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Simulating critical anion chemistry with indirect excitons
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We study the effect of geometric constraints on the formation of indirect excitonic complexes with excess
charge by considering the problem of two identical electrons moving in half-space subject to mutual Coulomb
repulsion and the Coulomb attraction to a heavy hole of charge Z residing on a flat impenetrable surface. We
find that Z = 1 is the critical charge necessary for binding, as compared to Zc ≈ 0.911 in the unconstrained
system. This suggests that interlayer electron-hole systems may serve as a flexible and experimentally accessible
platform to study electronic behavior close to the critical nuclear charge necessary for binding.
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I. INTRODUCTION

Quantum mechanics is able not only to explain the stability
of atoms and molecules, but also to predict their structure
with essentially arbitrary accuracy, as long as computational
resources are sufficient. These predictions agree well with
experiments, and the applicability of computational and the-
oretical methods covers virtually all conceivable materials,
no matter how complex, and it is there where most of the
theoretical impetus goes. Given this tremendous success, it is
easy to overlook a handful of very basic problems in quantum
chemistry that still lack sufficient theoretical understanding.
One of them is the following: How much excess electrons
can a nucleus of charge Z bind, and why does it appear to be
at most one or two, regardless of Z? This problem is known
among mathematicians as the maximal ionization problem [1]
and while there has been some progress in giving an answer,
often accompanied by profound developments in mathematics
[2–5] and including key physics insights [6], the question
remains unresolved.

The most important reason for the inherent difficulty of
such an apparently simple question is the role played by
electronic correlation in the stability of such systems. Since
electron correlation is enormously important in many aspects
of chemistry and materials science, this provides further mo-
tivation to study the maximal ionization problem, with the
hope that new insight on electron correlation might emerge
from the solution. From the theoretical perspective, the ques-
tion has been turned around a bit: instead of fixing the
charge of the nucleus Z , one fixes the number of electrons
N and varies Z , treating it as a continuous parameter, and
looks for the minimal value of Z that leads to binding. For
example, for the helium isoelectronic sequence N = 2, the
critical value of Z necessary for binding has been deter-
mined to a high degree of accuracy and assumes the value
Zc = 0.91102822407725573(4) in the infinite nucleus mass
approximation [7,8] (see [9] for the full phase diagram in-
volving the variation of masses and [10] for the case N =
3). In particular, there exists one stable species with excess
negative charge in this sequence, namely, the hydrogen anion
H− whose existence was first predicted by Bethe in [11] with

later works on its binding energy by Chandrasekhar [12] who
was motivated by the role played by this anion in stellar
spectroscopy [13]. It can be shown that for Z = 1, two is the
maximal number of electrons that can be bound [5].

In 1958, Lampert [14] was the first to discuss the formation
of bound complexes made up of charged particles in solids,
thus extending the concept of the exciton to many-particle
structures analogous to ordinary chemical species. Among
these complexes, the simplest one is the trion, a three-body
bound state comprised of two equally charged particles bound
to a single oppositely charged one. This system is an analog
of the negative hydrogen ion. A particularly interesting case is
the one where the charges are constrained to different layers
of a composite material. Such complexes, typically called
indirect or interlayer excitons, are currently a very active field
of research [15]. Since the geometry imposes a permanent
dipole moment on such a complex, the indirect excitons thus
formed are expected to interact strongly and if the system is
sufficiently well controllable it can be viewed as a quantum
simulator of strongly correlated physics. In recent years, exci-
tons trapped in layered heterostructures have indeed become
useful in this context [16–19]. In particular, electron-exciton
interactions have been studied and shown to exhibit Feshbach
resonance physics allowing for tuning the scattering length
[20–22]. The geometry of the system can also be varied from
quasi-one-dimensional (1D) to quasi-two-dimensional (2D)
with variable number of layers [23–25]. Studying the proper-
ties of few-body systems involving electrons, holes, and their
bound complexes in a structured environment is then not only
of fundamental interest, but can be relevant for understanding
experimental data [26,27].

