Anp3/2 = 39

550
�E65 + 64

825
�E54 + 77

1650
�E43 + 1

2970
ηnp3/2

− 2

2475

√
2

5
ζ np3/2 + 1

2750
ξ np3/2 , (12)

Bnp3/2 = 39

55
�E65 − 16

55
�E54 − 77

110
�E43 + 4

165
ηnp3/2

+ 1

110

√
2

5
ζ np3/2 + 7

550
ξ np3/2 , (13)

Cnp3/2 = 21

1100
�E65 − 14

275
�E54 + 7

200
�E43

+ 7

2200

√
2

5
ζ np3/2 − 7

11000
ξ np3/2 . (14)

In Eqs. (12) to (14), all the required �EFF ′ from Refs. [16,17]
as shown in Fig. 1. It also can be seen from Eqs. (12) to
(14) that, to accurately extract the first-order HFS constants
A, B, and C, the second-order HFS constants η, ζ , and ξ

which contain off-diagonal hyperfine matrix elements, need
to be evaluated using atomic structure theory. Subsequently,
once we obtain the HFS constants A, B, and C, we can also
extract the nuclear moments if the diagonal matrix elements
in Eqs. (4) to (6) are provided. In total, the diagonal and
off-diagonal hyperfine matrix elements are needed to obtain
the nuclear moments.

TABLE I. The parameters of the Gaussian basis set, where N is
the size of basis set for each symmetry, and Nc and Nv represent,
respectively, the number of core and virtual orbitals.

s p d f g h i

η0 × 103 1.5 1 2.5 7.5 15 15 15
ξ 1.92 1.91 1.95 2.0 2.0 2.0 2.0
N 40 35 25 20 15 10 10
Nc 6 4 3 1 1 1 1
Nv 23 23 21 19 15 10 10

The single-particle reduced matrix elements of the opera-
tors T (1), T (2), and T (3) are given by

〈κv‖T (1)‖κw〉 = −〈−κv‖C(1)‖κw〉(κv + κw )

×
∫ ∞

0
dr

Pv (r)Qw(r) + Pw(r)Qv (r)

r2

× F (r), (15)

〈κv‖T (2)‖κw〉 = −〈κv‖C(2)‖κw〉

×
∫ ∞

0
dr

Pv (r)Pw(r) + Qv (r)Qw(r)

r3
, (16)

and

〈κv‖T (3)‖κw〉 = −1

3
〈−κv‖C(3)‖κw〉(κv + κw )

×
∫ ∞

0
dr

Pv (r)Qw(r) + Pw(r)Qv (r)

r4
, (17)

where the F (r) in Eq. (15) a magnetization distribution
model of a finite nucleus, and in this case, we are us-
ing a uniform sphere distribution model, and the relativistic
angular-momentum quantum number κ = 	(	 + 1) − j( j +
1) − 1/4, and P and Q are, respectively, the large and small
radial components of the Dirac wave function. The reduced
matrix element

〈κv‖C(k)‖κw〉 = (−1) jv+1/2
√

(2 jv + 1)(2 jw + 1)

×
{

jv k jw
1/2 0 −1/2

}
π (	v, k, 	w ) (18)

satisfies the condition π (	v, k, 	w ) = 1 when 	v + k + 	w is
even, otherwise π (	v, k, 	w ) = 0. In this work, we employ
a finite basis set, composed of even-tempered Gaussian-type
functions expressed as Gi = Nir	+1e−αir2

, to expand the Dirac
radial wave functions P and Q as in Ref. [24], where Ni

is the normalization factor, and αi = αβ i−1, with the two
independent parameters α and β being optimized separately
for each orbital symmetries. Table I lists the Gaussian basis
parameters, where N is the size of basis set for each symmetry,
and Nc and Nv represent, respectively, the number of core and
virtual orbitals. To accurately calculate the matrix elements
in Eqs. (4) to (11), we need to generate the wave function of
the atomic state, which involves solving the electron correla-
tion problem. In the present work, the correlation effects are
investigated using ab init io methods at different levels, includ-
ing the Dirac-Fock (DF) approximation, and linearized and
fully single- and double-excitation relativistic coupled-cluster
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TABLE II. Energy levels of In I in cm−1. EDF denotes the lowest-order Dirac-Fock energy. ELCCSD and ECCSD are the energies obtained using
LCCSD and CCSD approximations, respectively. The values in parentheses shows the relative differences between corresponding calculation
results and experimental values EExpt..

