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Cold three-body recombination in helium-helium-silver-atom collisions using the hybrid
slow-variable-discretization–adiabatic hyperspherical R-matrix approach
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We study three-body recombination in the helium-helium-silver system at cold collision energies. The three-
body Schrödinger equation is solved combining the slow variable discretization and adiabatic approaches with
the R-matrix propagation method, in order to calculate the product-state-selective total and partial recombination
rates in the 4He + 4He + Ag system. Recombination at collision energies less than 10 mK is found to take place
dominantly to the product molecule 4He Ag in its least bound state, while the three atoms recombine mainly to
the 4He2 molecule in its ground state at higher collision energies.

DOI: 10.1103/PhysRevA.109.042814

I. INTRODUCTION

Three-body recombination, a process in which three free
particles collide to form a two-body bound state and a free
particle enabling the dissipation of the energy, is one of
the most fundamental and ubiquitous chemical reactions. The
three-body recombination processes are relevant for a wide
variety of systems in physics and chemistry. In cold and ultra-
cold systems, three-body recombination impacts the lifetime
and stability of ultracold dilute gases [1–8] and plays an im-
portant role in the formation and trapping of cold and ultracold
molecules [9–13]. It is also shown in Refs. [14–20] that the
three-body recombination processes provide an efficient way
to investigate the formation of van der Waals molecules in
helium buffer-gas-cooled magnetic traps.

From the theoretical viewpoint, quantitative calculations
of recombination for realistic atomic three-body systems are
limited by the number of diatomic bound states existing in
such systems. Most of the available calculations for recom-
bination for realistic systems have been confined to those
possessing just a few two-body bound states, namely, the
He + He + He [21,22], He + He + alkali-metal [19], and
H + H + alkali-metal [20] systems, and even these were
challenging calculations. In fact, when using the adiabatic hy-
perspherical representation, the existence of many two-body
bound states leads to a complex set of sharp nonadiabatic
avoided crossings in the hyperspherical potential curves at
short distances, and in particular, for nonzero total angular
momenta, J > 0, states. The large number of sharp avoided
crossing creates numerical difficulties for the adiabatic repre-
sentation, which is formulated with d/dR couplings.

There are known to us two promising ways to over-
come these difficulties: one is the “diabatic-by-sectors” (DBS)
method proposed by Parker et al. [23], and the other the
slow variable discretization (SVD) method, proposed by Tol-
stikhin et al. [24]. The SVD method, which we adopt in this
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work, has been used and applied successfully to three-body
bound-state calculations [25,26] and three-body H + Ne-Ne
collisions. Although the latter calculations did not require
numerical solution of the hyperradial equation out to large
distances, it is crucial to solve it out to very large distances
when studying ultracold three-body recombination processes,
which makes application of SVD demanding in terms of mem-
ory and CPU time. Wang et al. [27] developed a methodology
within the hyperspherical adiabatic representation that allows
for the treatment of systems with many two-body bound
states, separating the hyperradial domain into two regions,
and applying the SVD method at short distances, where many
avoided crossings appear, and using the adiabatic method at
large distances, where adiabatic potential curves are smooth.
This methodology was applied successfully to nonrotational
J = 0 systems of three identical bosons interacting through
two-body potential models adjusted to support eight to ten
two-body bound states.

The purpose of this work is to test the above-mentioned
methodology proposed by Wang et al. [27], extending it to
nonrotational and rotational, J � 0, He + He + Ag systems.
The 4He + 4He + Ag system possesses five two-body bound
states in total—4He Ag s-, p-, d-, f -wave bound states and
4He2 s-wave bound state—not so many, but enough to see
a complex set of sharp avoided crossings in the adiabatic
hyperspherical potential curves, particularly for nonzero to-
tal angular momenta. The 4He + 4He + Ag recombination
rate calculations are an interesting extension of the previous
investigations in Ref. [19] that dealt with the 4He + 4He +
alkali-metal atomic recombination, including here a coinage
atom, silver, in recombination calculations. All these calcula-
tions are relevant to helium buffer-gas cooling experiments,
in which the weakly bound van der Waals molecules HeAg
[15] and HeLi [17] were produced by three-body recombi-
nation. By using the above-described hybrid SVD-adiabatic
hyperspherical R-matrix propagation approach, we compute
the product-state-selective three-body recombination rates as
functions of the collision energy. We treat not only zero to-
tal angular momentum, J = 0, states, but also J > 0 states,
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so that recombination beyond the ultracold regime can be
considered.

