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Computation of relativistic and many-body effects in atomic systems using quantum annealing
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We report results for the computation of relativistic effects in quantum many-body systems using quantum
annealers. An average accuracy of 98.9% in the fine-structure splitting of boron-like ions with respect to
experiments is achieved using the Quantum Annealer Eigensolver (QAE) algorithm on the D-Wave Advantage
5000-qubit hardware, which is substantially higher than that attained on a gate-based quantum device to date.
We obtain these results in the framework of the many-electron Dirac theory. We implement QAE using a hybrid
quantum annealing method that includes an alternative qubit encoding scheme and decomposing the problem
into smaller ones based on perturbation theory.
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I. INTRODUCTION

Quantum annealing (QA) is a metaheuristic for solving
optimization problems using quantum effects [1]. It was for-
mulated in its current form by Kadowaki and Nishimori [2]
and is steadily gaining in importance. It is related to adiabatic
quantum computing, which is considered to be the second
paradigm of quantum computing [3–7]. QA can be applied
to a wide range of problems [8–14], including the electronic
structure of atoms and molecules [15–19]. The recently pro-
posed Quantum Annealer Eigensolver (QAE) algorithm is
a promising direction for computing molecular vibrational
spectra [17], ground, and excited state energies [18,19]. QAE
solves an eigenvalue problem by minimizing a suitable objec-
tive function by using the Rayleigh-Ritz variational principle,
and has potential applications in many areas of science and
engineering and beyond [20–24].

Relativistic effects play a crucial role in various physical
and chemical phenomena [25,26]. Their accurate evaluation
in quantum many-body calculations is a major challenge, and
has important implications in many atomic and molecular
problems concerning new physics beyond the standard model
of elementary particles [27–32].

Accuracy and speed are two important attributes of any
computer including both types of quantum computers: gate-
based and quantum annealers. Quantum advantage has not yet
been achieved for quantum annealing. In the present work, we
attempt to shed light on the accuracy that can be achieved for
a relativistic atomic many-body problem using the D-Wave
quantum annealer. To this end, we apply the QAE algorithm to
determine the fine-structure splitting (FSS) by taking the dif-
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ference between the minimum energies of two sets of atomic
states with the same orbital angular momenta (L, S) but differ-
ent total angular momentum J . In boron and its isoelectronic
systems, the 2P ground state splits into two odd parity states,
one with J = 1/2 and the other with J = 3/2. In this work,
we estimate the lowest-energy state of each set using QAE
(simulation and hardware), and the corresponding difference
allows us to evaluate the FSS in boron-like ions, which we
compare with the measured values of the chosen systems.

FSS is relativistic in origin and is influenced by electron
correlation effects [33,34], which are challenging to capture
accurately because of the lack of all-to-all connectivity be-
tween the qubits of current quantum annealers. Recently,
hybrid workflows with quantum annealing and classical com-
ponents such as QBSOLV [35] have partially alleviated this
drawback through decomposition methods, which entail di-
viding the problem into smaller parts. We adapt the QAE
algorithm with certain key workflow improvements to com-
pute the FSS as depicted in Fig. 1. Given that the FSS
arises entirely due to relativity, we choose moderately heavy
boron-like ions in this work, for which the interplay of rel-
ativistic and correlation effects is crucial. Experimental data
are available for the specific ions that we have chosen for our
computations [36–39].

II. QAE WORKFLOW

A typical QAE calculation can be broken down into three
sequential steps: Hamiltonian generation, encoding the func-
tional, and quantum annealing (which subsumes embedding).
We generate our Hamiltonian via a differential equation-
based approach to solving the multi-configuration Dirac-Fock
(MCDF) equations. We note that this route provides the ad-
vantage of having a fewer number of single-particle orbitals,
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FIG. 1. Illustration of our QAE workflow. The Lagrange multiplier λ{0} is initialized to the CSF energy associated with the most dominant
configuration, 〈�0|H |�0〉. {aα} denotes the list of expansion coefficients from the relativistic CI expansion of the wave function. Ef and |� f 〉
refer to the final ground-state energy and its corresponding wave function obtained using the presented workflow, respectively. Floating qubit
encoding is abbreviated as FQE in the figure.

