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Full leading-order nuclear polarization in highly charged ions
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The nuclear-polarization corrections to the energy levels of highly charged ions are systematically investigated
to leading order in the fine-structure constant. To this end, the notion of effective photon propagators with
nuclear-polarization insertions is employed, where the nuclear excitation spectrum is calculated by means
of the Hartree-Fock-based random-phase approximation. The effective Skyrme force is used to describe the
interaction between nucleons, and the model dependence is analyzed. To leading order, the formalism predicts
two contributions given by the effective vacuum-polarization and self-energy diagrams. The existing ambiguity
around the vacuum-polarization term is resolved by demonstrating that it is effectively absorbed in the standard
finite-nuclear-size correction. The self-energy part is evaluated with the full electromagnetic electron-nucleus
interaction taken into account, where the importance of the effects of the nuclear three-currents is emphasized.
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I. INTRODUCTION

Ever since the first experimental detection of a nuclear-
structure effect (i.e., the field shift) in the hyperfine spectra
of the thallium isotopes 203Tl and 205Tl in 1931 [1], there have
been extraordinary advances in high-precision atomic physics,
both from the experimental and the theoretical sides. On the
one hand, this has led to a multitude of remarkable appli-
cations such as stringent tests of quantum electrodynamics
(QED) [2–5], determination of fundamental physical con-
stants [6–9], including the search for their variation [10–14],
as well as the quest for physics beyond the standard model
[15–17]. On the other hand, these applications are now be-
coming more and more limited by the ability to accurately
take into account the increasingly more pronounced nuclear-
structure effects. This is especially true for highly charged
ions, which hold a special place in the field due to their
simplicity and the extreme electromagnetic environments they
provide. These advantages, however, come with the price of
strong sensitivity to the size [18,19], the shape [20–22], and
even the internal dynamic structure [23–25] of the nucleus.
The latter is known as the nuclear-polarization (NP) effect,
and it poses one of the biggest challenges in theoretical de-
scription of the spectra of highly charged ions. Furthermore,
in the closely related field of muonic atoms, the NP correction
has been the main suspect and thus the center of attention
with regard to longstanding discrepancies between theory and
experiment [26].
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On the fundamental level, the NP effect stems from the
difference between a static nuclear charge distribution, which
is a common approximation in atomic calculations, and the
true dynamic nature of the nucleus with the intricate motion
of individual protons and neutrons within it. Thus, the first
calculations of the NP corrections to atomic energy levels of
hydrogenlike ions were carried out by means of the ordinary
second-order perturbation theory [27]. This approach, how-
ever, is immediately challenged for relativistic systems by the
presence of the negative continuum in the electronic Dirac
spectrum. As with any other difficulties plaguing the relativis-
tic single-particle quantum mechanics, this issue could only
be resolved within a field-theoretical description [23–25],
where the vacuum contribution arises naturally. Indeed, as it
turned out, a naive extension of the summation incorporates
the negative part of the Dirac spectrum with a wrong ex-
pression in the energy denominator [28], while omitting this
contribution leads to a significant overestimation of the NP
effect.

Despite the success and the power of the field-theoretical
approach for NP, there are still aspects of it that have not
received enough attention in the literature. First, to lead-
ing order in the fine-structure constant, this formalism leads
to two terms corresponding to the effective self-energy and
vacuum-polarization diagrams; however, only the former is
usually considered, while the latter is omitted entirely, with
only a few exceptions in the literature [29–31]. Additionally,
the question of possible double counting in the effective vac-
uum polarization, which was raised in Ref. [29], needs further
clarification. Second, in the calculations of the effective self-
energy contribution, only the longitudinal, or Coulomb, part
of the electron-nucleus interaction is often taken into account,
whereas it has been shown in Ref. [32] that the transverse
interaction is far from being negligible. Furthermore, from
the nuclear side of the computations, the common practice of
employing simple phenomenological sum rules for estimat-
ing the NP contributions from giant resonances [33], which
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are dominant in the case of spherical nuclei, does not allow
one to reliably assess the theoretical uncertainty of the NP
corrections. To the best of our knowledge, there is only one
fully microscopic study of NP for electronic systems, which
was carried out for hydrogenlike 208Pb81+ in the framework
of the random-phase approximation [32]. However, these
calculations were performed only for one set of the Migdal-
force parameters, and the nuclear model dependence was not
explored.

The aim of this paper is to present a complete overview
and analysis of the NP effect in highly charged ions to leading
order in the fine-structure constant α. That means considering
both the self-energy and the vacuum-polarization effec-
tive diagrams, taking into account the full electromagnetic
electron-nucleus interaction, incorporating a microscopic de-
scription of the nucleus as well as investigating the dominant
theoretical uncertainty stemming from the nuclear model
dependence. For this purpose, we first outline the general
field-theoretical formalism and the computational techniques
from both atomic and nuclear parts of the calculations. Then
we demonstrate for both electronic and muonic systems that
the effective vacuum polarization is already contained in the
standard finite-nuclear-size effect and thus does not need to be
included in the NP correction. Finally, we present our results
for the effective self-energy diagram for a series of hydrogen-
like ions and a wide range of parametrizations of the effective
Skyrme force, which is used in this work for nuclear descrip-
tion. Relative contributions from different nuclear excitation
modes, the importance of the transverse electron-nucleus in-
teraction, and the model uncertainties are discussed.

Relativistic system of units (h̄ = c = 1) and Heaviside
charge units (α = e2/4π, e < 0) are used throughout the pa-
per. Four-vectors (x) are represented by regular typeface,
while bold upright letters are used for three-vectors (x), whose
lengths are denoted by nonbold upright letters (|x| := x).

II. FORMALISM

A. Modified photon propagator

The starting point of any perturbative calculation is the def-
inition of a zeroth-order approximation. In the case of bound
atomic systems, we begin with the following Lagrangian den-
sity L(0) (omitting the issue of renormalization in this brief
overview for simplicity) [34,35]:

L(0) = Lfree
EM + ˆ̄ψ

(
iγ μ∂μ − me − eγ μAstat

μ

)
ψ̂, (1)

where ψ̂ (x) is the electron-positron field operator, me is the
electron mass, and γ μ are the Dirac matrices. Aμ

stat(x) denotes
a classical time-averaged electromagnetic four-potential gen-
erated by the nucleus, while Lfree

EM is the Lagrangian density for
the free electromagnetic field operator Âμ

free(x) [34]:

Lfree
EM = − 1

4 F̂μνF̂μν − 1
2ζ

(
∂σ Âσ

free

)2
, (2)

where F̂μν (x) = ∂μÂν
free(x) − ∂ν Âμ

free(x), the second gauge-
fixing term corresponds to the Lorenz condition, and the value
of the parameter ζ determines the gauge choice. In this sec-
tion, we assume for simplicity ζ = 1. The introduction of
the field Aμ

stat(x) in Eq. (1) corresponds to the external field
approximation [35] and allows one to describe bound states,

which are of central interest in atomic physics. The usual
interaction term is given by [34]

Lint = −e ˆ̄ψγ μψ̂Âfree
μ , (3)

and it is responsible for all kinds of QED corrections, which
can be calculated in the so-called Furry picture [36] while
treating the nucleus simply as a static charge distribution.