Level EDF ELCCSD ECCSD ESD [18] ESDpT [18] EMRCCSD [19] ECCSD(T) [30] EExpt. [23]

5p1/2 −41460(11.2%) −47006(0.72%) −46742(0.15%) −47061(0.84%) −46189(1.03%) −46804(0.29%) −46581(0.19%) −46670
5p3/2 −39487(11.2%) −44860(0.90%) −44545(0.20%) −44884(0.96%) −44031(0.96%) −44644(0.42%) −44361(0.22%) −44458
6s1/2 −20567(7.76%) −22659(1.62%) −22307(0.04%) −22668(1.66%) −22442(0.65%) −22539(1.08%) −22292(0.02%) −22297
6p1/2 −13972(5.93%) −14957(0.70%) −14841(0.08%) −14943(0.61%) −14833(0.14%) −14896(0.29%) −14819(0.23%) −14853
6p3/2 −13715(5.77%) −14654(0.68%) −14545(0.06%) −14638(0.57%) −14532(0.16%) −14595(0.28%) −14519(0.24%) −14555
7s1/2 −9865 (4.85%) −10459(0.87%) −10370(0.02%) −10451(0.80%) −10381(0.12%) −10077(2.81%) −10368

method, denoted, respectively, by LCCSD and CCSD. The
detailed description of our method can be found in previous
works for Fr, La2+, Ra+, Th3+, and Cs, in Refs. [7,25–29].
In practice, the no-pair Dirac Hamiltonian was set as the
starting point. The Fermi nuclear distribution was employed
to describe the Coulomb potential between electrons and the
nucleus. The virtual orbital with energies smaller than 10 000
a.u., and all the core orbital were included in the correlation
calculations.

III. RESULTS AND DISCUSSION

A. Energies

We calculate the energies of 5p1/2,3/2, 6s1/2, 6p1/2,3/2, and
7s1/2 states in the In atom using different models includ-
ing Dirac-Fock (DF), LCCSD, and CCSD calculations. The
predicted energies labeled as EDF, ELCCSD, and ECCSD, respec-
tively, are listed in Table II. These results are compared with
available theoretical calculations [18,19,30]. The values in
parentheses represent the percentage differences between the
various calculations and the experimental values from NIST
[23] labeled as EExpt.. From Table II, one can easily find the
following. (i) There are noticeable discrepancies between the
energies calculated using DF and CCSD methods, indicating
significant contributions from electron correlation effects that
are not taken into account in DF calculations. The largest
deviation occurs at the 5p1/2,3/2 states, with an approximate
difference of 10%. (ii) The differences between CCSD results
and the experimental values are within 0.2%, demonstrating a
much better agreement compared to the LCCSD results across
all states. This observation suggests that the inclusion of non-
linear terms of the cluster operators is crucial for achieving
highly accurate energy levels. (iii) It is worth noting that
the deviations between the experimental values and our final
results are smaller than those of other theoretical calculations,
further supporting the validity of our calculation.

