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The problem of orbital collapse of the 5g and 6 f electrons in atoms of superheavy elements (SHEs) is
considered. Previously, the presence of the orbital collapse was established for the 4 f and 5 f elements of the
periodic table. Because of the large centrifugal term for the f and g electrons, the effective radial potential has
two wells, one narrow and deep and the other wide but shallow. Depending on the external parameters, the
electron can be localized in either the outer well with low binding energy and large average radius or the inner
well with higher energy and smaller radius. In this paper, we demonstrate the existence of the orbital collapse
for the 5g electrons when changing the total angular momentum J of the atom. We also find that for some SHEs
two different solutions of the same Dirac-Fock equations may coexist, with the 5g electron localized in either
the inner or outer well. In both cases, the radial wave functions are nodeless. The problem of the dual-state
coexistence is studied by the configuration-interaction method in the Dirac-Fock-Sturm orbital basis as well.
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I. INTRODUCTION

The orbital-collapse phenomenon was first predicted in
Refs. [1,2]. It was shown that due to the large size of the repul-
sive centrifugal term, the effective radial potential acting on
the 4 f and 5 f electrons can have two potential wells: a deep
and narrow inner well and a shallow but wide outer well. The
formation of the double-well radial potential is determined
by the magnitude of the centrifugal term, which increases
quadratically with the growth of the orbital quantum number
l . Depending on the external parameters, the f orbital can be
localized either in the inner well or in the outer one. When
these parameters change, an electron initially localized, for
example, in the external well, can move into the internal well.
At the same time, the radius of the f orbital sharply decreases
tenfold, which can lead to a sudden change in various physical
and chemical properties of the atom.

As shown in Refs. [3,4], an orbital collapse of the d elec-
trons can also take place for the excited states of atoms. In
Ref. [4], the possibility of the collapse of the g electrons in
superheavy elements (SHEs) was predicted as well. Orbital
collapse can occur in the isoelectronic sequence of atoms and
ions [3,5–7], in a series of sequentially ionized atoms [8],
in confined (in cavity) and compressed atoms [9,10], in the
homologous sequence of the periodic table [11], as a function
of the chemical environment of the atom [12,13], in a series
of different atomic terms of the same configuration [14], and
so on. The effect of the orbital collapse can manifest itself
in various experiments, e.g., in photoabsorption, photoion-
ization, etc. Ab initio calculations devoted to the study of
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the orbital-collapse problem were performed previously both
by the nonrelativistic Hartree-Fock [5,15,16] and relativistic
Dirac-Fock (DF) [6,7,14,17–19] methods. It should be noted
that the central-field approximation, employed in the nonrela-
tivistic and relativistic versions of the Hartree-Fock method,
does not allow one to study the orbital-collapse effect for
atomic configurations involving more than one electron in the
shell of interest (for example, the 4 f shell). The reason is that
in the central-field approximation all electrons in the shell
possess the same radial wave function. As a result, the state
of the atom with more than one electron in the outer well is
certainly energetically inefficient.

As already noted, the orbital collapse usually occurs when
some external parameters change. As a consequence, an
electron can move from the external well to the internal
one. However, in Ref. [17] it was found that within the
framework of the DF method two different solutions of the
same self-consistent field (SCF) equations can be obtained
without changing any external parameters. In one of them,
the 4 f electron is localized in the inner well, whereas in
the other it is localized in the outer well. In Ref. [17], the
coexistence of two different solutions with the same atomic
configuration, the “blow” (localized in the outer well) and the
“collapse” (localized in the inner well) ones, was shown for
the excited state of lanthanum ([Xe]6s24 f5/2) and the ground
state of europium ([Xe]6s24 f 6

5/24 f7/2). It is noteworthy that
both the blow and collapse 4 f orbitals are nodeless. They
can be obtained as the solutions of the SCF equations,
provided the initial approximation is appropriately chosen,
and correspond to two different stationary values of the DF
energy functional. Thus, the DF operator in the converged
SCF equations is also different for these two solutions. That
is why the coexistence of two different nodeless orbitals
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with the same quantum numbers does not contradict Sturm’s
oscillation and separation theorems [20].