In this work, we propose to use the excitonic system to
simulate the critical binding mechanism in atoms at the edge
of stability, i.e., close to Zc, which is hard to reproduce di-
rectly, thus turning around the popular paradigm of atomic
quantum simulators for condensed matter phenomena. Given
that under normal circumstances Zc is quite far from the clos-
est integer, so far such investigations have necessarily been
limited to theory. We are going to put forward the idea that
this stability edge could possibly be examined experimentally
with indirect excitonic complexes employed to simulate the
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FIG. 1. Schematic depiction of the arrangement considered.

chemical systems in question. In fact, we are going to show
that in the idealized model of an indirect exciton formed
in two layers of disparate thickness, where the thin layer is
rich in heavy holes, the critical charge of the hole needed to
bind two electrons is equal to unity, as the geometry of the
sample imposes additional electronic correlation, raising the
value of Z necessary for binding. Therefore, weakly bound
trions formed in systems with similar geometries bear cer-
tain resemblance to anions at the binding stability edge. In
this way, experimental investigation of such complexes may
provide some information on critical anion chemistry, and
possibly provide some fresh insight on the maximal ionization
problem.

This work is structured as follows. In Sec. II we discuss the
structure of the setup we have in mind and the properties of a
single electron interacting with a hole leading to the indirect
exciton state. Then in Sec. III we proceed to the geometrically
restricted trions employing the Chandrasekhar ansatz. The
implications of the results are discussed in Sec. IV.

II. SETTING

The setting that we want to study is depicted in Fig. 1. A
quasi-2D material hosting a hole is placed in the vicinity of
another material of finite thickness, which hosts two identical
electrons. We assume that the effective mass of the hole is
much larger than the effective mass of the electrons and work
in the infinite-mass approximation. Moreover, we neglect the
finite-size effects of the electron-rich material and treat it as
a half-space. The charges interact directly via electrostatic
forces, but in general their effective interaction is not of the
pure Coulomb type and is modified due to dielectric effects
imposed by the boundaries, as is usually described by the
Rytova-Keldysh potential [28]. The formation and stability
of bound complexes formed with interactions ranging across
boundaries has been already studied in some cases, in particu-
lar, the trion formation in the limit where both the electon-rich
and the hole-rich materials are essentially 2D and kept at a
distance d apart [29]. In that scenario the trion can be formed
provided that d0 is small enough, and in particular, it exists
when the particles are hosted by a single quasi-2D system,
although the Coulomb interaction is then modified consider-
ably.

Here, we study the limit of layers of incommensurate thick-
ness as sketched. We also neglect the dielectric effects and use

the pure Coulomb potential. Apart from the simplicity of this
geometry, the fact that the ratio of the thicknesses of the “elec-
tronic” to the “hole” layer is very large has the advantage that,
in this arrangement, the behavior of the electrons is similar
to the one in atomic systems with P orbital symmetry, as we
shall show below. The corrections stemming from dielectric
boundary effects will be shortly discussed in Sec. IV.

Let ε be the dielectric constant of the large later and m
the effective mass of the electrons, of charge e, therein. In
appropriate atomic-like units with lengths measured in ã0 =
2π h̄2ε

me2 and energies in Ẽ0 = h̄2

mã2
0

the problem is approximately
described by the Hamiltonian

H2 =
{

− 1
2��r1 − 1

2��r2 − Z
r1

− Z
r2

+ 1
|�r1−�r2| z1&z2 � 0,

∞, otherwise,
(1)

where Z > 0 is the effective charge of the stationary hole,
�r1, �r2 denote the positions of the electrons, with ri ≡ |�ri|, and
�x denotes the Laplace operator. The interlayer boundary is
put on the plane z = 0. In Sec. IV, we will discuss how the
effective charge Z might depend on the dielectric effects.

In what follows, we will be interested in the ground-state
energy of H2 as a function of Z , especially in comparison with
the ground-state energy of the corresponding one-electron
problem, i.e.,

H1 =
{

− 1
2��r1 − Z

r1
, z1 � 0,

∞, z1 < 0,
(2)

which models indirect interlayer excitons in the considered
geometry. To understand the binding of the indirect trion state,
we first need to discuss the indirect exciton problem described
by H1, which we shall briefly do next.