In order to treat the NP effect on the same field-theoretical
footing, the total nuclear four-current density operator Ĵμ

N is
introduced as the following sum [23]:

Ĵμ
N (x) = Jμ

N, stat(x) + Ĵμ

N, fluc(x), (4)

with the classical static part Jμ
N, stat corresponding to the av-

erage over the nuclear ground state and the fluctuating part
Ĵμ

N, fluc describing the intrinsic nuclear dynamics. In the same
way as Jμ

N, stat is taken into account by introducing the cor-
responding classical field Aμ

stat in Eq. (1), a second-quantized
photon field Âμ

fluc can be associated with the fluctuating current
Ĵμ

N, fluc. In this view, a bound atomic electron interacts with the
total electromagnetic field

Âμ

total(x) = Aμ
stat(x) + Âμ

fluc(x) + Âμ

free(x)

= Aμ
stat(x) + Âμ

rad(x), (5)

where the total quantum radiation field Âμ

rad is defined as the
sum of the free photon field Âμ

free and the fluctuating part Âμ

fluc
generated by Ĵμ

N, fluc. The latter is described by the following
equation of motion:

∂2Âμ

fluc(x) = Ĵμ

N, fluc(x). (6)

As a consequence, in order to keep utilizing the standard
machinery of Wick’s theorem and Feynman diagrams, one is
led to the modified photon propagator

iDμν (x, x′) = 〈0|T [
Ârad

μ (x)Ârad
ν (x′)

]|0〉, (7)

instead of the usual free photon propagator given by

iDμν (x − x′) = 〈0|T [
Âfree

μ (x)Âfree
ν (x′)

]|0〉, (8)

where |0〉 denotes the vacuum state in the presence of the
external field Aμ

stat(x), which corresponds to the nucleus being
in its ground state. Since the mixed terms arising from Eq. (7)
vanish, only the 〈0|T [Âfluc

μ (x)Âfluc
ν (x′)]|0〉 term needs to be

evaluated.
By using the fact that the free photon propagator is the

Green’s function of the free equation of motion:

∂2Dμν (x) = ημνδ
(4)(x), (9)

and performing integration by parts with vanishing boundary
terms, one can show that

〈0|T [
Âfluc

μ (x)Âfluc
ν (x′)

]|0〉

=
∫

d4x1 d4x2 ημξ δ
(4)(x − x1)

× 〈0|T [
Âξ

fluc(x1)Âζ

fluc(x2)
]|0〉ηζνδ

(4)(x2 − x′)

=
∫

d4x1 d4x2
{
∂2

x1
Dμξ (x − x1)

}
× 〈0|T [

Âξ

fluc(x1)Âζ

fluc(x2)
]|0〉{∂2

x2
Dζν (x2 − x′)

}
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=
∫

d4x1 d4x2 Dμξ (x − x1)

× 〈0|∂2
x2
∂2

x1
T

[
Âξ

fluc(x1)Âζ

fluc(x2)
]|0〉Dζν (x2 − x′). (10)

It is important to note that the derivatives in the last line
of Eq. (10) act not only on the fields Âμ

fluc but also on the
Heaviside step functions θ from the time-ordered product:

T [Â(x1)B̂(x2)] = θ
(
x0

1 − x0
2

)
Â(x1)B̂(x2)

+ θ
(
x0

2 − x0
1

)
B̂(x2)Â(x1), (11)

producing an additional term that we denote as iSξζ
N (x1, x2):

〈0|∂2
x2
∂2

x1
T

[
Âξ

fluc(x1)Âζ

fluc(x2)]|0〉
= 〈0|T [

Ĵξ

N, fluc(x1)Ĵζ

N, fluc(x2)
]|0〉 + iSξζ

N (x1, x2), (12)

while the resulting two-point current correlation function de-
fines the so-called NP tensor

i�ξζ
N (x1, x2) = 〈0|T [

Ĵξ

N, fluc(x1)Ĵζ

N, fluc(x2)
]|0〉. (13)

Going back to Eq. (7), the expression for the modified photon
propagator can be written as

Dμν (x, x′) = Dμν (x − x′) + DNP
μν (x, x′), (14)

defining the NP correction DNP
μν (x, x′) to the free photon prop-

agator as follows:

DNP
μν (x, x′) =

∫
d4x1 d4x2 Dμξ (x − x1)

× [
�

ξζ
N (x1, x2) + Sξζ

N (x1, x2)
]
Dζν (x2 − x′).

(15)

In the original paper [23] by Plunien et al., where the
modified photon propagator (7) was first introduced, only
the NP tensor appeared in the final expression. However,
it was pointed out back in 1961 by Johnson that a time-
ordered product of two currents is in general not a covariant
function [37]. Thus, the role of the iSξζ

N term is to main-
tain the Lorentz covariance of the vacuum expectation value
〈0|T [Âfluc

μ (x)Âfluc
ν (x′)]|0〉 and the modified photon propagator

as a whole. In addition, Brown demonstrated a connection
between the requirement of gauge invariance and the restored
Lorenz covariance of a properly defined two-point current
correlation operator [38]. This requirement implies that

∂x1,ξ

(
i�ξζ

N (x1, x2) + iSξζ
N (x1, x2)

) = 0, (16)

which leads to

〈0|δ(x0
1 − x0

2

)[
Ĵ0

N, fluc(x1), Ĵζ

N, fluc(x2)
]|0〉

+ 〈0|T [
∂x1,ξ Ĵξ

N, fluc(x1)Ĵζ

N, fluc(x2)
]|0〉

+ i∂x1,ξ Sξζ
N (x1, x2) = 0, (17)

where the second term is equal to zero due to the continuity
equation of nuclear charge conservation. While the equal-time
commutator in Eq. (17) vanishes for ζ = 0, it was shown
by Schwinger from fundamental principles of quantum field
theory that charge and current (ζ = 1, 2, 3) densities cannot
commute at a common time [39]. It follows from Eq. (17) that
these nonvanishing commutators, known as the Schwinger

terms, must be canceled by the divergence of iSξζ
N , if gauge in-

variance is to be satisfied. The contribution iSξζ
N is often called

the seagull or catastrophic term, and this kind of cancellation
is in fact a very general result in current-algebra theories [40].