B. Hyperfine structure constants A

The HFS constants A of 115In at different correlation levels,
including DF, MBPT(3), LCCSD, and full CCSD calcula-
tions, are listed in Table III. The δLCCSD and δCCSD represent
the percentage differences between the calculated ALCCSD,
ACCSD values, and the experimental AExpt. value, respectively.
In addition, the table includes other theoretical results [18–21]
and experimental values [16,17,21] for comparison with our

CCSD results. Table III demonstrates the significance of con-
sidering correlation effects when calculating HFS A. For the
6s1/2, 6p3/2, and 7s1/2 states, the total electron correlation
effect accounts for almost half of the CCSD results. The inclu-
sion of more comprehensive electron correlation effects leads
to results that are closer to the experimental values. With the
exception of 5p1/2 and 6p3/2 states, the CCSD results exhibit
better agreement with experimental values compared to the
LCCSD and MBPT(3) methods. The comparison between
ALCCSD and ACCSD reveals that the contributions of nonlinear
terms are approximately 1% for the 5p1/2, 6p1/2, and 7s1/2

states, while they are around 7% for the 5p3/2, 6s1/2, and
6p3/2 states. This indicates that, even with the same electron
correlation effect, the HFS constant of different states within
an atom depend on it to varying degrees. We recommend the
CCSD values as our final results. By comparing ACCSD with
the corresponding AExpt., we can verify the accuracy of our
calculation. From Table III, it can be observed that δCCSD is
generally within 3%, except for the 6p3/2 state. The difference
between the LCCSD result and the experiment for the 6p3/2

state is about 4%, significantly smaller than the difference
between the CCSD results and the experiment value, which
is 11%. This suggests that higher-order electron correlation
effects need to be further considered to obtain more accurate
calculation results for this state.

Although the present CCSD, LCCSD [18], MRCCSD [19],
CCSD [20], CCSD, and CCSD(T) [21] methods in Table III
are all based on relativistic coupled-cluster-theory, they have
some different treatments for electronic correlation effects.
Our CCSD results for the 5p3/2 and 6p1/2 states exhibit the
closest agreement with experimental values when compared
to other references listed. As for the 6p1/2, 6p3/2, and 7p1/2

states, there are no other theoretical values available, but it is
evident that our results align well with experimental data for
the 6p3/2 and 7p1/2 states.

It is important to note that the magnetic dipole moment
(μ) used in our calculation of the HFS constants A for 115In
is collected from Ref. [31] as 5.5408(2) μN . Conversely,
employing our theory’s A/μ factor combined with the ex-
perimental measurement of AExpt. [16,17] yields an extracted
μ value of 5.5449 μN , which is the average for the 5p1/2,
5p3/2, 6s1/2, and 7s1/2 states. This result agrees with the
adopted value of 5.5408(2) μN , indicating not only the effec-
tiveness of our method, but also the rationale of obtaining the
true nuclear moment value through averaging multiple state
results.

042824-4



REFINED NUCLEAR MAGNETIC OCTUPOLE MOMENT OF … PHYSICAL REVIEW A 109, 042824 (2024)

TABLE III. The HFS constants A (MHz) of 115In at different correlation levels are given. The δ represents the percentage difference
between calculated values and experimental results. The values in brackets are the uncertainties of the recommended values. Some available
ab init io theoretical and experimental results are also listed for comparison. The μ used here is from Ref. [31] as 5.5408(2) μN .

Method 5p1/2 5p3/2 6s1/2 6p1/2 6p3/2 7s1/2

Calculated results at different correlation levels
ADF 1768 267 978 222 36 334
AMBPT(3) 2373 178 1729 254 63 553
ALCCSD 2291 262 1810 260 82 561
ACCSD 2308 245 1689 261 71 527

Other theoretical and experimental results
ASD [18] 2306 262.4 1812 263.2 77.82 544.5
AMRCCSD [19] 2246 274 1736 251 76 727
ACCSD [20] 2256(30) 1611(50) 516(30)
ACCSD [21] 2260(30) 257(15) 1621(50)
ACCSD(T) [21] 2274(25) 253(10) 1645(37)
AExpt. [16] 2281.9504(4) 242.1647(3) 1685.3(6) 541.0(3)
AExpt. [17] 79.33(7)
AExpt. [21] 2282.04(98) 241.98(51) 1684.75(1.05)

Percentage difference between present ALCCSD, ACCSD and the AExpt.