The organization of this paper is as follows: Sec. II presents
the theoretical approach; the results are presented in Sec. III;
we finally conclude and summarize in Sec. IV.

II. METHOD

The main ideas of the hybrid SVD-adiabatic hyperspheri-
cal R-matrix propagation approach are described in Ref. [27]
for the specific case of three identical bosons in the J = 0
symmetry. We present here the approach emphasizing the
modifications necessary when three particles are not identical
and that they are in J > 0 states.

After separating out the center-of-mass motion,
the triatomic system can be described using modified
Smith-Whitten hyperspherical coordinates (R,�) ≡
(R, θ, ϕ, α, β, γ ) [21,28–31]. The hyperradius R character-
izes the overall size of the system, while the two hyperangles
θ and ϕ describe the internal motion of the three-body system.
α, β, and γ are the usual Euler angles. By rescaling the usual
wave function �i as ψi = R5/2�i, the three-body Schrödinger
equation in hyperspherical coordinates [in atomic units (a.u.)]
is given by[

− 1

2μ

∂2

∂R2
+ �2 + 15/4

2μR2
+ V (R, θ, ϕ)

]
ψi(R,�)

= Eψi(R,�), (1)

where

�2 = − 4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
+ 4

sin2 θ

(
i

∂

∂ϕ
− cos θ

Jz

2

)2

+ 2J2
x

1 − sin θ
+ 2J2

y

1 + sin θ
+ J2

z (2)

is the squared grand angular-momentum operator, (Jx, Jy, Jz )
the body-fixed frame (x, y, z) components of the total an-
gular momentum J, and μ = √

m1m2m3/(m1 + m2 + m3)
with m1, m2, and m3 being the masses of the three
atoms. The dependence on the Euler angles drops out
for the J = 0 symmetry. In Eq. (1), V (R, θ, ϕ) is the to-
tal potential energy that will be given in Eq. (36). For
J > 0, the squared grand angular-momentum operator in
Eq. (2) causes a difficulty since it contains several sin-
gularities due to its denominators which become zero at
θ = 0 and/or at θ = π/2. These singularities, collectively
referred to as “Eckart singularities,” are characteristics of
all instantaneous principal axes systems. A proper treat-
ment of the Eckart singularities was proposed by Kendrick
et al. [31] using a hybrid discrete-variable representation-
finite-basis-representation (DVR-FBR) approach. Since we
adopt simple basis splines in θ without any boundary con-
ditions for the sake of simplicity, in this work, we must
be careful in dealing with wave functions localized around
the regions θ = 0 (corresponding to an oblate symmet-
ric top geometry) and θ = π/2 (corresponding to a linear
configuration).

In our three-body problem, the good quantum numbers
are the total angular momentum J , its projection M, and
the inversion parity 
, so that the Schrödinger equation (1)

can be solved separately for each fixed set of J and 
.
The key ingredients in our numerical approach are the
hyperspherical adiabatic potentials and channel functions,
which are defined as solutions of the adiabatic eigenvalue
problem[

�2

2μR2
+ 15

8μR2
+ V (R, θ, ϕ)

]
�ν (R; �) = Uν (R)�ν (R; �).

(3)

This adiabatic equation is solved by expanding the channel
function on the normalized Wigner functions D̃J

KM (α, β, γ ) =
[(2J + 1)/8π ]1/2DJ

KM (α, β, γ ):

�JM

ν (R; �) =

∑
K

φJ

Kν (R; θ, ϕ)D̃J

KM (α, β, γ ), (4)

where K , denoting the projection of J on a body-fixed axis,
takes on the integer values that satisfy −J � K � J and 
 =
(−1)K . For a system containing two identical bosons (m2 =
m3) for which the wave function is symmetric under exchange,
the permutation symmetry can be taken into account via the
boundary conditions:

(−1)J+KφJ

−Kν (R; θ, 0) = φJ


Kν (R; θ, 0), (5)