It is clear that the expression for iSξζ
N depends on a specific

definition of Ĵμ
N . For example, it can be shown that in the case

of the nonrelativistic nuclear charge-current density operators
the seagull term takes on the following form [32]:

Sξζ
N (x1, x2) = |e|〈0|ρ̂N(x1)|0〉

Mp
δξζ δ(4)(x1 − x2), (18)

where ρ̂N(x1) := Ĵ0
N(0, x1), Mp is the proton mass, and δξζ is

the Kronecker delta extended to four dimensions with δ00 = 0.

B. Nuclear-polarization insertion

As one can see from Eq. (14), every photon line in ordinary
QED diagrams receives the NP correction in the form of
Eq. (15). The part [�ξζ

N + Sξζ
N ] in between the two free photon

propagators is called the NP insertion, and it contains all the
information about the intrinsic nuclear dynamics. In order to
implement this correction in practical calculations, we employ
the two-time Green’s function method from Ref. [41]. For this
purpose, we need a Fourier-transformed version of DNP

μν with
respect to the time variables.

First, by writing the time evolution of the Heisenberg
operators Ĵμ

N, fluc(t, x), inserting a complete set of nuclear ex-
citations |λ〉 in Eq. (13) [the ground state does not contribute
due to the definition in Eq. (4)], and using the integral repre-
sentation of the Heaviside step function, it is easy to show that
the NP tensor is homogeneous in time [24]:

�
ξζ
N (t1 − t2, x1, x2) =

∫
dω

2π
e−iω(t1−t2 )�̃

ξζ
N (ω, x1, x2), (19)

with

�̃
ξζ
N (ω, x1, x2) =

∑
λ

(
〈0|Ĵξ

N(x1)|λ〉〈λ|Ĵζ
N(x2)|0〉

ω − ωλ + i0

−〈λ|Ĵξ
N(x1)|0〉〈0|Ĵζ

N(x2)|λ〉
ω + ωλ − i0

)
, (20)

where Ĵμ
N (x) := Ĵμ

N (0, x), and ωλ = Eλ − E0 are the nuclear
excitation energies. Similarly, the Fourier-transformed version
of the seagull term (18) reads

S̃ξζ
N (ω, x1, x2) = |e|〈0|ρ̂N(x1)|0〉

Mp
δξζ δ(3)(x1 − x2). (21)

Then, by using Eq. (19) together with

Dμξ (x − x1) =
∫

dω

2π
e−iω(t−t1 )D̃μξ (ω, x − x1), (22)

one readily obtains the desired equivalent of Eq. (15):

D̃NP
μν (ω, x, x′) =

∫
d3x1d3x2 D̃μξ (ω, x − x1)

× [
�̃

ξζ
N (ω, x1, x2) + S̃ξζ

N (ω, x1, x2)
]

× D̃ζν (ω, x2 − x′). (23)
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FIG. 1. Feynman rule for evaluating the NP correction to the
photon propagator.

Thus, we can supplement the set of the Feynman rules in
Ref. [41] with an additional one shown in Fig. 1. The NP
insertion is represented by a shaded circle, and, by analogy
with the rule for an internal photon line, the energy variable ω

has to be integrated over.
To leading order in the fine-structure constant, the NP

insertion can be applied to both the self-energy (SE) and
the vacuum-polarization (VP) corrections resulting in the two
effective diagrams presented in Fig. 2. Analogously to the
ordinary SE and VP effects, the following general expressions
for the energy shifts of an electronic level |a〉 due to the SE-NP
and VP-NP diagrams are obtained as

�ESE-NP
a = ie2

2π

∑
n

∫
d3xd3x′dω D̃NP

μν (ω, x, x′)

× ψ̄a(x)γ μψn(x)ψ̄n(x′)γ νψa(x′)
εa − ω − εn(1 − i0)

, (24)

�EVP-NP
a = − ie2

2π

∫
d3xd3x′dη D̃NP

μν (0, x, x′)

× ψ̄a(x)γ μψa(x)Tr[S(η, x′, x′)γ ν], (25)

where the dressed electron propagator

S(η, x1, x2) =
∑

n

ψn(x1)ψ̄n(x2)

η − εn(1 − i0)
(26)

is constructed from a complete set of eigenstates and eigen-
values of the stationary single-particle Dirac equation:

[−iα · ∇ + βme + V (x)]ψn(x) = εnψn(x), (27)

with V (x) = eA0(x) denoting the potential energy corre-
sponding to the electrostatic potential of an atomic nucleus,
β = γ 0, and αi = γ 0γ i (i = 1, 2, 3).

The SE-NP contribution has received much more attention
in the literature because of its correspondence to the usual
NP correction calculated earlier in second-order perturbation
theory. In the language of field theory, Eq. (24) can also be
interpreted as a two-photon exchange between the bound elec-
tron and the nucleus, with the ladder and the cross diagrams

in Fig. 2(a) corresponding to the first and the second terms
in the expression (20) for the NP tensor, respectively. The
seagull term (21) can be represented as a coupling of the
electromagnetic currents to the nucleus at the same point,
and its physical significance is to ensure gauge invariance of
the calculated SE-NP corrections. In this work, we employ
the formulas for the ladder, cross, and seagull terms in the
momentum representation that can be found in Ref. [32]. As
for the VP-NP contribution, we present some more details on
it in the following section.