One-electron problem

One can find the eigenstates of H1 by simply solving
the usual Schrödinger equation for the hydrogen atom with
Dirichlet boundary conditions on the plane z = 0. Thus, the
eigenstates of this problem are the eigenfunctions of the hy-
drogen atom which vanish at the plane z = 0. If we adopt
the standard spherical coordinates, then we clearly need to
look for spherical harmonics that vanish for θ = π

2 , which
is equivalent to finding pairs (l, m) for which the associated
Legendre polynomials Pm

l (x) have 0 as a root. We start with
the identity valid for m � 0:

Pm
l (x) = (−1)m2l (1 − x2)

m
2

l∑
k=m

k!

(k − m)!
xk−m

(
l

k

)( l+k−1
2

l

)
,

(3)
with the generalized binomial coefficient defined for any t ∈
R as (

t

k

)
= t (t − 1) · · · (t − k + 1)

k!
. (4)

From (3), it follows that

Pm
l (0) = (−1)

3m
2

2l−m+1

(l − m)!

m−1∏
i=0

(l + m − 2i − 1), (5)
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and consequently, that

Pm
l (0) = 0 ⇐⇒ l + m = 2i + 1,

i = 0, . . . , m − 1. (m � 0). (6)

Thus, the eigenstates of H1 are given by

ψnlm =
{√

2|nlm〉 z � 0,

0 z < 0,
(7)

where |nlm〉 are the corresponding eigenstates of the
hydrogen-like atom with charge Z , and the quantum numbers
satisfy

n � 2,

1 � l � n − 1,

|m| � l,

|m| + l ∈ 2Z + 1.

(8)

In particular, the ground state, of energy − Z2

8 , reads

ψ2p+
0
(r; Z ) = Z5/2

8
√

π
(z + |z|)e− Zr

2 . (9)

The eigenenergies are still − Z
2n2 as for the hydrogen-like atom

but their enumeration starts at n = 2, and their degeneracy
is reduced from n2 to n(n−1)

2 , as quickly follows from (8), in
particular, the angular momentum spaces contain only l ad-
missible states with a definite projection onto the quantization
axis instead of the usual 2l + 1. For instance, the excited state
is triply degenerate, with the “half-orbitals” 3p0, 3d1, 3d−1.
The classification given here is important for further anal-
ysis, but also can be generally relevant for understanding
the excited states of interlayer excitons composed of mobile
electrons and holes.

III. TWO-ELECTRON PROBLEM–CHANDRASEKHAR
ANSATZ

We now turn to the two-electron problem described by H2.
Based on the results of the preceding section, the electron
configuration of the supposed bound state should be of the
type 2p2

0 and correspond to a singlet since there is only one
one-electron state of the appropriate symmetry available in the
lowest-energy sector.

First, let us observe that a bound state of our problem in the
singlet sector is excluded in the case Z < 1. Consider the (full
space) two-body Hamiltonian HR with the Coulomb potential
replaced by(

(x1 − x2)2 + (y1 − y2)2 + z2
1 + z2

2 − 2|z1z2|)
)−1/2

.

Now if one restricts the attention to nodal wave functions
vanishing on the plane z1 = z2 = 0, then HR has the same
eigenenergies as our Hamiltonian, H2. Moreover, for any
wave function one has∫

z1·z2<0

|ψ (r1, r2)|2
|r1 − r2| dr1dr2 �

∫
z1·z2>0

|ψ (r1, r2)|2
|r1 − r2| dr1dr2,

and thus for any nodal wave function, the expected value of
the full space Hamiltonian is always smaller than the expected
value of this function on HR. It follows that the existence

of a bound state for our problem, described by (1), implies
the existence of a bound state of the hydrogenic anion (i.e.,
the full space problem) in the singlet configuration having
a node at z = 0. Since the ground state has no nodes, this
bound state would correspond to an excited state in the singlet
sector for the hydrogenic anion, which, as is well known,
does not exist for Z < 1 [30]. Thus, Zc � 1, and to show that
Z = 1 is critical it suffices to find a trial state in the singlet
configuration which leads to binding for Z > 1.