In this paper, we investigate the problem of the 5g-
electron collapse in atoms of the eighth-period SHEs. As
was shown in our paper [21] and in the papers [22–25],
the occupation of the 5g shell in the ground state starts
at Z = 125 and continues up to Z = 144 (from the multi-
configuration calculations, it follows that this shell becomes
closed at Z = 145). Since the DF method allows us to study
the collapse for only one electron on the 5g7/2 shell, we
restrict ourselves to the calculations of the ground configu-
ration [Og]8s28p1

1/26 f 3
5/25g1

7/2 of the atom with Z = 125 as
well as the excited configurations [Og]8s28p1

1/26 f 2
5/25g1

7/2 and
[Og]8s28p2

1/26 f 3
5/25g8

7/25g1
9/2 for Z = 124 and 134, respec-

tively. We also obtain the 6 f -orbital dual solutions for the
configuration [Og]8s28p2

1/25g187d1
3/26 f 6

5/26 f 1
7/2 of the SHE

with Z = 148. The calculations are performed by the single-
configuration DF method [26] for individual atomic terms
with the given total angular momentum J as well as in the
approximation of the gravity center of the relativistic config-
uration [27,28]. The dual solutions of the DF equations for
the aforementioned elements and configurations are obtained
using the different initial approximations. In addition, we re-
produce the obtained in Ref. [17] dual solutions, the blow and
the collapse ones, for lanthanum ([Xe]6s24 f5/2) and europium
([Xe]6s24 f 6

5/24 f7/2). Finally, in order to determine the mixing
of the different many-electron states with the localized and de-
localized 5g orbitals, we perform the configuration-interaction
(CI) calculations in the basis of the Dirac-Fock-Sturm (DFS)
orbitals [29,30].

Atomic units (a.u.) are used throughout the paper unless
explicitly stated otherwise.

II. DETAILS OF THE CALCULATIONS

In calculations of the DF one-electron wave functions
and energies, we use the many-electron Dirac-Coulomb
Hamiltonian ĤDC:

ĤDC = ĤD + V̂ C, (1)

where ĤD is the sum of the one-electron Dirac Hamiltonians,

ĤD =
N∑

i=1

[(αi · pi )c + (βi − 1)mc2 + Vn(ri )]. (2)

Here α is a vector of the Dirac matrices and V̂ C is the sum of
the Coulomb electron-electron interaction operators:

V̂ C = 1

2

N∑
i �= j

1

ri j
. (3)

All the calculations are performed with the nuclear potential
Vn(r) constructed employing the Fermi model for the nuclear-
charge distribution. The root-mean-square (rms) radius of the
SHE nucleus (in fm) is given by

R =
√

3

5
Rsphere, Rsphere = 1.2A1/3, (4)

where for the nucleon number A we use the approximate
formula from Ref. [31]:

A = 0.00733Z2 + 1.30Z + 63.6. (5)

The value of A obtained from Eq. (5) is rounded to the nearest
integer. This choice of the nuclear size is consistent with
the one made in Ref. [21]. The rms radii of the La and Eu
atoms are taken to be 4.8550 fm (A = 139) and 5.1115 fm
(A = 153), respectively [32].

In our DF calculations, the modified Gáspár [33] potential
VG(r) is used as an initial approximation in the SCF proce-
dure. The modification is made by taking into account the
self-interaction correction (SIC) [34]. The employed potential
reads as

VG(r) = −Z

r
+ Ne − 1

r

(
1 − e−λr

1 + b r

)
, (6)

where λ = 0.2075 Z1/3, b = 1.19 Z1/3, and Ne is the number
of electrons.

It should be noted that in all the cases the 5g orbital ob-
tained by solving the one-electron Dirac equation with the
local Gáspár potential VG(r) is localized in the outer well.
In order to manage the convergence process in the SCF
calculations, we introduce a real parameter α into the DF
operator VDF:

VDF(α, r) = VDH(r) + α Vx, (7)

where VDH is the Dirac-Hartree potential with the SIC and Vx

is the exchange operator. By changing α from zero to unity,
the contribution of the exchange interaction can be controlled.
This contribution affects the localization of the 5g electron in
either the inner or the outer well during the SCF calculations.
Naturally, at the end of the SCF procedure, when the conver-
gence is achieved, α must be equal to unity.