C. Effective vacuum polarization

The trace part of Eq. (25) can be rewritten as [42]

−ieTr

[∫
dη

2π
S(η, x′, x′)γ ν

]
= −ieTr[S(x, x′)γ ν]x→

sym
x′

= 〈0| ĵν (x′)|0〉, (28)

where the current operator of the Dirac field is defined
as ĵν (x′) = e

2 [ ˆ̄ψ (x′), γ νψ̂ (x′)], and the limit x = x′ is ap-
proached symmetrically from t = t ′ − 0 and t = t ′ + 0. To
first order in Zα, this induced current is related to the static
external current of the nucleus in momentum space as follows
[42]:

〈 ĵν (x′)〉(1) =
∫

d3k

(2π )3
�(1)

ren(−k2)J̃ν
N, stat(k)eik·x′

, (29)

with the renormalized Uehling polarization function

�(1)
ren(−k2) = − 2α

3meπ

∫ ∞

1

dξ

ξ

√
1 − 1

ξ 2

×
(

1 + 1

2ξ 2

)
k2

k2 + (2meξ )2
. (30)

Since we consider electrostatic nuclear potentials, the only
nonvanishing component in Eq. (29) is the nuclear ground-
state charge density J̃0

N, stat(k) := ρ̃N(k). As a result, only the
component DNP

00 (0, x, x′) contributes to the VP-NP energy
shift:

�EVP-NP(1)
a = e

∫
d3xd3x′ ψ†

a (x)ψa(x)

× D̃NP
00 (0, x, x′)ρ (1)

VP (x′), (31)

FIG. 2. (a) Effective self-energy and (b) vacuum-polarization diagrams as a result of applying the NP insertion (shaded circle) to the
photon propagator (wavy line). The former can be interpreted as a two-photon exchange between the bound atomic electron (double line)
and the nucleus (single solid line), which includes the ladder, the cross, and the seagull diagrams; while the latter can be understood as the
interaction of the induced vacuum polarization with the bound electron via additional virtual nuclear excitations.
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where ρ
(1)
VP (x′) := 〈 ĵ0(x′)〉(1) is the induced vacuum-

polarization density. In this case, the NP correction to
the photon propagator is obtained most conveniently in the
Coulomb gauge:

D̃NP
00 (0, x, x′) =

∫
d3x1d3x2

1

4π |x − x1|
× �̃00

N (0, x1, x2)
1

4π |x2 − x′| . (32)

Moreover, in the case of spherically symmetric nuclear charge
distributions ρ̃N, the induced vacuum-polarization density ρ

(1)
VP

becomes spherical, too. This fact leads to a further simplifica-
tion of Eqs. (31) and (32) when one takes into account the
following expression for the nuclear matrix elements entering
the NP tensor [43]:

〈λ(JM )|ρ̂N(x)|0〉 = ρ tr
λ (x)Y ∗

JM (�x), (33)

where ρ tr
λ (x) is the radial charge transition density for a nu-

clear excited state |λ〉 with the angular quantum numbers J
and M. Thus, it is easy to see that only the monopole part
of the Coulomb interaction in Eq. (32) survives, which also
means that only the monopole nuclear excitations (the so-
called breathing modes) contribute to the VP-NP correction.
In this case, the NP tensor takes on an especially simple form:

�̃00
N (0, x1, x2) = −

∑
λ(J=0)

1

2πωλ

ρ tr
λ (x1)ρ tr

λ (x2), (34)

such that

D̃NP
00 (0, x, x′) = −

∑
λ(J=0)

1

2πωλ

I tr
λ (x)I tr

λ (x′), (35)

where

I tr
λ (x) =

∫ ∞

0
y2dy

ρ tr
λ (y)

max(x, y)
. (36)

Finally, we also recall that in central potentials V (x) the elec-
tron wave function factorizes into the radial and angular parts:

ψnκm(x) = 1

x

(
Gnκ (x)Ωκm(�x)

iFnκ (x)Ω−κm(�x)

)
, (37)

where n is the principal quantum number, κ is the relativistic
angular momentum number, m is the total magnetic number,
and Ω±κm(�x) are the spherical spinors. After collecting ev-
erything together, we obtain the following expression for the
VP-NP energy shift:

�EVP-NP(1)
a = −e

∑
λ(J=0)

1

2πωλ

Mλ,aIVP
λ , (38)

with

Mλ,a =
∫ ∞

0
dx

[
G2

naκa
(x) + F 2

naκa
(x)

]
I tr
λ (x), (39)

IVP
λ = 4π

∫ ∞

0
x2dx ρ

(1)
VP (x)I tr

λ (x). (40)

We note that the VP-NP correction can also be expressed in
terms of the reduced transition probabilities B(E0), which was
done in Ref. [29].

D. Computational techniques

The calculations of the NP corrections require input from
both atomic and nuclear physics. For the atomic part, we solve
the stationary Dirac equation (27) numerically by confining
the system to a spherical cavity of a large radius and expand-
ing the radial part of the electron wave function in terms of
B splines within the dual-kinetic-balance approach [44]. The
resulting generalized matrix eigenvalue equations are then
readily solved by means of the LAPACK library. This approach
is especially useful in the case of the SE-NP correction since
it allows us to reduce the infinite sum over the bound states
and the integrals over the positive and negative continua to
finite sums with no remainders to evaluate. At the same time,
the convergence of the results is readily controlled by varying
the size of the cavity and the number of B splines used.
As for the central nuclear potential V (x) corresponding to
the zeroth approximation, it is sufficient to construct it from
the simple two-parameter Fermi charge distribution ρN(x) =
ρ0{1 + exp[(x − c)/a]}−1, where we use the standard value of
the diffuseness parameter a = 2.3/[4 ln(3)] fm and adjust the
half-density radius c such that the tabulated values [45] of the
root-mean-square (RMS) radii are reproduced.

For the nuclear part of the computations, we employ the
skyrme_rpa program [43] in order to obtain the entire nu-
clear excitation spectrum. In the first step, the self-consistent
Hartree-Fock mean field is built assuming the effective
Skyrme-type interaction between the nucleons. Then, based
on this mean field, the excited nuclear states are calculated
in the framework of the random-phase approximation (RPA).
Under the spherical symmetry assumption, the RPA equa-
tions are solved separately for given angular momentum and
parity Jπ . In our calculations we take into account the 0+, 1−,
2+, 3−, 4+, 5−, and 1+ excitation modes. The completeness of
the obtained spectra is controlled by the degree of fulfillment
of the energy-weighted sum rule. In addition, we extended
the code to include the transition densities for the nuclear
three-currents, which are needed for the transverse part of the
SE-NP corrections. Nonrelativistic charge-current operators
are used in the calculations of the nuclear matrix elements,
and the corresponding expressions can be found in Ref. [46].