δLCCSD 0.36% 8.2% 7.0% 4.0% 3.2%
δCCSD 1.2% 1.1% 0.21% 11% 2.7%

C. Electric quadrupole moment Q

Under the same theoretical framework used to calculate the
HFS constant A, we also calculate the ratio factor B/Q for
5p3/2 and 6p3/2 states. By combining the measured values of
B in Refs. [16,17], we extract the electric quadrupole moment
Q of the 115In nuclei. Table IV lists the present calculated
B/Q, as well as the Q derived by combining the experimental
BExpt. values, and some other results [21,32–37].

From Table IV, one can see that the 5p3/2 and 6p3/2

states exhibit very strong total correlation effects (CCSD-DF),
which account for about 30% of the total CCSD results. The
nonlinear coupled-cluster terms (CCSD-LCCSD) contribute
small correlation effects, approximately 0.5% and 4.2% of
the total CCSD results for 5p3/2 and 6p3/2 states, respec-
tively. The 5p3/2 state has three experimental BExpt. values,
with the highest accuracy being 449.545(3) MHz reported in
1957 [16]. The value of 450(1.5) MHz reported in 2018 is
very close [21]. However, the latest reported BExpt. in 2022
is 454.2(65) MHz [35], which is almost 1% of difference
with the previous two values. The Q(5p3/2) derived from

these three experimental values are 0.758 b, 0.759 b, and
0.765 b, respectively. Since the reported experimental value
449.545(3) MHz is the most accurate at present, we rec-
ommend the Q(5p3/2) to be 0.758 b. For the 6p3/2 state,
only one measurement BExpt. has been reported, and when
combined with our calculated B/Q, a Q(6p3/2) of 0.775 b is
obtained. The uncertainty enclosed in parentheses for the Q
values represents the combined uncertainty arising from both
experimental measurements and theoretical calculations. It is
evident that theoretical uncertainty predominates, primarily
due to high-order electron correlation effects beyond CCSD,
which are difficult to effective estimate. Therefore, to provide
a conservative estimate, we adopt the methodology used in
our previous work on the assessment of hyperfine structure
constants for 133Cs [7], taking the greater between |(CCSD −
LCCSD)/CCSD| and |(CCSD − DF)/CCSD × 5%| as the
uncertainty. It can be seen that for these two states, the uncer-
tainties of Q are mainly determined by theoretical calculation.
Based on the following reasons, we finally recommend the
value Q(5p3/2) = 0.758(12) b as our recommended value.

TABLE IV. Determination of the 115In nuclear electric quadrupole moment using measured B (MHz) and the calculated B/Q from the
present work. The present B/Q column contains the results of calculations at different correlation levels from this work as well as those from
other ab initio methods in MHz/b. The Q values deduced from other methods are also listed for comparison, where the Q values listed in
other1 are extracted by combining the BExpt. and B/Q of 5p3/2 state, which is the same as the method in present work, while the Q values listed
in other2 are obtained based on some other methods, and some results do not depend on a single state. The uncertainty enclosed in parentheses.

B/Q (MHz/b) BExpt. Q(b)

γ J DF MBPT(3) LCCSD CCSD Other (MHz) Present Other 1 Other 2

5p3/2 415.6 526.7 590.0 593.2(8.9) 583.5 [32] 449.545(3) [16] 0.758(12) 0.772(5) [16,32] 0.770(8) [33]
576(4) [21] 450(1.5) [21] 0.759(12) 0.781(7) [21] 0.76(2) [34]

454.2(65) [35] 0.765(16) 0.789(13) [21,35] 0.78(2) [34]
0.760 [36]