(−1)J+K+1 ∂φJ

−Kν

∂ϕ

∣∣∣∣∣
ϕ=0

= ∂φJ

Kν

∂ϕ

∣∣∣∣
ϕ=0

, (6)

(−1)JφJ

−Kν (R; θ, π ) = φJ


Kν (R; θ, π ), (7)

(−1)J+1 ∂φJ

−Kν

∂ϕ

∣∣∣∣∣
ϕ=π

= ∂φJ

Kν

∂ϕ

∣∣∣∣
ϕ=π

, (8)

and the hyperangle ϕ, originally defined in the range
[0, 2π ], is now restricted to [0, π ]. These boundary con-
ditions differ from those in the case of three identical
bosons, in which the hyperangle ϕ is restricted to [0, π/3].
The φJ


Kν (R; θ, ϕ) in Eq. (4) is expanded on a direct
product of fifth-order basis splines [32] in θ ∈ [0, π/2]
and ϕ ∈ [0, π ].

Our goal is to determine, from the solutions of Eq. (1), the
scattering matrix S . To accomplish this goal, the R matrix (R)
must be computed first, which is the quantity that can be used
subsequently to determine the scattering matrix, see Eqs. (32)
and (33). The R matrix is defined as

R(R) = F (R)[F̃ (R)]−1, (9)

where matrices F and F̃ are given in terms of the solutions of
Eqs. (1) and (3) by

Fνi(R) =
∫

d��ν (R; �)∗ψi(R,�), (10)

F̃νi(R) =
∫

d��ν (R; �)∗
∂

∂R
ψi(R,�). (11)

The R-matrix propagation method [33] propagates the solu-
tions of Eq. (1) from a small hyperradius R = a to a large
hyperradius R = b. The range a to b is divided up into a num-
ber of subranges and the R-matrix is propagated across each of
these in turn. Let us consider the subrange with left boundary
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a1 and right boundary a2 (>a1), within which the Schrödinger
equation (1) must be solved. One important ingredient in
solving the Schödinger equation within this subrange is the
use of the discrete variable representation (DVR) [34,35]. Our
DVR basis function πl (R) are defined from the L-point Gauss-
Lobatto quadrature points xl and weights wl (l = 1, 2, . . . , L)
[36] defined over the interval x ∈ [−1, 1]. By scaling these
quadrature points and weights as Rl = (a2 − a1)xl/2 + (a2 +
a1)/2 and ωl = (a2 − a1)wl/2, the integrals of any func-
tion g(R) can be approximated over an arbitrary interval
R ∈ [a1, a2] by

∫ a2

a1

g(R)dR ≈
L∑

l=1

g(Rl )ωl . (12)

The DVR basis functions are constructed as

πl (R) = 1√
ωl

L∏
l ′ �=l

R − Rl ′

Rl − Rl ′
, (13)

which have the important property πl (Rl ′ ) = δll ′/
√

ωl .
At small hyperradii, where there exists numerous sharp

avoided crossings, we employ the SVD approach, which con-
sists in developing the total wave function as

ψi(R,�) =
∑

lν

clν,iπl (R)�ν (Rl ; �). (14)

On the other hand, at large hyperradii, where the nonadiabatic
couplings are smooth functions of R, the adiabatic approach
is used, expanding the total wave function as

ψi(R,�) =
∑

lν

clν,iπl (R)�ν (R; �). (15)

In both the SVD and adiabatic approaches, the hyperradial
wave functions Fνi(R) at DVR points Rl are easily found from
the coefficients clν,i, using

Fνi(Rl ) = ω
−1/2
l clν,i. (16)

Insertion of Eq. (14) or (15) into the Schrödinger Eq. (1)
yields the equation for the expansion coefficients clν,i:

[H − E1]	ci = L	ci, (17)

where 1 is the identity matrix.
In the SVD approach based on the expansion (14), the

matrix elements of H and L are given by

Hlν,l ′ν ′ = 1

2μ

[∫ a2

a1

dRπ ′
l (R)π ′

l ′ (R)

]
Olν,l ′ν ′

+ Uν (Rl )δll ′δνν ′ , (18)

Llν,l ′ν ′ = 1

2μ
[πl (R)π ′

l ′ (R)]