III. RESULTS AND DISCUSSION

A. Effective vacuum polarization

In this section we present the numerical results of our NP
calculations. First, we address the VP-NP diagram and its
physical meaning, as the question was raised in Ref. [29] on
whether this contribution might already be contained in the
ordinary finite-nuclear-size (FNS) effect. Based on a scaling
argument, the authors of Ref. [29] suggested that there is
a part of the VP-NP correction that is qualitatively distinct
from the standard FNS contribution; however, they did not
provide a clear procedure of extracting it. At the same time,
the diagrammatic representation in Fig. 2(b) suggests that the
VP-NP effect corresponds to a correction to the Coulomb
potential of the nucleus due to the interaction between the
induced vacuum polarization and nuclear degrees of freedom.
Therefore, in this work, we approach this issue by additionally
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TABLE I. Comparison between the VP-NP corrections and the
increase of the FNS effects stemming from the enlargement of
the nuclear RMS charge radius (first row) due to introduction of the
Uehling potential into the mean field of the protons. The values are
given for the 208Pb nucleus with a single bound electron or muon in
the 1s1/2, 2s1/2, and 2p1/2 states. Four Skyrme parametrizations SKX,
KDE0, SLy5, and SkP are chosen as examples.

SKX KDE0 SLy5 SkP
�RRMS(am) 1.12 1.28 1.32 1.42

e−(meV) �FNS1s1/2 21.6 24.8 25.6 27.6
VP-NP1s1/2 21.1 23.6 24.8 26.9
�FNS2s1/2 3.75 4.30 4.44 4.78
VP-NP2s1/2 3.65 4.10 4.30 4.66
�FNS2p1/2 0.32 0.37 0.38 0.41
VP-NP2p1/2 0.32 0.35 0.37 0.40

μ−(keV) �FNS1s1/2 1124 1289 1330 1432
VP-NP1s1/2 1110 1247 1302 1407
�FNS2s1/2 218 250 258 277
VP-NP2s1/2 217 244 254 274
�FNS2p1/2 156 179 185 199
VP-NP2p1/2 151 169 178 193

considering the effect of the induced vacuum polarization on
the nuclear ground state.

To this end, we modify the skyrme_rpa program by intro-
ducing the Uehling potential [47]

VUe(r) = − 2α2

3mer

∫ ∞

0
dr′ r′ρp(r′)

∫ ∞

1

dξ

ξ 2

√
1 − 1

ξ 2

×
(

1 + 1

2ξ 2

)(
e−2me|r−r′|ξ − e−2me (r+r′ )ξ ) (41)

into the mean field generated by the protons with the density
distribution ρp(r′) and estimate the resulting change in the
RMS charge radius. The obtained enlargement of the nucleus
can then be translated into the corresponding increase of the
FNS effect (taken with respect to the tabulated RMS radius),
which we denote as �FNS. The VP-NP corrections calcu-
lated from the monopole excitation spectrum as described in
Sec. II C also decrease the atomic binding energies and can
be directly compared to the �FNS values. We present such
a comparison in Tables I and II, where the former contains
the results for the 208Pb nucleus and the SKX, KDE0, SLy5,
and SkP [48–51] parametrizations of the Skyrme force, while
the latter provides the values for the 120Sn, 90Zr, 60Ni, and
40Ca nuclei within the SLy5 model. In order to examine the
scaling behavior, both the electron and the muon are consid-
ered as a bound atomic particle, and the results are given for
the 1s1/2, 2s1/2, and 2p1/2 states. Considering both leptons
is of importance, given that the nuclear charge radii are de-
termined experimentally from muonic spectroscopy [52] and
subsequently used as input parameters in the description of
electronic systems. Therefore, it is essential to treat these two
cases consistently.

TABLE II. Comparison between the VP-NP corrections and the
increase of the FNS effects stemming from the enlargement of
the nuclear RMS charge radius (first row) due to introduction of
the Uehling potential into the mean field of the protons. The values
are given for the 120Sn, 90Zr, 60Ni, and 40Ca nuclei with a single
bound electron or muon in the 1s1/2, 2s1/2, and 2p1/2 states. The SLy5
parametrization of the Skyrme force is chosen as an example.

120Sn 90Zr 60Ni 40Ca
�RRMS(am) for SLy5 0.90 0.79 0.60 0.52

e−(μeV) �FNS1s1/2 664 182 23.6 4.34
VP-NP1s1/2 678 176 22.6 4.24
�FNS2s1/2 93.4 24.5 3.07 0.55
VP-NP2s1/2 95.5 23.8 2.94 0.54
�FNS2p1/2 2.54 0.41 0.024 0.0019
VP-NP2p1/2 2.59 0.40 0.024 0.0022

μ−(keV) �FNS1s1/2 337 186 53.3 15.9
VP-NP1s1/2 344 178 50.6 15.3
�FNS2s1/2 53.8 27.7 7.36 2.10
VP-NP2s1/2 55.0 26.5 6.98 2.01
�FNS2p1/2 11.6 3.02 0.27 0.029
VP-NP2p1/2 11.8 2.99 0.27 0.031

The extremely close agreement between the �FNS and
VP-NP values, independent of the state and the bound particle
considered, is clear evidence that the VP-NP effect simply
corresponds to the change in the nuclear charge radius due
to the induced vacuum polarization. Put differently, if one cal-
culates the VP-NP correction and expresses the corresponding
energy shift in terms of a shift of the RMS radius, the resulting
radius shift will be the same for different states and also
for electronic and muonic atoms. Since the experimentally
obtained nuclear charge radii are inseparable from such QED
corrections and thus already contain them, we conclude that
the VP-NP contribution does not need to be taken into account
as part of the NP effect.

B. Effective self-energy in Coulomb approximation

Before turning to the full SE-NP correction, let us first
consider the approximation commonly used in the literature.
Based on the argument that the velocities associated with
nuclear dynamics are mainly nonrelativistic, the contributions
from the nuclear three-currents ĴN are often neglected, mean-
ing that only the �00

N component of the NP tensor (the longi-
tudinal, or Coulomb, part) is taken into account. We refer to
this framework as the “Coulomb approximation.” Moreover,
the calculations can be simplified even further by express-
ing the SE-NP energy shift in terms of the experimentally
measurable nuclear transition probabilities B(EL; L → 0)λ
and excitation energies ωλ, resulting in the most widely used
formula for the SE-NP correction [28]:

�ESE-NP
a

C= −α
∑

n,λ,L,M

B(EL)λ|〈n|FLYLM |a〉|2
εn − εa + sgn(εn)ωλ

, (42)
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TABLE III. Model dependence of contributions with different
multipolarities to the Coulomb SE-NP shift (in meV) of the 1s1/2

level of hydrogenlike 208Pb81+. The corrections are obtained by
means of the formulas from Ref. [28] using the same experimental
and EWSR nuclear parameters (last row) as well as utilizing the
B(EL)λ and ωλ values obtained from the skyrme_rpa program [43]
with eleven different Skyrme parametrizations.