and hence a smaller configuration interaction (CI) Hamilto-
nian and fewer coefficients (and therefore cheaper encoding)
relative to the matrix formulation approach. For encoding, we
employ a floating point encoding scheme. For the quantum
annealing step, we introduce a perturbation-theory-based pri-
ority sorting as well an alternative approach to updating a
parameter, λ. In this section, we introduce our workflow that
involves the above-mentioned routines, outlined in Fig. 1.

A. Atomic theory: Hamiltonian generation

The dominant relativistic effects in atomic systems are
contained in the Dirac-Coulomb Hamiltonian [40], given as

HDC =
∑

i

(cαi pi + βic
2 + VN (ri )) +

∑
j>i

1

ri j
. (1)

The lowest-order relativistic correction to the Coulomb in-
teraction is known as the Breit interaction [41] and whose
Hamiltonian is

HB = −
∑
j>i

(
αiα j

2ri j
+ (αiri j )(αiri j )

2r3
i j

)
, (2)

where both HDC and HB are given in atomic units, VN (ri)
is the potential due to the nucleus, α and β are the Dirac
matrices, and c is the velocity of light. ri j is the interelectronic
separation. The Dirac-Coulomb-Breit (DCB) Hamiltonian is
the sum of the above two Hamiltonians.

The first step in the QAE algorithm is the determination of
the matrix elements of the DCB Hamiltonian on a traditional
computer. For this purpose, we employ a well-established rel-
ativistic atomic structure code [42]. The matrix elements are
computed using suitable configuration state functions (CSFs)
corresponding to a specific angular momentum (in our case,
either J = 1/2 or 3/2) and parity (odd, in this work) as basis
functions. These CSFs are built by considering the complete
active space (CAS) consisting of single-particle (1s, 2s, 2p1/2,
and 2p3/2) orbitals. The orbitals are evaluated using a state-

averaged calculation within the MCDF method [33], where
we used a common set of optimized orbitals for the J = 1/2
and J = 3/2 cases. We extract two submatrices from the CAS
Hamiltonian matrix, one built from odd-parity CSFs with J =
1/2, while the other is from J = 3/2 CSFs, thereby obtaining
matrices of size (9 × 9) and (16 × 16), for the 2P1/2 and the
2P3/2 states, respectively. These matrices serve as inputs to the
QAE algorithm.

B. Floating point encoding scheme

We begin with the energy functional (ε) of interest to us,
which is given by

ε = 〈�|HDCB|�〉 − λ〈�|�〉, (3)

where λ refers to the Lagrange multiplier that guarantees
the normalization of the wave function. The wave function
can be expressed as a linear combination of CSFs, |�〉 =∑B−1

α=0 aα|�α〉 (the CSF-based CI approach, which we shall
refer to as relCI to indicate that we work in a relativistic
framework), where the aα’s denote the expansion coefficients
corresponding to the CSFs. Upon minimizing the energy func-
tional with respect to the expansion coefficients, we can obtain
the ground-state energy.

Substituting |�〉 in Eq. (3), we obtain

ε =
B−1∑
α,β

aαaβHαβ − λ

B−1∑
α

a2
α, (4)

where Hαβ = 〈�α|H |�β〉. To convert the expression to its
quadratic unconstrained binary optimization (QUBO) form
for making it compliant with the D-Wave hardware, we rep-
resent aα in the ith Repeat (which will be defined later in this
subsection), denoted by a{i}

α , in binary using K bits through
our qubit encoding scheme given by

a{i}
α = μα + σ

K−1∑
k=0

fk2−kqα
k , (5)
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where fk = −1 if k = 0 and 1 otherwise, and qi are binary
variables. μα and σ are updated in each iteration

μα = a{i−1}
α , and

σ = 2(−i+1)/2, ∀α.