∣∣∣∣
a2

a1

Olν,l ′ν ′ , (19)

where

Olν,l ′ν ′ =
∫

d��ν (Rl ; �)∗�ν ′ (Rl ′ ; �) (20)

are the overlap matrix elements between different adiabatic
channels defined at different hyperradial DVR points. On the

other hand, in the adiabatic approach based on the expansion
(15), the H and L matrices are expressed as

Hlν,l ′ν ′ = 1

2μ

∫ a2

a1

dRπ ′
l (R)π ′

l ′ (R)δνν ′

+
[
Uν (Rl )δνν ′ + P2

νν ′ (Rl )

2μ

]
δll ′ − 1

2μ

∫ a2

a1

× dR[πl (R)Pνν ′ (R)π ′
l ′ (R) − π ′

l (R)Pν ′ν (R)πl ′ (R)],

(21)

Llν,l ′ν ′ = 1

2μ
[πl (R)δνν ′π ′

l ′ (R) + πl (R)Pνν ′ (R)πl ′ (R)]

∣∣∣∣
a2

a1

.

(22)

Here, the nonadiabatic couplings matrix elements are defined
and expressed by

Pνν ′ (R) =
∫

d��ν (R; �)∗
∂

∂R
�ν ′ (R; �), (23)

Qνν ′ (R) =
∫

d��ν (R; �)∗
∂2

∂R2
�ν ′ (R; �)

= P2
νν ′ (R) + P′

νν ′ (R), (24)

and these are evaluated numerically by a simple differencing
scheme:

∂

∂R
�ν ′ (R; �) ≈ �ν ′ (R + �R; �) − �ν ′ (R − �R; �)

2�R
.

(25)

By diagonalizing H over the hyperradial subrange [a1, a2]
such as 	xT

n H	xn′ = εnδnn′ , and using the completeness relation∑
n 	xn	xT

n = 1, Eq. (17) is rewritten as

	ci = [H − E ]−1L	ci =
∑

n

	xn	xT
n

εn − E
L	ci. (26)

From here, we introduce the matrices

(R11)νν ′ = 1

ω1

∑
n

x1ν,nx1ν ′,n

2μ(εn − E )
, (27)

(R12)νν ′ = 1√
ω1ωL

∑
n

x1ν,nxLν ′,n

2μ(εn − E )
, (28)

(R21)νν ′ = 1√
ω1ωL

∑
n

xLν,nx1ν ′,n

2μ(εn − E )
, (29)

(R22)νν ′ = 1

ωL

∑
n

xLν,nxLν ′,n

2μ(εn − E )
, (30)

where, by writing (Rpp′ )νν ′ , the indices p (p′) stands for the
left boundary (=1) or the right boundary (=2), ν (ν ′) for the
numbers labeling the adiabatic potential curves. By substitut-
ing the matrix elements of L from Eq. (19) or (22), inserting
the definition of the R matrix at a1 and a2 from Eqs. (9), (10),
and (11) into Eq. (25), and after some manipulation, we obtain
the R-matrix propagation from the left boundary a1 to the right
boundary a2:

R(a2) = R22 − R21[R11 + R(a1)]−1R12. (31)
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Once we obtain the R matrix at sufficiently large distances,
the physical scattering matrix S and the reaction matrix K can
be determined by imposing boundary conditions:

K = ( f − f ′R)(g − g′R)−1, (32)

S = (1 + iK)(1 − iK)−1, (33)

where f , g, f ′, and g′ are diagonal matrices whose ele-
ments are the energy-normalized asymptotic solutions fν , gν

and their derivatives f ′
ν , g′

ν , respectively. fν and gν are ex-
pressed in terms of spherical Bessel functions as fν (R) =
(2μkν/π )1/2R jlν (kνR) and gν (R) = (2μkν/π )1/2Rnlν (kνR),
with kν and lν being determined by the asymptotic behavior
of the potential curves in Eqs. (39) and (40). The product-
state-selective three-body recombination rate is then given by

K3 =
∑
J,


KJ

3 =

∑
J,


∑
f ,i

64π2(2J + 1)

μk4

∣∣SJ

f i

∣∣2
, (34)

where k = √
2μE is the hyperradial wave number in the

incident channels and SJ

f i the appropriate scattering matrix

elements. The index i runs over all the incident channels,
while f runs over the recombination channels relevant to
the chosen product state. By designating as K (F )