The single-configuration and CI total energies are calcu-
lated using the Dirac-Coulomb-Breit Hamiltonian ĤDCB:

ĤDCB = �+(
ĤDC + V̂ B

)
�+, (8)

where �+ is the product of the one-electron projectors on the
positive-energy solutions of the DF equations and V̂ B is the
Breit-interaction operator:

V̂ B = −1

2

N∑
i �= j

1

2ri j

[
αi · α j + (αi · ri j )(α j · ri j )

r2
i j

]
. (9)

III. EFFECTIVE RADIAL POTENTIAL

In the DF method, the one-electron radial potential V DF
a

for the shell a is a nonlocal operator. For this reason, solely
to demonstrate the behavior of the effective radial potential,
we replace the nonlocal operator V DF

a by the so-called local
DF potential V loc

a (r) [35] (the procedure of its construction is
briefly discussed in the Appendix).

An example of the effective radial potential V rad
a (r) ob-

tained for the SHE with Z = 125 with and without taking
into account the exchange is shown in Fig. 1. This potential
has two wells (for convenience, the outer well is shown in an
enlarged scale in the lower right corner). As can be seen from
Fig. 1, the exchange potential actually affects only the depth
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FIG. 1. Effective radial potential V rad
a (r) for the shell a = 5g7/2

of the superheavy atom with Z = 125. The solid line is the potential
with the exchange, while the dashed line is the potential without the
exchange.

of the inner well, as it decreases exponentially with increasing
the distance.

In the nonrelativistic approximation the effective radial
potential V rad

a (r) can be represented as the sum of the local
potential V loc

a (r) and the centrifugal term:

V rad
a (r) = V loc

a (r) + la(la + 1)

2r2
, (10)

where la is the orbital quantum number. Because of the rapid
exponential decay of the exchange term, the asymptotic form
of the local potential V loc

a (r) at large distances is purely
Coulombic. Thus, the radial potential V rad

a (r) for a neutral
atom in the asymptotic region has the form

V rad
a (r) → −1

r
+ la(la + 1)

2r2
, r → ∞. (11)

For this reason, for large la, the position of the local minimum
rmin

a of V rad
a (r) corresponding to the outer well and its depth

V min
a can be determined with a high degree of accuracy using

the expressions

rmin
a = la(la + 1), V min

a = 1

2la(la + 1)
. (12)

These results are supported by Fig. 1, where for the g orbital
one should set la = 4. Indeed, the minimum of the shallow
and wide outer well is located at r = 20 a.u., while the depth
is of the order of 0.025 a.u. The deep and narrow inner well
has the minimum at a small distance r = 0.32 a.u. We stress
also that in the case of a neutral atom the electron in the outer
well can be considered as an electron in the field of a singly
charged ion, whose potential at large distances approximately
coincides with the Coulomb potential Va(r) = −1/r. Thus,
the one-electron energy and the mean radius of the electron
in the outer well must be close to the energy εH

a and the mean
radius 〈r〉H

a for the hydrogen atom:

εH
a = − 1

2n2
a

, 〈r〉H
a = 1

2

[
3n2

a − la(la + 1)
]
. (13)

TABLE I. Z = 125 ([Og]8s28p1
1/26 f 3

5/25g1
7/2). One-electron en-

ergies ε5g and average radii 〈r〉5g of the valence 5g7/2 orbital and the
total energies with (EDCB) and without (EDC) the Breit interaction of
the neutral atom. K is the number of energy levels with the given J
in the configuration. The energies are shown with the opposite sign.
All the values are given in atomic units.