6p3/2 55.43 68.58 84.03 80.64(3.39) 62.5(5) [17] 0.775(34) 0.81 [37]
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First, the experimental value 449.545(3) MHz of B for 5p3/2 is
more accurate than others and is several orders of magnitude
more precise than the B of 6p3/2 state. Second, the theoretical
uncertainty of B/Q in the 6p3/2 state is greater than that in
the 5p3/2 state, through the correlation effect analysis, we can
see that the proportion of nonlinear electron correlation effects
in the 6p3/2 state appears to be approximately an order of
magnitude larger than that observed in the 5p3/2 state. This
observation suggests that the higher-order effects of the 6p3/2

state not considered in present CCSD method may be impor-
tant for the accurate calculation of the B, and this correlation
effect trends of B are similar to the A of 5p3/2 and 6p3/2 in
Table III. Some other results are also listed in Table IV for
comparative purposes. In 1984, Belfrage et al. obtained a Q
value of 0.81 b for 115In nuclei using the observed hyperfine
structure of the atom’s 5s, 7p, and 8p states and an empiri-
cally derived 〈r−3〉 value [37]. Subsequently, a lower value of
0.760 b was proposed based on x-ray data and calculations
on the muonic atom [36]. Density functional theory calcula-
tions on metallic indium yielded Q values of 0.760(20) b and
0.780(20) b depending on the density functional used [34]. In
2002, the Q value was determined as 0.770(8) b by combin-
ing the experimental nuclear quadrupole coupling constants
and electric field gradients calculated at the four-component
CCSD(T) level of theory for four indium halides [33]. This
value was considered as the recommended value of Q for 115In
included in the in the “year-2007” set of nuclear quadrupole
moments updated in 2007 [38]. In 2009, the B/Q value of
583.5 MHz/b [32] calculated by the relativistic Fock-space
CCSD method, together with the experimental BExpt. of the
5p3/2 state [16], yielded a Q value of 0.772(5) b. This value
was subsequently included in the updated “year-2017” nuclear
quadrupole moments set in 2017 as a new recommended value
for 115In. In 2018, using the CCSD method, the quadrupole
moments Q were extracted as 0.781(7) b, using the experi-
mental BExpt. of 450(1.5) MHz [21], and a calculated B/Q
factor of 576(4) MHz/b from Ref. [21]. In 2022, the measured
BExpt. value of 454.2(65) MHz [35] and calculated B/Q from
Ref. [21] yield a Q value of 0.789(13) b. Both two values are
1.2% and 2.2% greater than the recommended value, respec-
tively. Our final Q value of 0.758(12) b is smaller than the
other results, with a difference of 1.8% from 0.772(5). In the
subsequent calculation of the second-order effects, we use the
value Q = 0.772(5) b from Refs. [16,32]. We also investigate
the effects of different Q in the Table IV on the second-order
effects, and find that the effects of thsese different Q were
negligible in the range of uncertainties we considered.

D. Magnetic octupole moment

In this section, we calculate the diagonal and off-diagonal
matrix elements for the 5p3/2 and 6p3/2 states of 115In and
extracted the magnetic octupole moment. It is important to
note that due to the similarity in mass and nuclear spin of 113In
and 115In and only slightly different nucleon distribution, the
resulted Bohr-Weisskopf (BW) effect has negligible influence
on the matrix elements under the current level of accuracy.
Therefore, the calculated matrix elements can also be used for
analyzing the hyperfine interaction of 113In.

TABLE V. C/� in KHz/(μN × b) and off-diagonal matrix el-
ements in MHz from DF, LCCSD, and CCSD calculations. The
uncertainty of matrix elements are given in parentheses.

Level DF LCCSD CCSD Final

C/� in KHz/(μN × b)
5p3/2 2.312 3.274 3.250 3.250(97)
6p3/2 0.309 0.430 0.419 0.419(13)

Off-diagonal matrix elements in MHz
〈5p3/2||O(1)||5p1/2〉 −249 −452 −507 −507(16)
〈5p3/2||O(2)||5p1/2〉 −1039 −1454 −1463 −1463(44)
〈5p3/2||O(1)||6p1/2〉 −88 147 84 84(13)
〈5p3/2||O(2)||6p1/2〉 −367 −517 −511 −511(16)
〈5p3/2||O(1)||6p3/2〉 −306 −638 −566 −566(17)
〈5p3/2||O(2)||6p3/2〉 −339 −479 −474 −474(15)
〈6p3/2||O(1)||6p1/2〉 −32 60 33 33(5)
〈6p3/2||O(2)||6p1/2〉 −134 −203 −195 −195(6)