3 the total
recombination rate to the product state F , the branching ratio
into the product state is finally obtained by

r (F )
3 = K (F )

3∑
F K (F )

3

. (35)

In the SVD approach, the potential curves Uν (Rl ) in Eq. (3)
and the overlap matrix elements Olν,l ′ν ′ in Eq. (20) are calcu-
lated at every hyperradial point Rl from 10 to 600 a.u., on
the grid of 60–70 hyperradial subranges each divided by an
L = 10-point Gauss-Lobatto quadrature. At large distances
R � 600 a.u., the adiabatic approach is applied. Here, the
potential curves Uν (Rl ), the P and Q matrices in Eqs. (23) and
(24) are calculated on a sparse hyperradial grid up to about
1200 a.u. These are interpolated with cubic or Akima splines
on a more or less dense grid at 600 � R � 1200 a.u., and
extrapolated in an inverse polynomial series [37] from R ≈
1200 up to very large distances, 2 × 105 a.u., with the typical
hyperradial subrange length being 15 to 30 a.u. For example,
at collision energies E ≈ 10−5 K, the R matrix, including
more than 30 adiabatic channels, needs to be propagated from
the hyperradii R ≈ 10 to 2 × 105 a.u. for optimal three-body
recombination calculations.

The total potential energy V (R, θ, ϕ) in Eq. (1) is repre-
sented as the addition of three pair interaction potentials:

V (R, θ, ϕ) = vHeAg(r12) + vHeHe(r23) + vHeAg(r31), (36)

where ri j are the interatomic distances, expressed in our coor-
dinate system as

ri j = 2−1/2di jR[1 + sin θ cos(ϕ + ϕi j )]
1/2, (37)

with ϕ12 = 2 tan−1(m2/μ), ϕ23 = 0, ϕ31 = −2 tan−1(m3/μ),
and the di j coefficients are given by

di j =
[

mk (mi + mj )

μ(m1 + m2 + m3)

]1/2

, (38)
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FIG. 1. (a) Helium dimer potential vHeHe(r) and 4He2(l = 0)
bound-state wave function. (b) Helium-silver potential vHeAg(r) and
4He Ag (l = 0, 1, 2, 3) bound-state wave functions.

with (i, j, k) being a cyclic permutation of (1,2,3). The masses
used are m(4He) = 7298.2993 and m(Ag) = 194 923.06 a.u.
For the helium dimer potential vHeHe(r), we use the probably
most widely used LM2M2 representation developed by Aziz
and Slaman [38], and for the helium-silver potential vHeAg(r),
the analytical form proposed by Xie et al. in Ref. [39], ob-
tained by fitting the best He-Ag potential data of Gardner et al.
[40]. These potentials are known to support one 4He2 zero
angular momentum l = 0 bound state and four 4He Ag zero
and nonzero angular momentum (l = 0, 1, 2, 3) bound states.
The potentials and the supported bound-state wave functions
are shown together in Fig. 1. These two potentials, vHeHe(r)
and vHeAg(r), do not appear to be so different from each other
and are characterized by similarly short ranges and similar
depths, but the 4He2(l = 0) wave function differs surprisingly
from the 4He Ag (l = 0, 1, 2, 3) wave functions, with its tail
extending to about one thousand atomic units. This long-range
nature of the 4He2 wave function is, as is well known, due to
the vicinity of its energy level to the two-body breakup thresh-
old, leading to a very large s-wave scattering length. In Table I,
we summarize the 4He2 and 4He Ag bound-state energy levels

TABLE I. 4He2 and 4He Ag bound-state energy levels E2 (given
in a.u. and kelvin) and the relevant s-wave scattering lengths (given
in a.u. and Å).

l E2 (K) E2 (a.u.) a (Å) a (a.u.)

4He 4He 0 −1.310×10−3 −4.148 × 10−9 100 189
4He Ag 0 −3.248 −1.028 × 10−5 0.33 0.17

1 −2.805 −0.883 × 10−6

2 −1.938 −6.136 × 10−6

3 −0.691 −2.188 × 10−6
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FIG. 2. The lowest adiabatic hyperspherical potential curves
Uν (R) (ν = 1, 2, . . . , 12) as functions of the hyperradius R for
4He + 4He + Ag in the J
 = 0+ symmetry. The dashed curves
denote the recombination channels, and the solid curves the entrance
channels.