In constructing the trial state, we are going to build it upon
the trial state introduced by Chandrasekhar [12] which has a
simple structure with a clear physical interpretation, which we
generalize to our setting in a straightforward way

�α,β ( �r1, �r2) = 2
√

2√
1 + ( 2

√
αβ

α+β

)10
(ψ2p+

0
(r1; 2α)ψ2p+

0
(r2; 2β )

+ ψ2p+
0
(r2; 2α)ψ2p+

0
(r1; 2β )), (10)

with ψ2p+
0

defined in (9). The function is normalized, sym-
metric in the electronic coordinates (recall that we assume
that the electrons are in a singlet configuration), satisfies the
boundary condition �(z1 = 0, z2 = 0) = 0, and depends on
two nonlinear variational parameters α, β whose inverses are
interpreted as the effective Bohr radii of the electrons. The
ansatz is able to capture the effects of electron repulsion by
adjusting the values of α, β while preserving the 2P0 symme-
try of the ground state imposed by the boundary, and is thus
said to capture the radial correlation [13]. Moreover, it is also
able to describe the unbound states with one of the electrons
escaping to infinity as an essentially free particle, when one of
the parameters, say α, tends to zero while the other assumes
the value for the indirect exciton β = 0.5Z . Accordingly, it
can be expected that the ansatz correctly describes the elec-
trons close to the stability edge where one of the effective
Bohr radii is very large. Moreover, thanks to its simplicity,
it allows for a relatively transparent and easy to interpret
description of the electronic behavior at the stability edge. We
are going to shortly discuss its limitations by considering a
simple extensions of (10) with correlated angles in Sec. IV.

A. Expected values

The relevant one-electron integrals of �( �r1, �r2; α, β ) are
straightforward to evaluate. The kinetic energy equals

Tα,β = 1

2
(α2 + β2) + αβ

( 2
√

αβ

α+β

)10

1 + ( 2
√

αβ

α+β

)10 ; (11)

radial correlation is here manifest in the second term. The
expected value of the electron-hole interactions is simply

Vα,β,Z = −Z

2
(α + β ). (12)

The evaluation of the electronic repulsion integral,

Rα,β =
∫∫ |�α,β ( �r1, �r2)|2

|�r1 − �r2| d3r1d3r2 (13)

is a bit more challenging due to the presence of the boundary.
However, it is still possible to give an analytical expression
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FIG. 2. Variational estimates of the binding energy �E as a
function of Z , both from the pure Chandrasekhar ansatz (10) and its
slight extension with explicit angular correlation, (30), together with
the asymptotics close to the stability edge Z = 1, (27). The existence
of a bound state for Z < 1 is excluded in the singlet sector by the
lack of appropriate excited states for the hydrogen anion. Ẽ0 is the
atomic-like energy unit defined in (1).

for R. For this purpose, we take the route via the multipole
expansion, i.e., we write

1

|�r1 − �r2| =
∞∑

l=0

rl
−

rl+1
+

Pl (cos θ12), (14)

where r+ = max{r1, r2}, r− = min{r1, r2}, and θ12 is the an-
gle between the vectors �r1, �r2. This yields (see the Appendix)

Rα,β = 315α5β5(α + β )

π2((α + β )10 + (2
√

αβ )10)

∞∑
l=0

clRl;α,β

l + 5
, (15)

with

cl = π3(
4
(



(
4−l

2

)



(
5+l

2

))2) , (16)

where 
 denotes the Euler gamma function and

Rl;α,β = Jl (2α, 2β ) + Jl (2β, 2α) + 2Jl (α + β, α + β ),
(17)

with

Jl (x, y) = 2F
1

(
9, 1; l + 6;

y

x + y

)
, (18)

where 2F1 is the hypergeometric function. The coefficients
cl stem from the angular integral and decay very fast with
increasing l . Note that, in particular, all the even multipoles
with l > 2 vanish.

The minimization of the expected value Eα,β (Z ) = Tα,β +
Vα,β,Z + Rα,β can now easily be done numerically. In Fig. 2 we
plot the variational estimate of the binding energy so obtained,
i.e., �E = EαZ ,βZ (Z ) + Z2

8 , with αZ , βZ being the optimal

values of the nonlinear parameters given Z , and − Z2

8 is the
ground-state energy of H1, that is, for the ionized problem.
By the HVZ theorem [31], if �E < 0, we have binding in the
system. As expected, we find �E < 0 for Z > 1 and �E = 0
for Z < 1, so that Z = 1 is the critical value of Z necessary
for binding, in contrast to Z = 0.91 . . . for the helium isoelec-
tronic sequence in the full space problem. This suggests that

one can effectively study the critical stability edge for anions
using similar systems made of stacked semiconductor layers.
We hence look more closely into this stability edge in our
ansatz in what follows.