0+ 1− 2+ 3− Total

KDE0 −3.2 −18.8 −4.8 −1.8 −28.7
SKX −3.0 −19.3 −5.4 −1.9 −29.6
SLy5 −3.4 −19.5 −5.0 −1.9 −29.7
BSk14 −3.2 −20.0 −5.1 −1.8 −30.1
SAMi −3.4 −21.6 −5.1 −2.0 −32.1
NRAPR −3.5 −21.3 −5.2 −2.3 −32.4
SkP −3.6 −19.9 −5.6 −1.9 −31.0
SkM* −3.6 −21.6 −5.3 −1.9 −32.5
SGII −3.6 −22.1 −5.3 −2.0 −33.1
SKI3 −3.2 −20.9 −4.7 −1.9 −30.8
LNS −3.2 −19.5 −4.7 −1.6 −29.0

Exp.+EWSR −3.3 −17.2 −5.8 −2.6 −28.9

where the radial functions FL are often assumed to be

F0(x) = 5
√

π

2R3
0

[
1 −

(
x

R0

)2
]
θ (R0 − x), (43)

FL(x) = 4π

(2L + 1)RL
0

[
xL

RL+1
0

θ (R0 − x)

+ RL
0

xL+1
θ (x − R0)

]
, L � 1, (44)

with R0 being the radius of the nucleus as a homogeneously
charged sphere. However, the experimental B(EL)λ and ωλ

values are available only for low-lying nuclear states, while
the crucial contributions from the giant resonances have to be
estimated by resorting to phenomenological energy-weighted
sum rules (EWSR). In this approach, the giant resonances
are assumed to be concentrated in a single state for each
multipolarity and isospin. Since the skyrme_rpa program also
allows us to compute the B(EL)λ values, it is of interest
to compare the Coulomb SE-NP corrections calculated from
such a microscopic nuclear theory with the results obtained
from the experimental and EWSR nuclear parameters. Such
a comparison for the ground state of the 208Pb81+ ion is pre-
sented in Table III. Eleven different Skyrme parametrizations
[48–51,53–59] (nine of which have been shown to cover a
wide range in the parameter space [26]) have been used in the
microscopic calculations, while the last row has been calcu-
lated using the same B(EL)λ and ωλ values as in Ref. [28].
The results turn out to be quite stable with respect to a
nuclear model and are in remarkably good agreement with
the extremely simple EWSR estimations. To appreciate this
fact, we note that, unlike concentrating the giant resonances
in just a few states in the EWSR approach, the microscopic
RPA calculations produce numerous excitations, e.g., around
1500 for the 3− mode alone. It is also immediately apparent
that most of the nuclear model dependence comes from the
1− contribution, which is the largest one due to the longer

TABLE IV. SE-NP contributions (in meV) with different mul-
tipolarities for the 1s1/2 state of 208Pb81+ obtained with the SLy5
parametrization of the Skyrme force. Two ways of implementing
the Coulomb approximation are compared to the full calculation
including the transverse electron-nucleus interaction. See Secs. III B
and III C for more details.

[SLy5] 0+ 1− 2+ 3− Total

Coulomb, {B(EL)λ + FL} −3.4 −19.5 −5.0 −1.9 −29.7
Coulomb, ρ tr

λ −3.6 −22.3 −5.9 −2.2 −34.0
Coulomb + transverse −3.5 −30.1 −5.9 −2.2 −41.8

range of the dipole NP potential and which is almost entirely
dominated by the giant dipole resonances.

The use of Eq. (42) involves certain assumptions about
the radial dependence of the Coulomb part of the NP
tensor. It is not uncommon to employ the same radial func-
tions (44), which correspond to harmonic surface vibrations,
for all types of nuclear excitations, except for the special
case of the breathing modes, where Eq. (43) is used instead.
This simplification is justified by the small overlap between
electronic wave functions and a nucleus such that the details
of this radial dependence are of minor importance. Therefore,
it is also of interest to test this approximation by using �00

N
constructed directly from the RPA charge transition densities
ρ tr

λ [given by Eq. (33)] with a unique radial dependence for
each nuclear excitation. We compare the {B(EL)λ + FL} and
the ρ tr

λ results for the SLy5 parametrization in the first two
rows of Table IV, again using the 1s1/2 state of 208Pb81+ as
an example. One can see that the more accurate and detailed
treatment of the Coulomb SE-NP correction by means of ρ tr

λ

leads to slightly larger values, with most of the difference
coming from the dominant 1− contribution. Nevertheless, the
overall agreement between the EWSR estimation from the
last row of Table III and the microscopic calculation from
the second row of Table IV is noteworthy, given how much
simpler the former is compared to the latter.

C. Full effective self-energy

The assumption of including only the �00
N component

of the NP tensor turns out to be not as accurate as was
initially thought. It was argued in Refs. [32,46] that the trans-
verse electron-nucleus interaction is not negligible due to
the interference term with the Coulomb contribution. This
fact is illustrated in the last row of Table IV, where we
present the SE-NP corrections with the full electromagnetic
electron-nucleus interaction taken into account by means of
the formulas from Ref. [32]. We note that the transverse
interaction also leads to a small magnetic 1+ correction of
approximately +1.5 meV, thus contributing with the opposite
sign compared to the electric excitation modes. While the
0+, 2+, and 3− contributions are not influenced much by the
inclusion of the transverse part, the dominant 1− correction is
increased by as much as 35%.

In order to gain more insight into this difference, we plot
in Fig. 3 the sum of the ladder and the cross contributions
as a function of the intermediate electron energy for fixed
1− [Fig. 3(a)] and 2+ [Fig. 3(b)] nuclear excitations with
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FIG. 3. Contributions from different intermediate electronic states to the sum of the ladder and the cross parts of the SE-NP correction to
the 1s1/2 state of 208Pb81+ for single fixed (a) 1− and (b) 2+ nuclear excitations with the energies of 12.8 MeV and 12.2 MeV, respectively.
Dashed lines represent the Coulomb approximation, while the solid lines correspond to the full electron-nucleus interaction including the
transverse part. Different colors are used for the two allowed values of the relativistic angular number κ of the electronic states in both cases.
The nuclear part of the calculations is performed using the SLy5 Skyrme parametrization.

the energies of 12.8 MeV and 12.2 MeV, respectively. Both
of these nuclear states represent the largest contributions
from the giant resonances. The dashed lines are used for the
Coulomb approximation, while the solid lines correspond to
the full electron-nucleus interaction. Different colors repre-
sent the two allowed values of the relativistic angular quantum
number κ of the intermediate electronic states in both cases.
First, it is worth pointing out the large cancellations that
take place between the contributions from the positive- and
negative-energy parts of the Dirac spectrum, which makes the
precise evaluation of the total SE-NP correction a challenging
task. Then, by comparing Fig. 3(a) and Fig. 3(b) one notices
a striking difference in how the inclusion of the transverse
electron-nucleus interaction affects these two cases. While it
does not create much of a difference for the 2+ mode, sharp
peaks appear in the low-energy region for the 1− one. This
unique behavior is due to the fact that only in the dipole
case there are transverse form factors containing the non-
vanishing spherical Bessel function j0 at zero momentum
transfer [32].