Table V presents the hyperfine interaction matrix ele-
ments obtained from DF, LCCSD, and CCSD calculations.
It includes the diagonal C/� in KHz/(μN × b) and impor-
tant off-diagonal matrix elements in MHz for the 5p3/2 and
6p3/2 states. Regarding the diagonal matrix elements C/�

for the 5p3/2 and 6p3/2 states, it is observed that the total
correlation effects contribute approximately 29% and 26%
to the total CCSD results, respectively. It is worth mention-
ing that the electron correlation effects from the nonlinear
terms are negative for both states, accounting for around 0.7%
and 2.5% of the total CCSD results, respectively. It is also
found that the magnetic dipole off-diagonal matrix elements
are more sensitive to the correlation effect than the electric
quadrupole off-diagonal matrix elements. For example, the
total correlation effect is about 200% for 〈5p3/2||O(1)||6p1/2〉
and 〈6p3/2||O(1)||6p1/2〉.

Since A/μ and C/� are both magnetic diagonal matrix
elements, their correlation trends may be similar. The diagonal
hyperfine matrix elements of the first-order HFS constants in
Eqs. (4) to (6) and the off-diagonal hyperfine matrix elements
of the second-order HFS constants in Eqs. (9) and (10) are
obtained simultaneously, thus the matrix elements in Table V
should have similar computational accuracy to A and B. From
Tables III and IV, it can be observed that the differences
between the CCSD values and the experimental results are
within 3% for the states where the total electron correlation
does not exceed 50% and the nonlinear electron correlation
does not exceed 10%. Therefore, we take the CCSD results
as the recommended values for the matrix elements except
for 〈5p3/2||O(1)||6p1/2〉 and 〈6p3/2||O(1)||6p1/2〉, and estimate
the uncertainty of matrix elements as 3% of the CCSD result.
The 〈5p3/2||O(1)||6p1/2〉 and 〈6p3/2||O(1)||6p1/2〉 strongly de-
pendents on electron correlation effects. From Table III, it
can be seen that δCCSD of 5p3/2 and δCCSD of 6p3/2 are 9%
and 11%, while the 6p1/2 state has no experimental value.
The 6p1/2 state is not very sensitive to the electron correla-
tion compared with other states in the Table III. Therefore,
we conservatively estimate the uncertainty of these two off-
diagonal matrix elements as 15% of the CCSD result. Using
the off-diagonal hyperfine matrix elements listed in Table V,
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TABLE VI. HFS constants A, B, and C in MHz for the states of 5p3/2 and 6p3/2 without and with the second-order corrections. The third
column shows the uncorrected A, B, and C values. The fourth, fifth, and sixth columns are the present second-order corrections due to the
M1-M1, M1-E2, and E2-E2 HFI, respectively. The present final results are listed in the “Total” column, and the absolute difference between
the present results and the other reported results are listed in the last column. [y] denotes the power of 10: 10y.

Present Other

γ J HFS UnCorr. Corr.M1-M1 Corr.M1-E2 Corr.E2-E2 Total Reported [16,17] Diff.