The initial guess for aα is set to zero. The second term in
Eq. (5) is used as a correction to the previous estimate of aα

(stored as μα , which is shifted appropriately with σ to ensure
that aα is within [−1, 1]). This is because σ decreases by
a factor of 1√

2
with each iteration, allowing for increasingly

smaller values of aα to be searched for the minimum. The
qubit encoding scheme adopted in the present work requires
fewer qubits than previous works [17], but the optimization
part is performed in an iterative manner till a precision of 10−5

is achieved. Fixed point encoding (as used in previous QAE
approaches [17]) limits the precision of each aα by the number
of qubits used to represent them, and increasing the number of
qubits beyond 10 does not improve results further due to the
errors associated with chaining. Hence, capturing coefficients
below 10−3 becomes difficult with fixed point encoding.

The mapping scheme discussed above increases the
Hamiltonian size from (B × B) to (BK × BK ). The explicit
QUBO form after the above conversion is given as

FQ =
B−1∑

α,β=0

⎛
⎝ K−1∑

n,m=0

qα
n Aqβ

m +
K−1∑
n=0

Bqα
n + C

⎞
⎠, (6)

where

A = (σ 2 fn fm2−(n+m) )H ′
αβ,

B = (2μβσ fn2−n)H ′
αβ,

C = μαμβH ′
αβ, and

H ′
αβ = (Hαβ − λδαβ ).

In the above equation, δnm is 1 if n = m and 0 otherwise.
In our workflow, after Hamiltonian generation, all the co-

efficients {aα} are set to zero and λ is set to the CSF energy
associated with the most dominant configuration, 〈�0|H |�0〉.

In view of the limited connectivity on D-Wave Advantage
hardware, the minimization of FQ is performed through a
series of subspace optimizations (each of which in combi-
nation with an appropriately chosen value for λ constitutes
a “Repeat”), where each subspace corresponds to a subset of
coefficients to be optimized, and whose energy landscape is
determined by a particular λ. To enable selecting the subset
of coefficients in this so-called sub-QUBO based approach,
we first determine the CI coefficients approximately using the
independent electron pair approximation as Cα ∼ Hα0

(H00−Hαα ) .
We then sort these lists of coefficients in descending order
(priority sorting). The indices corresponding to a subset of
dominant coefficients are picked for the first Repeat.

C. Quantum annealing

We now elaborate on the “Quantum Annealing Workflow”
module from Fig. 1.

As seen in the earlier subsection, we carefully select, say,
the first 
 number of dominant coefficients from the sorted

FIG. 2. Variation of energy E with λ, while minimizing the
energy functional ε.

list, {aα}p ∈ {aα}, such that the problem decomposes into as
few subproblems as possible, while also ensuring that we do
not incur too many Repeats. The corresponding subproblem
of the QUBO FQ is solved by the annealing step, where we set
the number of shots (samples) to 1000. Each shot provides a
reduced set {q}r . From that set, we calculate the reduced set
{aα}r , and we merge it with the other coefficients that were
not in {aα}p, and by using it we obtain the minimum energy.
For each of the subsequent Repeats, λ as well as the choice of
coefficients, are varied.

Next, we briefly explain the approach we have taken for
our choice of λ in each Repeat. Figure 2 shows the variation
of the optimized energy with λ. Note that each data point in
the figure, that is, the optimized energy for a given value of
λ, is obtained by minimizing Eq. (3) with respect to the CI
coefficients on the classical optimizer. The QAE algorithm
should ideally have the value λ = λopt, for which the opti-
mized energy is minimum (and is equal to the relCI energy).
In previous implementations of QAE, the optimal normaliza-
tion penalty λopt over an appropriate range of λ is found by
either scanning [17] or through bisection [18]. In our work, as
discussed earlier, we chose the CSF energy corresponding to
the dominant configuration as the initial value for λ. Subse-
quently, for each Repeat, we set the value of λ to the energy
obtained from the previous Repeat. From the CI method, we
know that λopt should be equal to ErelCI. This choice of the
initial guess of λ is based on physical grounds and requires
fewer Repeats than the previously proposed scanning [17] and
bisection [18] methods.