(given in a.u. and Kelvin) and the relevant s-wave scattering
lengths (given in a.u. and Å).

III. RESULTS

Since 4He2 and 4He Ag possess respectively one l =
0 bound state and four l = 0, 1, 2 and 3 bound states,
three-body recombination is allowed to all the five product
states, 4He Ag(l = 0, 1, 2, 3) + 4He and 4He2(l = 0) + Ag,
for the parity-favored cases 
 = (−1)J . However, for the
parity-unfavored cases, 
 = (−1)J+1, by symmetry require-
ments, recombination is restricted to the three product states,
4He Ag(l = 1, 2, 3) + 4He, and is prohibited to the two other
product states, 4He Ag(l = 0) + 4He and 4He2(l = 0) + Ag.
Three-body recombination from the parity-unfavored cases is
found to take place only at collision energies E � 0.1 K, and
the recombination rates are negligible at collision energies
below about 0.1 K. We performed recombination rate calcu-
lations for total angular momenta up to J = 6 and 
 = ±1,
seemingly enough partial waves to obtain converged total
recombination rates at E � 0.2 K.

We show here only the J
 = 0+ and 1− adiabatic
hyperspherical potential curves as functions of the
hyperradius R, which are presented respectively in Figs. 2
and 3, but for the other symmetries, they are seen to possess
similar features. The dashed curves in these figures denote the
recombination channels, i.e., the final-state channels of the
recombination process, corresponding to one of the possible
product states, where two of the three atoms are bound with
the third atom far away. The effective hyperradial potentials,
defined as Wν (R) ≡ Uν (R) − Qνν (R)/(2μ), for these channels
possess asymptotic behavior given by

Wf (R)
R→∞≈ l f (l f + 1)

2μR2
+ EF

2 , (39)

where EF
2 is the bound-state energy level of the product

molecule F = 4HeAg (l = 0, 1, 2, 3) or 4He2(l = 0), and
l f the corresponding angular momentum of the third atom
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)

FIG. 3. The lowest adiabatic hyperspherical potential curves
Uν (R) (ν = 1, 2, . . . , 18) as functions of the hyperradius R for
4He + 4He + Ag in the J
 = 1− symmetry.

relative to the product molecule. In Figs. 2 and 3, the solid
curves denote the three-body continuum channels, i.e., the
entrance channels, whose asymptotic behavior is described by

Wi(R)
R→∞≈ λi(λi + 4) + 15/4

2μR2
, (40)

where λi(λi + 4) is the eigenvalue of the grand angular-
momentum operator �2 [Eq. (2)]. λi can take on any integer
value, but its possible values are restricted by symmetry
requirements.

Seen from Figs. 2 and 3, the characteristic short-distance
sharp avoided crossings appear only at the collision energies a
little above 1 K for J
 = 0+, but they appear at all the energy
range shown here for J
 = 1− and are expected to become
more complicated for the higher total angular-momentum
states. All these sharp avoided crossings are known to produce
numerical difficulties when applying the traditional adiabatic
hyperspherical approach.

The product-state-selective total and partial 4He + 4He +
Ag recombination rates, K3 and KJ


3 , as functions of
the collision energy E , are presented in Fig. 4. In
Fig. 4(a), where the recombination rates for the process
4He + 4He +Ag → 4HeAg(l = 0) + 4He are shown, the
partial recombination rates at the lower collision energies are
seen to behave as KJ


3 ∝ Eλmin , where λmin is the minimum
number of λi in Eq. (40) allowed by symmetry requirements,
as is predicted by a generalized Wigner threshold law [41].
For the parity-favored cases, i.e., J
 = 0+, 1−, 2+, 3−, etc.,
we have λmin = 0, 1, 2, 3, etc., and the low-energy partial
rates are dominant in the order 0+, 1−, 2+, 3−, etc. This
trend is also seen to apply for the partial recombination rates
leading to the other three product molecules 4He Ag(l = 1),
4He Ag(l = 2), and 4He Ag(l = 3), as are shown in
Figs. 4(b)–4(d), respectively. The partial recombination
rates for the process 4He + 4He +Ag → 4He2(l = 0) + Ag
in Fig. 4(e) differ significantly from those to those other
product states. Here, the J � 2 partial recombination rates
increase quickly with the collision energies E � 10−4 K,
compete with the 0+ and 1− partial rates, and even these
collision energies less than 10−4 K appear to be outside the
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FIG. 4. Product-state-selective total and partial 4He + 4He + Ag
recombination rates, K3 and KJ