B. Stability edge and critical exponents

One of the advantages of the simple ansatz (10) is that
the stability edge Z → 1 can be investigated by asymptotic
analysis on account of the observation that the optimal value
of either inverse effective Bohr radius, α or β, tends to zero as
Z approaches its critical value. Accordingly, we can expand
Eα,β (Z ) around zero to second order in the smaller variable,
say, α. The electron-hole potential energy has already the
desired form; the kinetic energy reads, for α � 1,

T ≈ 1
2 (α2 + β2). (19)

To study the asymptotics of the electron repulsion, we use the
formulas [32]

2F
1

(a, b; c; 1) = 
(c)
(c − a − b)


(c − a)
(c − b)
, Re(c − a − b) > 0,

lim
z→1−

2F1(a, b; c; 1)

− ln(1 − z)
= 
(a + b)


(a)
(b)
, c = a + b,

lim
z→1−

2F1(a, b; c; 1)

(1 − z)c−a−b
= 
(c)
(a+b−c)


(a)
(b)
, Re(c− a− b) < 0,

(20)

as well as 2F1(a, b; c, 0) = 1; this last term implies that one
can neglect Jl (2β, 2α) and Jl (α + β, α + β ) = 2F1(9, 1, l +
6, 1/2) in comparison with Jl (2α, 2β ) as α � 1, while (20)
shows

Jl (2α, 2β ) ∼

⎧⎪⎪⎨
⎪⎪⎩


(l+6)
(l−4)

(l−3)
(l+5) , l > 4,

−9 ln α
β
, l = 4,(

β

α

)4−l 
(l+6)
(4−l )

(9) , l < 4.

(21)

Thus, since the prefactor multiplying the series in Rα,β be-
haves as ∼α5β−5 we can limit ourselves to l = 0 and l = 1
terms in the sum if we are interested in the truncation to sec-
ond order in α. The corresponding hypergeometric functions
are then given explicitly in terms of elementary functions and
their relevant asymptotic expansions can be found easily:

2F
1

(
9, 1; 6,

β

α + β

)
= β4

56α4
+ 9β3

56α3
+ O

(
β2

α2

)
, (22)

2F
1

(
9, 1; 7,

β

α + β

)
= β3

28α3
+ 9β2

28α2
+ O

(
β

α

)
. (23)

Combined with

α5β5(α + β )

(α + β )10 + (2
√

αβ )10
= α5

β4
− 9α6

β4
+ O

(
α7

β6

)
, (24)

this gives

Rα,β ≈ 1

2
α + 15

32

α2

β
. (25)
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Hence, for small α,

E (α, β, Z ) ≈ 1

2
β2 − Z

2
β︸ ︷︷ ︸

I

+ 1

2
α2 − Z − 1

2
α︸ ︷︷ ︸

II

+ 15

32

α2

β︸ ︷︷ ︸
δV eff

corr

. (26)

The interpretation of the above is clear. Terms I and II describe
a completely uncorrelated system composed of one electron
and a hole of charge Z and one electron and a hole of charge
Z − 1, which is in accordance with the simple picture of
the farther electron (described by α) being subject to a fully
screened positive charge. It is the term δV eff

corr that correlates
the electrons via the α2/β dependence. This term originates
from the l = 1 component of the multipole expansion, and
corresponds to a (repulsive) charge-dipole interaction. The
emergence of the effective dipole here is due to the boundary,
which induces a permanent dipole moment of the indirect
exciton whose orientation is such that it repels the other elec-
tron. In this way, the Chandrasekhar ansatz nicely captures
how the nature of the indirect exciton formation and electron
correlation combine at the stability edge.

Further, it is easily seen that binding occurs only if Z > 1
since otherwise E (α, β, Z ) � I � −Z2/8. The value of the
critical charge Zc = 1 is determined here completely by the
small α asymptotics of the l = 0 term in the multipole expan-
sion of the electron repulsion integral.