The strategy of subspace optimization involves solving a
sub-QUBO of qubits corresponding to the most dominant co-
efficients in the priority list. The first Repeat selected the first

 dominant coefficients, allowing us to perform annealing for
the subspace with highest variation in the energy. The next 


lower-order configurations are added successively in this way
through the following Repeats. When all the coefficients are
included in this way after a few Repeats, we start over again,
thereby leading to further tuning of the coefficients. Note that,
during this method, λ, σ , and μα also vary appropriately.

We now discuss the embedding procedure, which embeds
a densely connected QUBO to the D-wave QPU’s topology
by mapping some logical qubits to many hardware qubits
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TABLE I. Individual energies of chosen systems for 2P1/2 and 2P3/2 states obtained using relCI, Simulation (S) and Hardware (H ), and
their corresponding standard deviation. In the table, “relCI” refers to the results obtained from relativistic configuration interaction (in Ha),
“Simulation” gives our mean relativistic QAE results from a traditional computer (over five repetitions), but with hardware aspects such as
connectivity taken into account, while the column “Hardware” gives the mean QAE results on the D-Wave Advantage machine (over five
repetitions). SD refers to the standard deviation.

Ca15+ Fe21+ Kr31+ Mo37+

2P1/2 relCI −507.679395 −878.442367 −1730.364613 −2387.586842
Simulation −507.679333 −878.442308 −1730.364491 −2387.586714
SD (S) 4.93E-05 3.17E-05 3.18E-05 2.93E-05
Hardware −507.679348 −878.442291 −1730.364520 −2387.586660
SD (H) 1.61E-05 4.86E-05 4.61E-05 8.04E-05

2P3/2 relCI −507.515951 −877.910029 −1728.136140 −2383.218738
Simulation −507.515819 −877.909781 −1728.135656 −2383.218002
SD (S) 5.76E-05 9.63E-05 1.67E-04 1.74E-04
Hardware −507.515675 −877.909719 −1728.135639 −2383.218125
SD (H) 9.24E-05 1.01E-04 1.41E-04 1.86E-04

and strongly coupling these hardware qubits together. This
method is called chaining, and therefore, increases the number
of qubits required. In this work, we focus on optimizing the
strength of the coupling, called the chain strengths such that
the chained qubits remain strongly coupled during quantum
annealing, but also at the same time do not dominate the
QUBO model’s energy. After testing different strategies in
simulations, we found that using the RMS of the subproblem’s
quadratic biases along with a multiplicative factor set between
0.75 and 1 gave the best results.

The annealing step consists of providing the subproblem
adapted to the Pegasus topology of the D-Wave Advantage
device to the quantum annealer and obtaining a fixed number
of samples each time (which we set to 1000). We note that the
samples here refer to the coefficients in the qubit space.

The composition and postprocessing steps involve merging
the obtained samples with the main sample, back-converting
them to the expansion coefficients, scaling them individually,
and finally comparing with the known best solution from
previous Repeats. The main sample refers to the solution of
the complete QUBO problem (initialized to zeros). Scaling
here refers to scaling {aα} such that their absolute maxi-
mum becomes −1. This allows us to increase the smaller
coefficients so that they can be captured with fewer qubits
per coefficient (K), and deters the iterative optimization to
navigate toward trivial wave-function solutions. The scaling
step does not degrade the result because the normalization
condition is not strictly imposed but rather with the addition of
a penalty. After each Repeat, the subset of coefficients, σ , μα ,
and λ are changed in a systematic manner, and after several
Repeats, we select the lowest energy among all Repeats.

We now comment on the information exchanged between
the classical and quantum devices in the QAE workflow. The
feedback efficiency depends on the size of the data being
transmitted between the classical and quantum computers. At
every Repeat, the coefficients A, B, and C are sent to the
quantum annealer, where the dimension of A is (K × B)2, and
that of B is K × B, while C has one real number. The values
of qα

n are obtained back from the annealer, which will have
K × B × S binary values. Here, S is the number of samplings
done per Repeat.