3 , as functions of the collision en-
ergy E to the final states (a) 4He Ag(l = 0) + 4He, (b) 4He Ag(l =
1) + 4He, (c) 4He Ag(l = 2) + 4He, (d) 4He Ag(l = 3) + 4He, and
(e) 4He2(l = 0) + Ag. The solid curves denote the total rates, and
the dashed curves the partial rates labeled J
.

threshold regime. The Wigner threshold law for the 4He2

+ Ag recombination channel is found to hold in different
collision energies for the 4He Ag + 4He recombination
channels, which can be explained by the very large extent of
the 4He + 4He wave function. In Fig. 4(e), we can observe,
in the J
 = 0+ rate to 4He2(l = 0), a Stückelberg minimum
due to the destructive interference of two pathways, which is
a characteristic of the 0+ recombination to a weakly bound
diatomic molecule with the scattering length being large and
positive [1,21]. This minimum occurs indeed, since the 4He2

molecule is weakly bound, and possesses a large positive
scattering length, see Table I. In contrast, we do not see any
such Stückelberg minimum, at least in the considered energy
range, in the 0+ recombination rates to the different rotational
states of 4He Ag presented in Figs. 4(a)–4(d), since 4He Ag is
not so weakly bound and possesses a positive but very small
scattering length, as is given in Table I.

In Fig. 5(a), we compare the total 4He + 4He + Ag re-
combination rates to the different product states, as functions
of the collision energy E . We observe that, at low collision
energies, the recombination rate to 4He Ag(l = 3) dominates
over those to the other product states. However, the rate
to 4He2(l = 0) is seen to increase from E � 10−3 K, and
become dominant over those to the other product states
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FIG. 5. (a) Product-state-selective total three-body recombi-
nation rates K3 as functions of the collision energy E for
the processes 4He + 4He +Ag → 4HeAg(l = 0, 1, 2, 3) + 4He and
4He + 4He +Ag → 4He2(l = 0) + Ag. (b) Branching ratio of the
three-body recombination rates in panel (a) as functions of the colli-
sion energy E .

at E � 10−2 K. The branching ratios obtained from these
product-state-selective total three-body recombination rates
are shown in Fig. 5(b). We can see again that the branch-
ing ratio to 4He Ag(l = 3) + 4He dominates at E � 10−2 K,
while, at E � 10−2 K, recombination takes place mainly to
4He2(l = 0) + Ag. This trend can be explained in terms of
the J
 = 0+ hyperspherical adiabatic potential curves and
nonadiabatic couplings. Figure 6 illustrates qualitatively the
physical picture of the 4He Ag(l = 3) and 4He2(l = 0) recom-
bination processes dominant at low and high collision energies
E . In Fig. 6, from bottom to top, the three J
 = 0+ hy-
perspherical potential curves associated with the 4He Ag(l =
3) + 4He, 4He2 + Ag recombination channels, and the lowest
three-body 4He + 4He + Ag entrance channel are depicted as
functions of the hyperradius R. The gray box at small hyper-
radii indicates the region where the nonadiabatic couplings
maximize, namely, the nonadiabatic transition region. The
blue dashed and brown dash-dotted lines denote the recom-
bination pathways dominant at low collision energies and at
high collision energies, respectively. At any positive energy,
the three particles are asymptotically free as R → ∞. At low
collision energies E , once the system tunnels inward under
the three-body 4He + 4He + Ag channel barrier, it can hardly
recombine to the 4He2 + Ag potential curve since the latter
channel possesses a repulsive barrier and makes the nonadi-
abatic transition region energetically less accessible. Instead,
the system can easily recombine to the 4He Ag(l = 3) + 4He
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FIG. 6. Schematical three J
 = 0+ hyperspherical potential
curves associated with the 4He Ag(l = 3) + 4He, 4He2 +Ag recom-
bination channels, and three-body 4He + 4He + Ag entrance channel
from bottom to top (solid blue, solid brown, and solid violet curves
respectively). The gray box indicates the hyperradial nonadiabatic
transition region. The blue dashed and brown dash-dotted lines de-
note respectively the recombination pathways dominant at lower
collision energies and at higher collision energies, respectively.