With (26), it is straightforward to find the critical behavior
of the binding energy

�E = − (Z − Zc)2

23
, (27)

as well as the inverse effective Bohr radii

α − αc = 4
23 (Z − Zc), (28)

β − βc = 1
2 (Z − Zc), (29)

where αc = 0, βc = 1
2 , Zc = 1. These quantities all exhibit

power-law behavior under approaching the critical value of Z ,
in analogy to critical phenomena encountered in condensed
matter systems, and thus the anion formation at stability edge
can be interpreted as a second-order phase transition, as men-
tioned in [9].

The importance of electronic correlation in our setting is
clearly manifest in the value of the coefficient in front of the
term (Z − 1)2 in the binding energy. In fact, if the system was
effectively uncorrelated at the stability edge, one would expect
the behavior �E = − (Z−1)2

8 describing the binding energy of
the farther electron coupled to the screened nucleus of effec-
tive charge. This is what one observes in the behavior of the
energy of the excited bound state of the helium isoelectronic
sequence [10]. The reduction of this coefficient from 1/8
to 1/23 is a consequence of the correlation of the electrons
beyond the simple screening effect, which, as we see, is quite
significant.

IV. DISCUSSION

A. Radial versus angular correlation

We need to comment on the limitations of our approach.
Despite its simplicity, the Chandrasekhar wave function is

1.00 1.05 1.10 1.15 1.20
Z

0.0

0.2

0.4

0.6

p
ar

am
et

er
va

lu
es αã0

βã0

λ

asymptotic α

asymptotic β

FIG. 3. Optimal values of the variational parameters α, β, λ in
the extended Chandrasekhar ansatz (30). The asymptotic behavior is
described by (28) and (29). Note that while α and β are measured in
units of the inverse effective Bohr radius ã0 defined before (1), λ is
dimensionless.

good enough to capture the fact that Z = 1 is critical. One
might ask how well does it reproduce the critical behavior.
To estimate the effects of angular correlation between the
electrons at the stability edge, we extended the trial state
slightly by taking the trial function

�(r1, r2; α, β; λ) = Nλ(1 + λ cos θ12)�α,β ( �r1, �r2), (30)

where θ12 is the angle between �r1 and �r2, λ is a linear pa-
rameter quantifying the angular correlation, with Nλ being the
normalization factor. In Figs. 2 and 3 we plot the resulting en-
ergies, in comparison with the simple Chandrasekhar ansatz,
and the optimal values of λ, respectively. We observe that
angular correlation at this simple level becomes increasingly
less important as one approaches the stability edge, with λ

negative (in accordance with the expectation that the angular
motion of the electrons is anticorrelated) and tending to zero
as Z approaches its critical value. In particular, the asymptotic
behavior of the binding energy at the stability edge remains
the same as obtained from the Chandrasekhar function. Of
course a more complete treatment of the problem beyond the
very simple trial function we use is possible with extensive
basis sets, e.g., of gaussian or Hylleraas type. We do not
attempt to provide such exact calculations at this point. It
is to be expected, nevertheless, that they can be effectively
checked against our results at the stability edge, in particular,
the power-law expressions (27), (28), and (29). In particular,
when Slater-type functions with an exponential decay are used
to construct the basis, it is to be expected that at the detach-
ment edge, the asymptotic behavior of the optimal values of
the parameters governing the decay should be very similar to
the one we found for the single wave function of this type.

B. Continuous tuning of Z in experiment

Beyond the obvious limitations of the variational wave
function, when describing the arrangement in question it is
crucial to take into account the finite layer thickness as well
as the finite mass of the hole which would be present in any
realistic setting. While the second aspect appears to disfavor
the binding (see the phase diagram in [9]), the finite-size
effects, combined with dielectric corrections, should in turn
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act towards stabilizing the trion state, as, for instance, the 2D
trion is bound [29]. The impact of dielectric effects due to
the bound charges forming at the boundaries is thus important
and we are going to discuss it very briefly. Assume that the
dielectric constant of the electron-rich layer, ε1, is larger than
the dielectric constant ε2 of the material present below the
boundary containing the hole: ε1 > ε2. Then the potential
generated by the hole of unit charge is everywhere equal to
[33]