We carried out our implementation using the existing mod-
ules of D-Wave’s OCEAN [43] and HYBRID [44] software
development kits. Throughout this work K = 10.

III. RESULTS

In Tables I and II, we present our results for the energies
of the 2P1/2 and the 2P3/2 states of Ca15+, Fe21+, Kr31+, and
Mo37+, using QAE as well as the FSS values that we obtain
from them, respectively. We also compare them with data
from our numerical relCI computations and experiments. Our
QAE computations were carried out both on traditional (sim-
ulation [45]) and quantum annealing (D-Wave Advantage)
hardware. We note that our simulation results account for
qubit connectivity. Figure 3 is a visual representation of the
errors in the individual energies with respect to relCI energies.
Our results from that figure show that our QAE approach
can predict not only the FSS values, but also the individ-
ual energies to within 2.6 × 10−5 percentage. Our hardware
results agree with the simulation and relCI computations to
within 0.1 mHa. Finally, it is important to stress that our FSS
values agree with the experimental results to around 99% on
the average. In comparison, on a typical current-day gate-
based quantum hardware, the errors in even the ground-state
energies are much larger for a very simple four-qubit

TABLE II. FSS values for boron-like ions. “relCI” refers to
numerical relativistic CI calculations (in Ha), “Simulation” and
“Hardware” gives our mean (over five repetitions) of relativistic
QAE performed on a traditional computer (with qubit connectivity
taken into account) and D-Wave Advantage machine respectively.
�X % = ErelCI−EX

relCI × 100. “Expt.” stands for the experimental value
(in Ha).

Simulation Hardware
System relCI (�S × 10−2%) (�H × 10−2%) Expt.

Ca15+ 0.1634 0.1635(−0.04) 0.1636(−0.14) 0.1668
Fe21+ 0.5323 0.5325(−0.04) 0.5325(−0.04) 0.5388
Kr31+ 2.2284 2.2288(−0.02) 2.2288(−0.02) 2.2442
Mo37+ 4.3681 4.3687(−0.01) 4.3685(−0.01) 4.3939
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FIG. 3. Error with respect to relCI in QAE with Simulation that
takes into account connectivity and with the D-Wave QPU for 2P1/2

and 2P3/2 states for all the considered ions.

Variational Quantum Eigensolver computation involving the
H2 molecule in a minimal basis.

The accuracy of our results is due to the inclusion of the
important physics and computational attributes that are appro-
priate for the evaluation of the FSS of atomic systems. This
includes the addition of Breit interaction in the Hamiltonian,
choosing the same set of optimized orbitals for the J = 1/2
and J = 3/2 states of boron-like ions, as well as workflow
improvements such as our floating qubit encoding scheme,
updating lambda iteratively with the information of energy
from previous iterations, priority ordering of the expansion
coefficients on the basis of perturbation theory, and finally
small adjustments such as tuning the coefficient of the RMS of
biases. The MCDF orbital optimization can be improved even
further, thereby improving the atomic states, but nevertheless,
it is useful for demonstrating the QAE approach with a larger
configuration space.

As a possible future extension, we could consider append-
ing an optimization routine (for example, a discrete analog
of steepest descent) as a local search algorithm at the end of
each repeat. We considered a representative system, B-like
Kr, and carried out the aforementioned procedure, termed
“hybrid sampling.” Our results for the percentage fraction
difference with respect to relCI are presented in Table III.
Figure 4 presents the error (difference in the energy from
relCI and energy from QAE algorithm) with the number of
Repeats for a representative system (boron-like Krypton), us-
ing the hybrid approach. Although the hybrid approach attains
a given precision in a lower number of Repeats, it involves
additional computational cost. Our future directions could
involve employing more sophisticated many-body methods in
combination with hybrid workflows with other optimizers.