At this point it is worthwhile to note the differences be-
tween spherical and deformed nuclei. Since we are employing
the RPA approach for the nuclear description, we are limited
in this work to the former case, where the SE-NP corrections
are dominated by the giant dipole resonances. For deformed
systems, on the other hand, the largest SE-NP contributions
come from low-lying 2+ nuclear excitations, as can be seen,
e.g., in Ref. [28] for 238U91+, where the lowest 2+ nuclear
state is responsible for more than 60% of the total (Coulomb)
SE-NP corrections, while the 1− contribution amounts to only
around 20%. Therefore, we expect the deformed cases to
be affected less by the inclusion of the transverse electron-
nucleus interaction than the spherical ones.

We now present in Table V the results of our full SE-NP
calculations including the 0+, 1−, 2+, 3−, 4+, 5−, and 1+
excitation modes. The energy shifts are given for five hydro-
genlike ions, namely 208Pb81+, 120Sn49+, 90Zr39+, 60Ni27+, and
40Ca19+, in the 1s1/2, 2s1/2, and 2p1/2 states. Again, in order to

explore the nuclear model dependence, the values have been
obtained using eleven different Skyrme parametrizations, ex-
cept for the case of 60Ni27+ where the LNS calculation breaks
down. In general, it can be seen that the SE-NP correction
exhibits a rather steep decrease for lower charge numbers Z
and loses about an order of magnitude when going to the next
principal or angular quantum number. For the most studied
208Pb81+ ion, we additionally present in Table VI a compar-
ison between our average values and the results of previous
calculations. The first row represents Ref. [28], where the
SE-NP corrections were obtained in the Coulomb approxima-
tion using the experimental and EWSR nuclear parameters,
with the pairs of values corresponding to different numerical
techniques. The second row contains the results of the full
microscopic calculations in Feynman and Coulomb gauges for
the Migdal nuclear force from Ref. [32]. We note that a more
striking difference between the Coulomb approximation and
the full calculation is observed in light systems, where, e.g.,
for 40Ca19+ the former produces the ground-state SE-NP cor-
rection of around −6 × 10−3 meV (also reported in Ref. [9]),
which is an order of magnitude smaller than the corresponding
values in Table V.

A conspicuous feature of Tables V and VI is that the in-
clusion of the transverse electron-nucleus interaction makes
the SE-NP corrections to the 2p1/2 state positive in our cal-
culations. As with the 1s1/2 correction discussed above, the
transverse interaction also in this case mainly affects the dom-
inant 1− contribution, which would otherwise be negative in
the Coulomb approximation. Moreover, the sum of the ladder
and the cross diagrams for the 2p1/2 state is still negative in
the full calculation, and it is the seagull term that plays the
crucial role in making the total 1− contribution positive. This
behavior is shown in Table VII for the 208Pb81+ ion and the
SLy5 parameter set, where the separate contributions from the
positive and negative parts of the electronic Dirac spectrum
are also provided. As one can immediately notice, extremely
large cancellations occur between the different terms to pro-
duce the total dipole SE-NP correction. In order to cross
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TABLE V. Full SE-NP corrections (in meV) to the 1s1/2, 2s1/2, and 2p1/2 energy levels of hydrogenlike ions 208Pb81+, 120Sn49+, 90Zr39+,
60Ni27+, and 40Ca19+. The results are given for eleven different Skyrme parametrizations in order to explore nuclear model dependence, with
the average values and the absolute uncertainties (half-ranges) provided in the last two rows.

208Pb81+ 120Sn49+ 90Zr39+ 60Ni27+[×101] 40Ca19+[×102]

Model 1s1/2 2s1/2 2p1/2 1s1/2 2s1/2 2p1/2 1s1/2 2s1/2 2p1/2 1s1/2 2s1/2 2p1/2 1s1/2 2s1/2 2p1/2

KDE0 −42.5 −6.6 1.1 −2.5 −0.29 0.076 −0.87 −0.098 0.020 −2.1 −0.24 0.022 −5.6 −0.64 0.017
SKX −44.3 −6.8 1.2 −2.6 −0.31 0.084 −0.97 −0.108 0.023 −2.4 −0.27 0.025 −6.8 −0.79 0.022
SLy5 −43.0 −6.8 0.8 −2.3 −0.27 0.060 −0.78 −0.090 0.016 −1.8 −0.20 0.017 −4.6 −0.54 0.014
BSk14 −43.8 −6.9 0.9 −2.4 −0.28 0.071 −0.85 −0.096 0.019 −2.0 −0.23 0.020 −5.2 −0.60 0.016
SAMi −49.2 −7.3 1.8 −3.2 −0.36 0.115 −1.21 −0.133 0.031 −3.0 −0.34 0.033 −8.6 −0.98 0.028
NRAPR −50.9 −7.4 2.2 −3.5 −0.39 0.140 −1.39 −0.151 0.037 −3.6 −0.40 0.040 −10.5 −1.20 0.035
SkP −45.8 −7.1 1.2 −2.6 −0.31 0.082 −0.95 −0.107 0.022 −2.3 −0.26 0.024 −6.1 −0.70 0.019
SkM* −49.5 −7.3 1.9 −3.3 −0.37 0.119 −1.23 −0.136 0.032 −3.2 −0.36 0.035 −8.7 −0.99 0.028
SGII −50.1 −7.5 1.8 −3.2 −0.37 0.114 −1.22 −0.134 0.031 −3.1 −0.35 0.034 −8.6 −0.99 0.028
SKI3 −44.0 −7.0 0.7 −2.3 −0.28 0.060 −0.79 −0.090 0.017 −1.7 −0.20 0.017 −4.7 −0.54 0.014
LNS −45.5 −6.9 1.3 −2.8 −0.32 0.094 −1.02 −0.113 0.025 − − − −6.9 −0.80 0.022

Average −46.2 −7.1 1.4 −2.8 −0.32 0.092 −1.03 −0.114 0.025 −2.5 −0.29 0.027 −6.9 −0.80 0.022
Range/2 4.2 0.5 0.8 0.6 0.06 0.040 0.31 0.031 0.011 1.0 0.10 0.012 3.0 0.33 0.011

check the result, the calculations have been performed in both
Feynman and Coulomb gauges, where the contributions from
the individual diagrams are quite different but eventually add
up to essentially the same total value. The exact physical
interpretation of this unexpected sign change is rather elusive.