potential curve due to its attractive nature that makes the
transition region energetically accessible, as is indicated as
the blue dashed line in Fig. 6. This interplay between the
repulsive or attractive potential curves and the nonadiabatic
couplings can explain qualitatively why the recombination
to 4He Ag(l = 3) is favored over that to 4He2(l = 0) at low
energies. At high collision energies, in contrast, both of
the two recombination channels can access energetically the
nonadiabatic transition region, but the system can recombine
preferably to the 4He2(l = 0) + Ag potential curve, as indi-
cated as the brown dash-dotted line in Fig. 6, since the latter
channel is the closest to the entrance channel.

Table II presents the total three-body recombination
rates at the zero-energy limit, together with those for the
4He + 4He + 7Li and 4He + 4He + 23Na systems taken from
Ref. [19]. The product-state-selective zero-energy total re-
combination rates for the 4He + 4He + Ag system are found
to be dominant in the order 4He Ag(l = 3), 4He Ag(l = 1),
4He2(l = 0), 4He Ag(l = 0), and 4He Ag(l = 2). Obviously,
this finding does not appear to agree with the expectation that,
in ultracold three-body recombination processes, the produc-
tion rate of a molecule generally decrease with its binding
energy [42]. Therefore, the reason for this dependence of
the production rate on the binding energy and the physics
governing it remain unclear but can be explained in terms of
the adiabatic potential curves and nonadiabatic couplings, as
discussed so far. When comparing with the 4He + 4He + 7Li
and 4He + 4He + 23Na recombination rates, the 4He + 4He +
Ag recombination rates are found to be surprisingly small, and
two or three orders of magnitude smaller, and the relatively

TABLE II. Total three-body recombination rates at the zero-
energy limit for the 4He + 4He +X systems with X = Ag, 7Li, and
23Na. The rates for X = Ag are obtained in the present work, and
those for X = 7Li and 23Na are taken from Ref. [19].

Initial state Final state K3(E → 0) (cm6/s)

4He + 4He + Ag 4He Ag(l = 0) + 4He 8.3 × 10−31

4He Ag(l = 1) + 4He 1.9 × 10−30

4He Ag(l = 2) + 4He 8.2 × 10−31

4He Ag(l = 3) + 4He 1.6 × 10−29

4He2(l = 0) + Ag 8.7 × 10−31

4He + 4He + 7Li 4He 7Li(l = 0) + 4He 5.1 × 10−28

4He2(l = 0) + 7Li 2.2 × 10−28

4He + 4He + 23Na 4He 23Na(l = 0) + 4He 2.3 × 10−29

4He2(l = 0) + 23Na 2.3 × 10−29

tightly bound nature of the helium-silver interaction might be
playing a role in these suppressed 4He + 4He + Ag recombi-
nation processes.

IV. SUMMARY

In this work, we have studied three-body recombination
in 4He + 4He + Ag collisions at energies below 200 mK.
We have successfully calculated the product-state-selective
partial and total recombination rates up to the J
 = 6± sym-
metries, by applying the hybrid SVD-adiabatic hyperspherical
R-matrix propagation approach. At collision energies below
E � 100 mK, the partial rates to the product molecules
4He Ag(l = 0, 1, 2, 3) behave as predicted by the general-
ized Wigner threshold law, while the J � 1 partial rates to
4He2(l = 0) increase much more rapidly and appear to be out-
side the threshold regime even at fairly low collision energies
E ≈ 0.1 mK. At E � 10 mK, three-body recombination takes
place dominantly to the 4He Ag(l = 3) product molecule,
but at E � 10 mK, the three atoms recombine preferably
to 4He2(l = 0) product molecule. Extensions of the present
calculations to higher collision energies and to the 3He + 3He
+ Ag system are also interesting subjects of study, but several
technical difficulties are likely to arise due to the rapidly
increasing number of contributing partial waves at higher
collision energies.
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