J K −ε5g 〈r〉5g −EDC −EDCB

1/2 2 0.0200016 27.494 64846.13531 64718.58334
3/2 5 0.0200015 27.494 64846.14377 64718.59179
5/2 6 0.0200017 27.493 64846.14376 64718.59179
7/2 6 0.0200017 27.493 64846.14376 64718.59179
9/2 6 0.0200017 27.493 64846.14376 64718.59179
11/2 5 0.0200019 27.493 64846.14377 64718.59179
13/2 3 0.5387971 0.732 64846.37848 64718.85035
15/2 2 0.5348849 0.732 64846.36810 64718.84021
17/2 1 0.5367741 0.733 64846.37428 64718.84636

where na is the principal quantum number. In the case of
the 5g electron, εH

5g = −0.02 a.u. and 〈r〉H
5g = 27.5 a.u. This

statement is confirmed by the direct calculations below.

IV. ORBITAL COLLAPSE

In this section, we discuss the orbital collapse of the 5g
electron in the course of changing the value of the total angu-
lar momentum J on the examples of the ground configuration
for Z = 125 ([Og]8s28p1

1/26 f 3
5/25g1

7/2) and the excited config-
uration for Z = 124 ([Og]8s28p1

1/26 f 2
5/25g1

7/2). In Tables I and
II, for each value of the total angular momentum J , the values
of the one-electron energies and average radii for the 5g7/2

shell as well as the total energies of atoms are given for Z =
125 and 124, respectively. Here the modified Gáspár potential
VG(r) defined in Eq. (6) is used as an initial approximation in
the SCF procedure. As it will be shown in Sec. V, this initial
approximation does not guarantee that the SCF procedure will
produce a solution of the DF equations with the lowest total
energy for a given value of the total momentum J .

It can be seen from Table I that for all the values of J
from J = 1/2 to 11/2 the 5g electron has a very large radius

TABLE II. Z = 124 ([Og]8s28p1
1/26 f 2

5/25g1
7/2). One-electron en-

ergies ε5g and average radii 〈r〉5g of the valence 5g7/2 orbital and the
total energies with (EDCB) and without (EDC) the Breit interaction of
the neutral atom. The notations are the same as in Table I. All values
are given in atomic units.

J K −ε5g 〈r〉5g −EDC −EDCB

0 1 0.01996061 27.567 63308.54698 63185.57955
1 3 0.01998763 27.520 63308.55467 63185.58716
2 4 0.01999968 27.497 63308.55467 63185.58715
3 5 0.01999626 27.504 63308.55460 63185.58704
4 5 0.01999806 27.499 63308.55462 63185.58706
5 4 0.02001107 27.475 63308.55472 63185.58720
6 3 0.02002020 27.457 63308.55474 63185.58722
7 2 0.24072513 0.799 63308.52478 63185.57950
8 1 0.23380541 0.799 63308.50880 63185.56351
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FIG. 2. Z = 125 ([Og]8s28p1
1/26 f 3

5/25g1
7/2). Large components of

the radial wave functions: the solid line [Pin (r)] and dashed line
[Pout (r)] correspond to the 5g7/2 orbitals localized in the inner and
outer wells, respectively. All the values are given in atomic units.

and, hence, it is localized in the outer well. The values of
the one-electron energies and mean radii are very close to the
hydrogen values (see the discussion at the end of the previous
section). For Z = 125, the orbital collapse occurs at the tran-
sition from J = 11/2 to 13/2. As a result, the one-electron
energy εH

5g increases more than 25 times in magnitude, the
mean radius 〈r〉H

5g decreases almost 40 times, and the total
energy changes by about 0.25 a.u.

A similar effect is observed for Z = 124, as demonstrated
in Table II. In this case, the orbital collapse of the 5g or-
bital occurs at J � 7. However, in contrast to Z = 125, in
this case the total energies of the atomic terms with J =
7, 8 are lower by 0.03 and 0.05 a.u. than the energies of
the terms J � 6, for which the 5g orbital is localized in the
outer well. We note that in Table I the total energies for all
J in the range 3/2 � J � 11/2 almost coincide with each
other and equal −64718.59179 a.u. This value is very close
to the value −64718.59196, which is obtained by summing
the total energy of the lowest-energy state of the ion with
the 5g electron removed (E ion = −64718.57196) and the one-
electron energy of the 5g7/2 orbital (ε5g = −0.020002); the
corresponding ion has Jion = 5. Since a polarization of the
ionic electron shells by the 5g electron located at a very
large distance is very weak, all the states of the neutral atom
with the total angular momentum |Jion − 7/2| � J � |Jion +
7/2| have practically the same energy.