Finally, when it comes to high-precision tests of QED, one
of the most important aspects of the calculations is to quantify
the theoretical uncertainty. In the case of the NP correction,
this uncertainty predominantly stems from the fact that an ab
initio computation of the entire nuclear spectrum is not feasi-
ble such that an effective model has to be applied instead. The
results in Table V for a wide range of Skyrme parametriza-
tions provide a good sense of the nuclear model dependence
from the microscopic point of view. The general trend is that
smaller corrections are associated with a larger spread of the
theoretical predictions, with the relative uncertainties (taken
as half the ranges divided by the average values) reaching up
to 40–50% for 40Ca19+. Similar high uncertainties are also
observed in the case of the 2p1/2 state for all of the ions
considered. The smallest spread, and thus the best precision,
is found for the 1s1/2 and 2s1/2 levels of the heaviest 208Pb81+

ion, where the theoretical uncertainties are below 10%. Such
a degree of control over the nuclear-structure effects makes
this system an even more promising platform for testing QED
in the strongest electromagnetic fields. It is also interesting to
note that in most cases in Table V the NRAPR parametrization
represents significant outliers, while such a behavior is not

TABLE VI. Comparison between different calculations of the
SE-NP corrections (in meV) to the 1s1/2, 2s1/2, and 2p1/2 energy
levels of 208Pb81+.

1s1/2 2s1/2 2p1/2

Ref. [28] (Coulomb) −29.3, −31.8 −5.0, −5.5 −
Ref. [32] (Full, Migdal) −37.0, −38.2 −6.4, −6.7 −0.2
This work (Full, Skyrme) −46(4) −7.1(5) +1.4(8)

observed for muonic atoms [26]. Even though there is no
strong physical argument either in favor or against the reliabil-
ity of a particular model, it seems nevertheless likely that the
NRAPR parametrization tends to overestimate the magnitudes
of the NP corrections in electronic systems, thereby providing
conservative upper bounds.

IV. CONCLUSIONS AND OUTLOOK

In this work we have presented the field-theoretical for-
malism for the NP effect as well as our full leading-order
computational results involving a detailed microscopic nu-
clear description. In general, the formalism predicts two
distinct NP contributions of order α2. One of them, which
is represented by the effective vacuum-polarization diagram,
has been somewhat of a mystery in the literature. On the one

TABLE VII. Dipole SE-NP contributions (in meV) from differ-
ent diagrams in Fig. 2(a) for the 2p1/2 state of 208Pb81+ within the
SLy5 model. The notation εn ≷ 0 indicates the positive and negative
parts of the electronic Dirac spectrum. The values are given both in
Feynman and Coulomb gauges.

Feynman Coulomb

εn > 0 −6.56 −4.36
Ladder εn < 0 1.83 0.98

All εn −4.73 −3.38

εn > 0 −5.54 −3.52
Cross εn < 0 2.35 1.31

All εn −3.19 −2.22

Ladder+Cross −7.92 −5.60

εn > 0 13.54 9.06
Seagull εn < 0 −4.70 −2.50

All εn 8.85 6.56

Total 1− SE-NP 0.93 0.97
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hand, it was suggested in Ref. [29] that a part of this correction
could be distinguished from the ordinary FNS effect due to its
different scaling with the nuclear charge radius. On the other
hand, it still remained unclear how to extract such a contribu-
tion, and this VP-NP correction has been largely ignored in
NP calculations, with the only exceptions of Refs. [30,31]. It
is especially important to resolve this ambiguity, as inclusion
of the VP-NP term would modify the total NP corrections
significantly, e.g., by canceling more than half of the usual SE-
NP contribution for the 1s1/2 state of 208Pb81+. By considering
the effect of the induced vacuum polarization on the nuclear
size, we have demonstrated that the VP-NP contribution is
already contained in the standard FNS correction. Importantly,
we have checked that this result holds for both electronic
and muonic systems, as the latter are used to experimentally
measure nuclear charge radii. Consequently, we conclude that
the VP-NP term should indeed be omitted in order to avoid
double counting.

The other NP contribution of order α2 is given by the
effective self-energy diagram, which can also be interpreted
as the two-photon exchange between the bound electron and
the nucleus. This correction is often evaluated by neglecting
the effects of the nuclear three-currents, resulting in what
we call the Coulomb approximation. In addition, the crucial
contributions from the giant nuclear resonances are usually
estimated by means of phenomenological EWSR. While we
have found this approach to be in remarkably good agreement
with our more detailed microscopic calculations, we have also
demonstrated the importance of including the transverse part
of the electron-nucleus interaction, which plays an essential

role for an accurate evaluation of the dipole part of the SE-NP
correction. For instance, the transverse interaction increases
the dipole contribution to the 1s1/2 energy shift by 35% in
208Pb81+ and by as much as an order of magnitude in 40Ca19+,
and it may even lead to a sign change from negative to positive
in the case of the 2p1/2 state, as suggested by our results.
Therefore, we emphasize that the commonly used Coulomb
approximation as well as the corresponding effective poten-
tials [60–62] significantly underestimate the magnitude of the
SE-NP correction, and full calculations are needed in order to
deliver satisfactory accuracy.

Finally, we have extensively analyzed the nuclear model
dependence of our NP calculations, allowing us to reliably
estimate the dominant theoretical uncertainty. The smallest
spread of the results for eleven different models has been
observed for the heaviest 208Pb81+ ion, with the uncertainties
being below 10% for the 1s1/2 and 2s1/2 states. From one
point of view, this level of precision for nuclear-structure
effects makes 208Pb81+ an appealing platform for stringent
tests of QED in extreme electromagnetic fields. Alternatively,
a set of different predictions from various nuclear models in
combination with high enough experimental precision may
even potentially offer an opportunity to test and improve our
understanding of the inner workings of the nucleus itself.
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