HFS constants of 115In
5p3/2 A 242.164807(23) 4.43(27)[−4] −3.57(21)[−4] 3.15(19)[−5] 242.164893(75) 242.165057(23) 1.6[−4]

B 449.54568(21) 3.19(19)[−2] 4.02(24)[−3] 1.10(7)[−3] 449.5816(27) 449.59656(21) 1.5[−2]
C 0.000100(13) 0.00 1.41(9)[−3] −5.52(33)[−5] 0.00145(11) 0.001702(13) 2.5[−4]

6p3/2 A 79.33(7) 6.05(1.81)[−5] 1.38(21)[−5] 4.47(27)[−6] 79.33(7) 79.33(7)
B 62.5(5) 4.35(1.31)[−3] −1.55(23)[−5] 1.57(10)[−4] 62.5(5) 62.5(5)
C −0.04(4) 0.00 −5.42(81)[−5] −7.83(47)[−6] −0.04(4) −0.04(4)

HFS constants of 113In
5p3/2 A 241.641040(58) 4.41(26)[−4] −3.52(21)[−5] 3.06(18)[−5] 241.64116(11) 241.641293(58) 1.3[−4]

B 443.41568(52) 3.17(19)[−2] 3.96(24)[−3] 1.07(7)[−3] 443.4525(29) 443.46626(52) 1.4[−2]
C 0.000151(32) 0.00 1.38(9)[−3] −5.36(33)[−5] 0.00148(13) 0.001728(45) 2.5[−4]

we can calculate the second-order HFS constants, η, ζ , and
ξ in Eqs. (9) to (11). In our calculations, we adopt the rec-
ommended values of μ and Q from Refs. [31,39]. For 115In,
we employ μ = 5.5408(2) μN and Q = 0.772(5) b, while for
113In, we use μ = 5.5289(2) μN and Q = 0.761(5) b. We
can then evaluate the second-order effects on the correction of
the hyperfine structure constants. Table VI displays the HFS
constants A, B, and C in MHz without and with considering
the second-order corrections for the 5p3/2 and 6p3/2 states.
The third column of Table VI are the uncorrected A, B, and C
values. The fourth, fifth, and sixth columns are the present
second-order corrections due to the M1-M1, M1-E2, and
M1-E2 HFI, respectively. The “Total” column provides our
final results. We also include other reported results for com-
parison, along with the absolute differences, listed in the final
column.

From Table VI, it is apparent that the second-order correc-
tions on HFS constants A, B, and C resulted from the M1-M1,
M1-E2, and E2-E2 HFI are gradually decreasing. However,
for the 5p3/2 state, these corrections cannot be disregarded
given the current level of accuracy, especially the M1-M1
and M1-M2 HFI. Comparatively, our total results for HFS
constants A, B, and C differ from those reported values in
Ref. [16]. Nevertheless, our uncorrected HFS constants coin-
cide with the previously reported values in Ref. [16], thus the
difference stem entirely from the differential evaluation of the
second-order corrections. For example, the uncorrected HFS
constant C value of 0.000100(13) MHz for 115In, obtained
directly from the measured intervals based on first-order HFI,
equals the value presented in Ref. [16]. However, the total

TABLE VII. The magnetic octupole moment � (in μN × b) of
115In and 113In. The corresponding �other from Ref. [16] and the �SP

evaluated by the nuclear single-particle model from Ref. [12] are also
listed for comparison. The uncertainty is enclosed in parentheses.

Isotope �Present �Other [16] �SP [12]

115In 0.447(42) 0.565(12) 1.00
113In 0.456(44) 0.574(15) 0.99

second-order correction value of 0.00134(11) MHz resulted
from the off-diagonal HFI is 16% smaller than previously
reported value of 0.001602(32) MHz in Ref. [16]. This dis-
crepancy will have a significant impact on the determination
of the nuclear moment �. The situation is analogous for the
5p3/2 state of 113In. Regarding the 6p3/2 state, our results align
with those reported when second-order corrections were not
accounted for [17], as these effects do not manifest at the
current level of experimental precision. However, the second-
order effects will become relevant when the experimental
accuracy surpasses 10 Hz. Our computations can therefore
serve as a reference for future, more precise measurements.