TABLE III. Percentage fractional difference of energies of 2P1/2

and 2P3/2 states for B-like Kr from simulation (S), hardware (H ),
and hybrid sampler (HS) with respect to relCI. Hybrid sampler here
refers to the computation performed on D-Wave Advantage with
steepest descent optimizer.

State relCI (Ha) �S × 10−5% �H × 10−5% �HS × 10−5%

2P1/2 −1730.3646 0.70 0.53 4.30 × 10−3

2P3/2 −1728.1361 2.80 2.90 5.42 × 10−3

FIG. 4. Error in energy with respect to relCI versus number of
Repeats in our workflow for (a) 2P1/2 and (b) 2P3/2 states of B-like Kr
using the D-Wave Advantage QPU with steepest descent. The dashed
lines present the error at every repeat, while circles present the error
of the global sample. Different colors denote different repetition of
the experiment.

We now discuss the stopping criterion adopted in this work.
We begin by seeking a precision of at least 10−3, that is,
ErelCI − EQAE to be at least 10−3 with a high probability. We
select r, the number of Repeats, by scanning datasets for
a given state, such as 2P1/2, and repeating runs five times
per atomic system. We pick the maximum r where an error
of 10−3 is reached in each of the 20 resulting curves and
set 2r as the stopping criterion for hardware. The additional
multiplicative factor of 2 is introduced, keeping in mind the
limitations of the current state-of-the-art hardware. For 2P3/2

states, we use 1.5r as the stopping criterion due to the larger
matrix size and higher computation cost. Lastly, we chose
the subQUBO sizes as an integral factor of the total QUBO
size for convenience. Based on the above considerations, we
chose r = 30 for 2P1/2 states and r = 45 for 2P3/2 states,
with subQUBO sizes given in Table IV. The relevant data on
ErelCI − EQAE versus the number of Repeats are presented in
Figs. 5 and 6.

We now proceed to a brief discussion on possible sources
of errors in our computations, which could arise from three
factors: hardware errors, errors due to chaining, and approx-
imations made in the construction of the QUBO form. For
B-like Kr, we obtained an error of 9.3 × 10−5 Ha for the
computation of J = 1/2 ground state using D-Wave quantum
annealers. We also performed the same calculations using
simulated annealing with D-Wave Advantage 5000-qubit ar-
chitecture and obtained an error of 6.4 × 10−5 Ha. That is,
we observed that the difference in the results obtained from
simulated annealing and quantum annealing carried out on

TABLE IV. Workflow parameters for our QAE computations. We
note that SubQUBO refers to the size of 
 after encoding.

QUBO SubQUBO Total
State size size Repeats

2P1/2 90 30 30
2P3/2 160 40 45
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FIG. 5. Error in energy with respect to relCI versus number of Repeats in our workflow for (a), (c), (d), and (f) 2P1/2 and (b), (d), (f),
and (h) 2P3/2 states of all the considered boron-like atoms using the simulation, taking hardware architecture into consideration. The dashed
lines present the error at every repeat, while circles denote the error in the global sample. Different colors denote different repetitions of the
experiment. Panels (a,b), (c,d), (e,f), and (g,h) correspond to boron-like Ca, Fe, Kr, and Mo, respectively.
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FIG. 6. Error in energy with respect to relCI versus number of Repeats in our workflow for (a), (c), (d), and (f) 2P1/2 and (b), (d), (f), and
(h) 2P3/2 states of all the considered boron-like atoms using the D-Wave hardware. The dashed lines present the error at every repeat, while
circles denote the error in the global sample. Different colors denote different repetitions of the experiment. Panels (a,b), (c,d), (e,f), and (g,h)
correspond to boron-like Ca, Fe, Kr, and Mo, respectively.
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hardware was negligible. Expecting that simulated annealing
and ideal quantum hardware results match, we infer that the
error from hardware toward determining FSS may be negli-
gible. The explanation could be that 1000 anneals makes our
approach fairly robust to noise. Finally, we performed simu-
lated annealing assuming all-to-all connectivity and obtained
an error of 1.4 × 10−7 Ha. We expect that this error comes
from approximations made in QUBO generation (our choice
of K = 10 in our floating point encoding scheme). The devi-
ation between simulations with D-Wave Advantage hardware
connectivity and all-to-all connectivity is the most significant.
Hence the effect of chaining on D-Wave devices is the limiting
factor for accuracy in our findings. We end the discussion
with a comment on the possibility of encountering a barren
plateau. The variational parameters are the CI coefficients
in the QAE algorithm, as opposed to parameters that occur
in the functional form of an ansatz in the case of VQE. Since
the energy changes as the coefficients are varied, we do not
expect to encounter a barren plateau in our QAE work, which
is based on complete active space CI.