Vh(r) = − 2

ε1 + ε2

1

r
≡ −Zeff

ε1r
, (31)

where Zeff > 1 since ε1 > ε2. Now if we disregard the image
charges generated by the electrons, their mutual interaction
equals 1/(ε1|�r1 − �r2|) and the Hamiltonian of the system
maps onto H2 with an effective charge Z which can be var-
ied continuously by tuning ε1/ε2, in particular,Z − Zc ≈ ε1−ε2

ε1
and thus the stability edge corresponds to identical materials
placed above and below the surface hosting the hole. In this
scenario, not only the stability edge appears accessible, but
also can be approached continuously by proper design of
the material. The mapping onto H2 is, of course, not exact
because of the bound charges due to the electrons, but the
onset of a continuous effective Z of the hole appears plausible
in the study of indirect excitonic complexes so formed.

C. Anion-to-atom transition

With the plausible option of tuning Z continuously by
material design, another interesting possibility arises in our
context. In [9], the phase diagram of three-body Coulomb
systems under variations of masses and charges was projected,
with one of its conclusions being the classification of these
systems into atom-like, e.g., He, and molecule-like, e.g., H+

2 .
In our case, if we move away from the vicinity of the critical
charge Z = 1 and look at the entire range of Z corresponding
to excess charge in our simple Chandrasekhar-type ansatz,
we observe that the optimal values of the smaller nonlinear
parameter α display a crossover from the regime where its
dependence of Z fits the asymptotic linear behavior close to
criticality, (28), and another linear behavior around Z = 2
(Fig. 4). This behavior can be attributed to the ion-to-atom
transition similar to the one found in the study [9]; in fact,
when the radial position probability density is plotted, Fig. 5,
one observes that it either possesses two distinct maxima, cor-
responding to an anion-like structure with one of the electrons
well separated from the core, or a single maximum, as can
be expected from the charge density of the helium-like atom
(here, in a P state), with the second minimum disappearing
for Z ≈ 1.7. If Z can be indeed varied continuously by us-
ing indirect trions formed in appropriately devised materials,
additional insight into this particular transition could arise,
beyond the study of the critical binding mechanisms.

V. SUMMARY AND OUTLOOK

We discussed the problem of the existence of a three-body
bound state composed of two light negatively charged parti-
cles and a single immobile positive charge in the geometric
setting where the electrons are confined to move in common

1.0 1.2 1.4 1.6 1.8 2.0
Z

0.0

0.1

0.2

0.3

α
ã
0

optimal

asymptotic

FIG. 4. Behavior of the optimal value of the variational param-
eter α determining the effective inverse Bohr radius of the further
electron, as a function of Z . A crossover from the asymptotic regime
of a weakly bound ion described by (28) to the quasineutral regime
around Z = 2 is observed.

half-space bounded by the surface hosting the positive charge.
Using a Chandrasekhar-type trial state, we found that the
critical charge needed to bind the two negative particles equals
exactly unity, in contrast to the case of the helium isoelec-
tronic sequence where the critical Z equals approximately
0.911. We also discussed the critical behavior of the system
close to the stability edge and identified the critical exponents
and amplitudes governing the binding energy and effective
Bohr radii. Asymptotically, the electronic correlation effects
manifest themselves as an effective charge-dipole repulsion.
Since the setting considered can be thought of an idealized
model of an interlayer trion where the electron-rich layer is
of a much larger thickness than the adjacent layer hosting
heavy holes, we argue that indirect excitonic complexes of
this kind can be employed as an experimental platform to
study anions at the critical charge necessary for binding. Our
study connects to basic questions in anion chemistry related