After determining HFS constant C, we can proceed to
determine the � by combining the calculated C/� from
Table V. For 115In, the uncertainty of the measured HFS
constant C(6p3/2) is too large and the sign is abnormal, so
the determination of the � is only based on the C of 5p3/2

state.
Table VII displays the present and reported � results (in

μN × b) of 115In and 113In. The uncertainties are presented
in parentheses. The uncertainties of �Present arise from theo-
retical considerations. Observably, the results of the nuclear
single-particle mode, �SP, far exceed the �Present and �Other.
Specifically, the �other value reported for 115In in Ref. [16] is
0.565(12) μN × b. By leveraging this reported �other and the
HFS constant C value of 0.001702(35) MHz from Ref. [16],
we can obtain their C/� value as 3.012 KHz/(μN × b). Their
C/� value is approximately smaller 7.3% than our value
of 3.250(97) KHz/(μN × b), while their HFS constants C is
larger 15% than our result. We extracted the magnetic oc-
tupole moments of 113In and 115In nuclei to be �(113In) =
0.456(44) μN × b, and �(115In) = 0.447(42) μN × b, respec-
tively. Our refined values are approximately smaller 21% than
the �Other in Ref. [16]. These differences are mainly due to
inconsistencies in the evaluation of second-order effects.

IV. SUMMARY

In this work, we used the single and double approxi-
mated relativistic coupled-cluster method to first calculate the
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energies and HFS constants A for 5p1/2,3/2, 6s1/2, 6p1/2,3/2,
and 7s1/2 states in the In atom. We also investigated the
role of the electron correlation effects in both properties by
comparing the results of various approximations with avail-
able experimental values. Our results shows that the electron
correlation effects, especially the nonlinear corrections of the
cluster operators, are very important for precise determina-
tions of these properties. Our CCSD method provides accurate
results for both properties. Our CCSD energies agree with ex-
perimental values at the level of 0.2%, while our CCSD HFS
constants A differ from the experimental results by no more
than 3%.

Subsequently, we calculate the B/Q factors for the 5p3/2

and 6p3/2 states of 115In and compare them with the measured
B values to obtain the corresponding electric quadrupole mo-
ment Q. We recommend Q, 0.758(12) b, of the 5p3/2 state
as the final Q value of the 115In nucleus given in this work.
Our result is smaller than previously reported values, and
with a 1.8% difference from the recommend value 0.772(5) in
Refs. [16,32]. To reduce this difference, further consideration
of higher-order electron correlation effects beyond the CCSD
method may be necessary.

Finally, we conducted an investigation into the
second-order effects caused by the off-diagonal hyperfine

interaction, namely, the magnetic dipole-magnetic dipole,
magnetic dipole-electric quadrupole, and electric quadrupole-
electric quadrupole effects. These second-order corrections
greatly influence the determination of the HFS constant C.
Utilizing these findings, we reanalyzed the measurements
of hyperfine splitting in the 5p3/2 and 6p3/2 state of 115In,
thereby determining the corresponding HFS constants A,
B, and C. Through the combination of these updated HFS
constants C and our CCSD result of C/� for the 5p3/2 state,
we extracted the magnetic octupole moments of 113In and
115In nuclei, which are �(113In) = 0.456(44) μN × b, and
�(115In) = 0.447(42) μN × b, respectively. Notably, our
derived values of � are approximately smaller 21% than the
previously reported results. The present nuclear magnetic
octupole moments should be more reliable, and provide a
better understanding of nuclear properties of In.

ACKNOWLEDGMENTS

The work was supported by the National Natural Sci-
ence Foundation of China under Grants No. 12174268 and
No. 12304269, by the Postdoctoral Research Project of SZTU
(Grant No. 202028555301011), and the Launching Fund of
Henan University of Technology (Grant No. 31401512).

[1] T. E. Cocolios, A. N. Andreyev, B. Bastin, N. Bree, J. Büscher,
J. Elseviers, J. Gentens, M. Huyse, Y. Kudryavtsev, D. Pauwels,
T. Sonoda, P. Van den Bergh, and P. Van Duppen, Phys. Rev.
Lett. 103, 102501 (2009).

[2] D. T. Yordanov, D. L. Balabanski, J. Bieroń, M. L. Bissell, K.
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