Figure 2 presents the large components of two radial
5g7/2 wave functions. One of them, Pin(r), is localized in
the inner well (the solid line) and the other one, Pout (r), is
localized in the outer well (the dashed line). Both functions
are nodeless, which, as was discussed in Sec. I, does not
contradict standard quantum-mechanics theorems concerning
the number of wave-function nodes. Indeed, these functions
are obtained self-consistently in the independent calculations
and correspond to the different DF operators. We note that, al-
though these functions are nodeless, they overlap very weakly

TABLE III. La, Z = 57 ([Xe]6s24 f 1
5/2). One-electron energies

ε4 f and average radii 〈r〉4 f of the valence 4 f5/2 orbital and the
total energies of the neutral atom with (EDCB) and without (EDC)
the Breit interaction. The labels “in” and “out” indicate two dual
states localized in the inner and outer wells, respectively. The column
“Hydrogen” shows the values obtained according to Eq. (13). All the
values are given in atomic units.

Ref. [17] This paper Hydrogen

−εin
4 f 0.2381 0.23830

−εout
4 f 0.0316 0.03180 0.03125

〈r〉in
4 f 1.2591 1.2591

〈r〉out
4 f 17.062 17.0614 18.0000

−E in
DC 8493.6246 8493.5521

−E out
DC 8493.5512 8493.4767

−E in
DCB 8486.5883

−E out
DCB 8486.5096

nonetheless. Namely, their overlap integral is of the order of
0.001.

V. DUAL STATES

The dual solutions of the DF equations, the blow and
the collapse ones, were first obtained in lanthanum (Z = 57,
[Xe]6s24 f 1

5/2) and europium (Z = 63, [Xe]6s24 f 6
5/24 f 1

7/2) in
Ref. [17]. It was done by “pushing” the 4 f electron at the first
iterations slightly to the inner or outer wells (see the details in
Ref. [17]). In the present paper, we have also found the dual
solutions in La and Eu. We calculated the total energies both
with (EDCB) and without (EDC) the Breit interaction in order
to compare our data with the results of Ref. [17], where the
Breit interaction was not taken into account.

To obtain the 4 f orbitals localized in the inner well, we
have included the full exchange interaction, i.e., α = 1 in
Eq. (7). The 4 f orbital localized in the outer well was obtained
by the following way. At the first stage, we have performed
the SCF calculation excluding the exchange interaction, i.e.,
α = 0. In the no-exchange case, the inner well becomes less
deep (see Fig. 1), and the solution of the Hartree equation with
the SIC for the 4 f electron localizes in the outer well. On the
next step, we have repeated the SCF calculation with a full
exchange, α = 1, using the one-electron functions obtained at
the first stage as the initial approximation.

The results of the calculations of the dual states in La
and Eu are presented in Tables III and IV, respectively. As
can be seen from both tables, our data are in a good agree-
ment with the results of Ref. [17]. Despite the fact that
the average radii of the 4 f states obtained in this paper
and in Ref. [17] coincide, the one-electron energies differ
slightly. This may be related to the use of another coeffi-
cient for converting atomic energy units into eV, different
nuclear rms, as well as rounding errors. We have used the
value 1 a.u. = 27.211386245988 eV taken from Ref. [36]
in order to convert the data from Ref. [17] from eV to
atomic units.

The one-electron energies ε4 f of the 4 f electron localized
in the outer well are about ten times smaller than the corre-
sponding energies for the inner well, whereas the average radii
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TABLE IV. Eu, Z = 63 ([Xe]6s24 f 6
5/24 f 1

7/2). One-electron en-
ergies ε4 f and average radii 〈r〉4 f of the valence 4 f7/2 orbital
and the total energies of the neutral atom with (EDCB) and without
(EDC) the Breit interaction. The notations are the same as in Table III.
All the values are given in atomic units.