0 10 20 30 40 50
r/ã0

0.00

0.05

0.10

0.15

0.20

ρ
/
ã
0

Z=1.7

Z=1.4

Z=1.9

FIG. 5. Chandrasekhar radial probability density of finding an
electron at distance r from the hole, integrated over angles. Close
to neutrality, it possesses a single maximum: for lower Z , a second
maximum appears whose position wanders off to infinity as Z → 1.
The number of maxima can be employed to characterize the system
as atom-like and/or anion-like. ã0 is the Bohr radius corresponding
to electrons with the appropriate effective mass and the dielectric
constant of the material, equal to unity in the pseudoatomic units
h̄ = 1, me = 1 used in the text.
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to electronic correlation, such as the well-known maximal
ionization problem. It has a broad potential for extensions,
both in the direction of performing precise energy calculations
beyond the Chandrasekhar ansatz and, most importantly, by
taking the finiteness of the layers and the mobility of the
hole into account, together with a complete treatment of the
dielectric effects. All these aspects are definitely within reach

with the use of current methods in computational many-body
physics and chemistry.
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APPENDIX: EVALUATION OF THE REPULSION INTEGRAL

The repulsion integrals involving Slater-type orbitals, as in our case, are typically easily computed from master integral
formulae, cf. [34]. In our case, the presence of the boundary makes these formulas inapplicable; nevertheless, the repulsion
integral can still be given in a relatively simple closed form. As announced in the main text, we start from the multipole expansion
(14), which casts the repulsion integral into the form

Rα,β = 2
∞∑

l=0

∫∫
r1<r2

d3�r1d3�r2|�α,β ( �r1, �r2)|2 rl
1Pl (cos θ12)

rl+1
2

, (A1)

where we used the symmetry of the wave function under the exchange of coordinates. Employing this again, together with the
separation of � into the angular and radial part, we obtain

Rα,β = 4

π2

α5β5

1 + ( 2
√

αβ

α+β

)10

∞∑
l=0

cl (J̃l (2α, 2β ) + J̃l (2β, 2α) + 2J̃l (α + β, α + β )), (A2)

where

J̃l (x, y) =
∫ ∞

0
dt t l−3e−xt

∫ t

0
ds s4+l e−ys, (A3)

and

cl =
∫ 2π

0
dϕ1

∫ 2π

0
dϕ2

∫ π/2

0
dθ1

∫ π/2

0
dθ2 cos2 θ1 cos2 θ2 sin θ1 sin θ2Pl (cos θ12), (A4)

where we used the standard spherical coordinates for the electrons and taken into account the fact that � = 0 for θ1, θ2 � π/2.
To evaluate the angular integral, we use

Pl (cos θ12) = Pl (cos θ1)Pl (cos θ2) + 2
l∑

m=1

(l − m)!

(l + m)!
Pm

l (cos θ1)Pm
l (cos θ2) cos(m(ϕ1 − ϕ2); (A5)

the entire sum over m vanishes due to the ϕ1, ϕ2 integration and we are left with

cl = 4π2

[∫ 1

0
x2Pl (x)dx

]2

. (A6)

The integral involving the Legendre polynomial can be evaluated using the recurrence formula

(l + 1)Pl+1(x) − (2l + 1)xPl (x) + lPl−1(x) = 0, (A7)

twice, together with

∫ 1

0
Pl (x)dx =

⎧⎪⎨
⎪⎩

1
2 , l = 0,( − 1

2

)l (l−1)/2 (l−2)!!
2
( l+1

2 )
, l odd,

0, l even,

(A8)

which follows from parity, the orthogonality relation for the Legendre polynomials as well as the the Rodrigues formula. It yields

cl = π3

4
(



(
4−l

2

)



(
5+l

2

))2 , (A9)

as given in the main text. However, the radial integral can be written

J̃l (x, y) = 1

y9

∫ ∞

0
dt t3−lγ (5 + l, t )e− x

y t (A10)
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with γ (q, t ) denoting the lower incomplete Gamma function. Expressing the latter via the power series

γ (q, t ) = t q
(q)e−t
∞∑

k=0

t k


(q + k + 1)
, (A11)

and integrating, we obtain

J̃l (x, y) = 
(5 + l )

(x + y)9

∞∑
k=0


(9 + k)


(6 + l + k)

(
y

y + x

)k

= 
(9)

(x + y)9(l + 5)

[
2F

1

(
9, 1; l + 6;

y

y + x

)]
, (A12)

where we used the definition of the hypergeometric function

2F
1

(a, b; c; z) = 
(c)


(a)
(b)

∞∑
k=0


(a + k)
(b + k)


(k + 1)
(c + k)
zk . (A13)

Combining these results, we arrive at the series representation (15) given in the main text.
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