IV. CONCLUSION AND FUTURE OUTLOOK

In summary, we developed the relativistic version of the
QAE algorithm, which computes the minimum eigenvalues
corresponding to specific atomic symmetries, and conducted
a pilot study to calculate fine-structure splittings in the boron-
like atomic ions (Ca15+, Fe21+, Kr31+, and Mo37+). The
method of eigenvalue estimation through quantum annealing
may be of practical relevance for a diverse range of problems.
Salient features of our work involve improving the QAE work-
flow and includes an improved optimization strategy for the
Lagrange multiplier occurring in the energy functional, prior-
ity listing of the CI coefficients, and floating qubit encoding
method. With these improvements in place, we carried out
relativistic calculations on both traditional computers as well
as on quantum hardware. In the former, the simulations were
carried out by accounting for the absence of all-to-all con-
nectivity on the D-Wave devices. We find that our hardware
results for fine-structure splitting yield an average deviation of
1.1 percent with respect to experiments and 2.71 × 10−2 per-
cent with respect to the relativistic CI calculations that we use
to benchmark our results. We stress that our implementation
allows us to accurately predict the individual energies of the
states, thus enabling us to predict the fine-structure splitting,
which is an energy difference, accurately. To that end, we add
that the individual energies themselves were evaluated to be
within ∼5 × 10−5 percent of relativistic CI energies.

Our work marks the first demonstration of relativistic
many-body calculations carried out on quantum annealers.
Our accurate results can be considered a stepping stone to
future relativistic atomic and molecular calculations for novel
applications, including probing new physics beyond the stan-

dard model of elementary particles. Such applications require
carrying out high accuracy computations on large atomic
systems, including superheavy elements. We envision the re-
alization of such calculations for large atomic systems in
view of the ongoing advances on the quantum annealing
hardware front. We recall that a typical QAE calculation
can be broken down into three sequential steps: the gen-
eration of the Hamiltonian matrix, encoding the functional,
and annealing. Solving the state-averaged multiconfiguration
Dirac-Fock (MCDF) coupled differential equations enables
relatively less expensive overheads in encoding, but such dif-
ferential equation-based approaches are known to be plagued
by severe convergence issues as the system size increases [46].
However, there have been promising developments recently
in quantum annealing algorithms for differential equations,
for example, the QADE algorithm [47], where the authors
indicated that one can expect to solve coupled differential
equations efficiently for large system sizes with more qubits
and better connectivity. If such quantum algorithms are real-
ized in more powerful quantum annealers in the future, they
would open new avenues to treat larger atomic systems via
the differential equation-based MCDF methods, essentially
opening up opportunities even for quantum utility, where
quantum computers can solve certain problems for system
sizes where classical devices fail. We also note that new
architectures such as LHZ [48] and generalizations such as
ParityQC (see Refs. [49,50]; and whose first implementation
was recently carried out by AIST-NEC, Japan) and the Zephyr
(from D-Wave) [51] may offer alternative relatively cheaper
approaches to embedding (which will have significant impli-
cations for both the third step of QAE and also for improving
the efficiency of differential equations-based approaches). We
expect that a combination of an efficient pre-processing quan-
tum algorithm for solving MCDF differential equations, novel
architectures, efforts to increase coherence times [52,53], and
error mitigation schemes (for example, see Refs. [54,55]) can
pave the way for potential quantum utility.
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