Ref. [17] This paper Hydrogen

−εin
4 f 0.3609 0.36073

−εout
4 f 0.0316 0.03146 0.03125

〈r〉in
4 f 0.94877 0.94877

〈r〉out
4 f 17.709 17.7087 18.0000

−E in
DC 10846.7756 10846.6533

−E out
DC 10846.6727 10846.5483

−E in
DCB 10836.8226

−E out
DCB 10836.7123

〈r〉4 f of the state in the outer well are about 15 times larger
than their inner-well counterparts. It should be noted that the
one-electron energies and average radii of the 4 f orbitals in
the outer well are close to the hydrogen values shown in the
last columns in Tables III and IV. The comparison of the total
energies EDC and EDCB of the dual states shows that in both
cases the state with the electron localized in the inner well is
energetically more favorable.

The dual solutions for the atoms with Z = 124, 125 (the
corresponding configurations are indicated at the bottom of
Table V) have been obtained as follows. As can be seen from
Tables I and II, when the Gáspár potential is used as the initial
approximation, the collapse occurs in the transitions from the
atomic state with total angular momentum J = 6 to 7 and
from J = 11/2 to 13/2 for Z = 124 and 125, respectively. In
order to obtain the solutions localized in the inner wells, it
is sufficient to take the orbitals obtained for the terms J = 7
and 13/2 as the initial approximations for all the other values
of J for Z = 124 and 125, respectively. In contrast, to obtain
the orbitals localized in the outer wells, the orbitals evaluated
for J = 6 and 11/2 can be used as the initial approximations
for Z = 124 and 125, respectively. For the SHE atoms with
Z = 134 and 148, also presented in Table V, we have used the
procedure described above for the Eu and La atoms.

The second, third, and fourth columns in Table V
present the one-electron energies ε5g and the average radii
〈r〉5g of the 5g orbitals for two different nodeless radial
solutions of the same DF equations for the SHE atoms with
Z = 124, 125, 134. The fifth column shows similar results for
two 6 f orbitals localized in the inner and outer wells for the
element with Z = 148. Both radial parts of these 6 f orbitals
have two nodes. The notations “in” and “out” mean that the
corresponding orbital is localized in the inner and in the outer
well, respectively. The data reported in Table V are obtained
for the atomic terms J , which have the lowest total energies
EDCB for the configurations shown at the bottom of the table.

It can be seen from Table V that the one-electron energies
and the average radii of the 5g electrons in the outer well
are very close to the hydrogen values εH

5g = 0.02 a.u. and
〈r〉H

5g = 27.5 a.u., respectively. It is noteworthy that, although
the localized in the outer well 6 f orbital of the atom with
Z = 148 has two nodes at the points r1 = 0.193 a.u. and
r2 = 0.510 a.u., it is very similar to the nodeless hydrogen
4 f orbital at the larger distances. This is in consistency with
the fact that the values of the one-electron energy 0.03169 a.u.
and average radius 17.5938 a.u. for the 6 f orbital in the outer
well are close to the hydrogen values εH

4 f = 0.03125 a.u. and
〈r〉H

4 f = 18.0 a.u.
The total SHE energies given in the last two rows of

Table V are calculated by diagonalizing the matrix of the
DCB Hamiltonian (8) in the basis of the configuration-state
functions (CSFs), which are the eigenstates of the Ĵ2 and
Ĵz operators. The CSFs are the linear combinations of the
Slater determinants for a single relativistic configuration. This
approach is equivalent, in fact, to the single-configuration
DF method. The diagonalization of the Hamiltonian matrix
is necessary because there are many states with the given
value of the total angular momentum J in the complex atomic
configurations of the SHE (see Tables I and II).

In the present paper we have obtained two different so-
lutions of the DF equations for the same configuration. An
interesting question is how strongly they interact with each
other. For this purpose, we have performed the calculations
of the total energies and the many-electron wave functions
for the [Xe]6s24 f5/2 configuration of the La atom by the CI

TABLE V. Dual states of the SHE atoms with Z = 124, 125, 134, 148. One-electron energies εa and average radii 〈r〉a of the collapsing
a orbitals and the total energies EDCB of the neutral atoms. The labels “in” and “out” indicate two dual states localized in the inner and outer
wells, respectively. All the values are given in atomic units.

Property Z = 124a Z = 125b Z = 134c Z = 148d

a = 5g7/2, J = 7 a = 5g7/2, J = 6.5 a = 5g9/2, J = 6 a = 6 f7/2, J = 4

−εin
a 0.240725 0.538797 0.534678 0.124697

−εout
a 0.019998 0.020002 0.020001 0.031689

〈r〉in
a 0.7990 0.7317 0.6304 1.5742

〈r〉out
a 27.5007 27.4934 27.4977 17.5938

−E in
DCB 63185.579 64718.850 80420.248 114885.579

−E out
DCB 63185.587 64718.592 80420.067 114885.578

a[Og]8s28p1
1/26 f 2

5/25g1
7/2.

b[Og]8s28p1
1/26 f 3

5/25g1
7/2.

c[Og]8s28p2
1/26 f 3

5/25g8
7/25g1

9/2.
d[Og]8s28p2

1/25g187d1
3/26 f 6

5/26 f 1
7/2.
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TABLE VI. The CI-DFS calculations of La, Z = 57
([Xe]6s24 f 1

5/2). ECI is the total CI energies, and q4 f5/2 are the
atomic populations of the 4 f5/2 shell. The labels “in” and “out”
indicate two dual states. All the values are given in atomic units.

−ECI qin
4 f5/2

qout
4 f5/2

q6s

In state 8486.7738 0.98766 0.02583 1.83645
Out state 8486.5441 0.00006 0.96557 1.66580

method in the DFS basis [29,30]. The conventional DFS basis
contains the one-electron DF functions as occupied and active
orbitals as well as a set of virtual DFS orbitals being the
solutions of the DFS equations. In our case, two different
solutions of the SCF equations specify different mutually
nonorthogonal sets of the occupied DF orbitals. To construct
a unified basis set of the one-electron functions, we proceed
as follows. The radial wave functions of the occupied atomic
shells except for the 4 f shell are defined by

Pa(r) = 0.5
[
P(in)

a (r) + P(out)
a (r)

]
Qa(r) = 0.5

[
Q(in)

a (r) + Q(out)
a (r)

]
(14)

where the index a, as before, enumerates the atomic shells,
P(in)

a (r) and Q(in)
a (r) are the large and small components of the

radial orbitals being the solutions of the DF equations when
the 4 f orbital is localized in the inner well, and P(out)

a and
Q(out)

a are the same quantities for the case when the 4 f orbital
is in the outer well. Then, both 4 f5/2 orbitals and a set of the
virtual DFS orbitals are added to this unified basis, followed
by an orthonormalization. In our calculations, besides the
occupied DF orbitals, we have included 5d as the active
orbital and 7s–10s, 6p–10p, 6d–9d , 5 f –9 f , and 5g–6g as the
virtual DFS ones.

To interpret our results, we employed an atomic-population
analysis based on the use of a one-particle density matrix ρ in
the atomic basis, or, in other words, the first-order reduced
density matrix:

ρi j = 〈� | â+
i â j | �〉, qa =

∑
i∈a

ρii, (15)

where � is the many-electron wave function, â+
i and â j are the

creation and annihilation operators of the ith and jth electron,
respectively, qa is the population of the shell a, and the index i
enumerates all atomic orbitals of the shell a. Based on the pop-
ulation analysis, we have identified two eigenvectors of the CI
matrix that give the configuration closest to [Xe]6s24 f 1

5/2. One
of these states, where the 4 f electron is localized in the inner
well, we denote as the “in-state,” and the other one, where
the 4 f electron is localized in the outer well, is referred to
as the “out-state.” As can be seen from Table VI, the in-state
and out-state interact weakly. This can be explained by the
small overlap of the 4 f orbitals localized in the inner and outer
wells. We also note that in this case the in-state is energetically
more favorable.

It should be noted, however, that our conclusion that the
interaction between the in-state and the out-state is weak
should be considered as preliminary. It is based on the calcula-
tions with a moderate-size configuration space. The ultimate

answer can be obtained from the calculations with a larger
configuration space.

VI. CONCLUSIONS

In the present paper, it was found that the effective 5g
or 6 f radial potentials for the eighth-period elements of the
periodic table with the atomic numbers Z = 125, 124, 134,
and 148 are double-well ones. As a consequence, the orbital
collapse is observed in these elements. For example, it has
been shown that, when the atomic term J is changed in atoms
with Z = 124, 125, the wave function of the 5g electron, lo-
calized in the wide and shallow outer well, shrinks strongly
and turns out to be localized in the inner well. As a result,
the average radius of the 5g orbital decreases by a factor of
almost 40, and the binding energy of the 5g electron increases
by a factor of more than 25. It is shown that the state of the 5g
electron in the outer well can be described with high accuracy
by the hydrogen wave function. The state of the neutral atom
with one electron in the outer well can be interpreted as the
motion of an electron in the Coulomb field of a singly charged
positive ion. The orbital-collapse effect for the 5g electrons is
manifested more strongly than for the 4 f and 6 f electrons
because of the larger magnitude of the centrifugal term.

In this paper, we have confirmed the coexistence of the
dual SCF solutions of the same DF equations for La and Eu
atoms observed earlier in Ref. [17]. In one of these solutions,
the 4 f electron is localized in the inner well, whereas in the
other solution it is localized in the outer well. The similar
dual states were found for the 5g electrons in the atoms with
Z = 124, 125, 134 and for the 6 f electron in the atom with
Z = 148.

In order to verify the coexistence of the dual states in the
many-electron approach, on the example of the [Xe]6s24 f 1

5/2
configuration of the La atom, we have performed the CI calcu-
lations including both states into the many-electron CSF basis.
Using the atomic-population analysis, it was found that both
dual states remain sufficiently stable when the configuration
interaction is taken into account. The final answer on the
question whether these dual states are actually physically ob-
servable requires large-scale multiconfiguration calculations.

In all examples of the orbital collapse and coexistence of
the dual solutions, we considered the configurations with one
electron in the 4 f5/2, 4 f7/2, 5g7/2, 5g9/2, and 6 f7/2 shells.
This does not mean that these effects cannot be observed
for a larger number of electrons in these shells. However,
in these cases, it is necessary to discard the central-field ap-
proximation, according to which the radial functions of the
different orbitals of the same shell must be identical, and a
configuration with more than one electron in the outer well is
energetically unfavorable.
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APPENDIX: LOCAL DIRAC-FOCK POTENTIAL

The DF equations for the large Pa(r) and small Qa(r) radial
components of the one-electron wave function are given by(

− d

dr
+ κa

r

)
Qa +

(
Vn + Ya(r)

r
− εa

)
Pa = −X Q(r)

r
,

(
d

dr
+ κa

r

)
Pa +

(
Vn + Ya(r)

r
− εa − 2c2

)
Qa = −X P(r)

r

(A1)

where εa is the one-electron energy, κa is the relativistic
angular quantum number, Vn(r) is the nuclear potential, and
Ya(r)/r is the screening Coulomb potential [27,28]. The func-
tions X Q(r)/r and X P(r)/r include the result of the action
of the exchange-interaction operator on the radial wave func-
tions Pa and Qa and the contribution from the nondiagonal
Lagrange multipliers. The local DF potential is defined by

V loc
a (r) = Vn(r) + Ya(r)

r
+ V ex

a (r), (A2)

where

V ex
a (r) = 1

ρa(r)

∑
b

(nb�na )

δκb,κa wab

[
X Q

b (r)

r
Pb + X P

b (r)

r
Qb

]
.

(A3)

Here na is the principal quantum number of the shell a, and

ρa(r) =
∑

b
(nb�na )

δκb,κa wab
[
P2

b (r) + Q2
b(r)

]
. (A4)

In these calculations, the weights wab were chosen to be equal
to the ratio of the one-electron energies:

wab = εa/εb. (A5)

A more detailed description of the local DF potential is given
in Ref. [35].
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