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In this paper, we extend to three-photon radiative transitions in hydrogenic ions our fully relativistic multipole
approach [Z. Bona et al., Phys. Rev. A 89, 022514 (2014)], which has proven so far to yield extremely
accurate results for two-photon emission processes. Closed-form formulas of double and single differential
frequency distributions as well as total emission probabilities are derived for arbitrary multipole channels by
using the Dirac-Coulomb Sturmian functions of the first order. Two cases of atomic systems are considered in
the study, namely, ions with a spinless nucleus and those with a nonzero nuclear spin to check the validity
of the Bose-Einstein statistics for three-photon emission investigated by Zalialiutdinov et al. [J. Phys. B:
At. Mol. Opt. Phys. 49, 055001 (2016)]. In an effort to assess relativistic effects and the influence of the
negative spectrum of the set of Dirac-Coulomb Sturmians, we formulate two nonrelativistic schemes that involve
Schrödinger-Coulomb Sturmians, a transition operator with retardation, on one hand, and a transition operator
in the long wavelength approximation, on the other hand. An application of these theories is made for the
relativistic and nonrelativistic atomic transitions 2s1/2 → 1s1/2, 2p1/2 → 1s1/2, 2p3/2 → 2s1/2 and 2s → 1s,
2p → 1s, respectively, with nuclear charge ranging from 1 to 100. Some of our numerical values are compared
with the scarce data available in the literature and they enable us to draw inferences as to the improvements
obtained with our approach, while the others are additional results that we provide as a further step for more
investigations of three-photon decays.

DOI: 10.1103/PhysRevA.109.042803

I. INTRODUCTION

Since the advent of quantum mechanics, multiphoton pro-
cesses have attracted special attention in various fields of
physical sciences [1–7]. Starting with two-photon transitions
in atomic systems, and notably with two-photon emission,
theoretical studies can be traced back to the evaluation of the
2s → 1s transition in atomic hydrogen, performed by Breit
and Teller [8] from the seminal work of Goeppert-Mayer [9].
Since then, these works spawned subsequent developments
and a strong debate. In recent years, for instance, quan-
tum electrodynamics (QED) calculations of two-photon decay
rates of H-like ions were carried out by a number of authors
using several adequate techniques, among others by Goldman
and Drake [10,11], Santos et al. [12], Amaro et al. [13],
Jentschura and Surzhykov [14], Labzowsky et al. [15–17], and
by us with our reliable and efficient Dirac-Coulomb Green
Function (DCGF) scheme [18]. The exception being the pre-
dictions of Labzowsky et al. who used an approach based on
the set of B-splines, the results of the other authors are closer
to ours. For details see Ref. [18] in which the comparison and
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discussion of all theoretical data obtained within the frame-
work of these approaches are reflected.

From the above-mentioned investigations, it is evident that
the chief difficulty in calculating the multiphoton emission
stands in the correct evaluation of cumbersome summations
over the possible unperturbed intermediate states of the sys-
tem under consideration. To be specific for three-photon
decays, two Green’s functions are involved in the third-order
amplitudes so that, on one hand, the derivation of their ana-
lytical expressions is tediously long, and on the other hand,
they require considerable computational time and effort. That
is why, to the best of our knowledge in this case, only the
pioneering relativistic works of Zalialiutdinov et al. [19] were
reported recently in the literature. Employing the B-spline
method in the summations, these authors computed transition
probabilities for 3E1 and 3E2 multipoles of 2s1/2, 2p1/2, and
2p3/2 states of H-like ions with a spinless nucleus and a nu-
clear charge up to 95. They also discussed the Bose-Einstein
statistics (BES) for the transition 2p3/2 → 1s1/2 + 3γ (E1) in
the neutral hydrogen atom, and 2p3/2 → 2s1/2 + 3γ (E1) in
the hydrogenic ion Z = 19, both with a nonzero nuclear spin
[20,21]. More information about the BES may be found in
Refs. [22–26].

Because of its efficiency and success as far as two-photon
radiative transitions (2-PRT) are concerned, our theory has
emerged as a very useful and powerful tool of attack in QED
calculations of atomic multiphon processes. Accordingly, it is
expected that the DCGF scheme will also provide results with
at least the same order of accuracy for three-photon radiative
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transitions (3-PRT). For this purpose we have extended our
treatment by constructing a general analytical relativistic the-
ory. Closed-form formulas obtained for differential frequency
distributions are very convenient for computer calculations. In
an effort to compare our numerical results with those available
in Ref. [19], to assess relativistic effects and the influence of
the negative spectrum of the set of Dirac-Coulomb Sturmians
of first order, we derive two nonrelativistic approximations
using Schrödinger-Coulomb Sturmian basis functions. In ad-
dition, it is also the purpose of the present contribution to
provide new data for further studies.

The organization of this paper is as follows. Section II
describes in detail the methods and calculations of our rel-
ativistic theory of three-photon decay rates. In Sec. III,
nonrelativistic approaches are formulated by using first a
transition operator expressed in the long wavelengths approxi-
mation (NRT-LWA), and second another one that incorporates
retardation corrections (NRT-RC). Details on the angular cou-
pling factors which intervene in the matrix elements are
included in the Appendix. Section IV is devoted to the pre-
sentation of our numerical results. Finally, in Sec. V, we make
some concluding remarks. Notice that atomic units (a.u.) and
relativistic atomic units (r.a.u.) are used throughout.

II. RELATIVISTIC THEORY OF THREE-PHOTON
RADIATIVE TRANSITIONS

In this section, we present the analytical relativistic theory
of 3-PRT in hydrogenic ions, derived from our DCGF scheme
previously developed for 2-PRT [18]. Since the general for-
malism is given in detail in that reference, we report here
only the most important new formulas concerning 3-PRT for
atomic systems considered below, namely, H-like ions with
a spinless nucleus and those with a nonzero nuclear spin.
Relativistic atomic units (r.a.u.) are used throughout this sec-
tion and α stands for the fine structure constant. Their values
for conversion in the tables are given in Refs. [18,27].

A. Emission rates for ions with a spinless nucleus

Within the framework of QED [28] and owing to our pre-
vious two-photon works, we formulate the general expression
for three-photon decay rates in hydrogenic ions with a spinless
nucleus for an arbitrary combination of multipoles and in
the length gauge for electromagnetic potentials. The basic
expression for the average double differential in energy decay
rate may be written, as

d2W

dω1dω2
= α3ω1ω2ω3

(2π )5(2 ji + 1)

∑
mim f

∑
(1),(2),(3)

|S[(3), (2), (1)]

+ 5 permutations|2, (1)

where S[(w), (v), (u)] is the third-order transition amplitude
from an initial to a final atomic states

S[(w), (v), (u)] =
∫
R3

dr3

∫
R3

dr2

∫
R3

dr1�
†
f (r3)

× V [r3, kw, (w)]GE2 (r3, r2)V [r2, kv, (v)]

× GE1 (r2, r1)V [r1, ku, (u)]�i(r1). (2)

As is evident in Eq. (2), the numbers 1, 2, 3 stand for the
vertexes of the Feynman diagram from which the three pho-
tons u, v, w are emitted, respectively. The notation (u) means
(λuLuMu) of the uth photon of frequency ωu and wave vector
ku, with u = 1, 2, 3. λu, Lu, Mu stand for the photon mul-
tipole, angular momentum and its projection. We recall that
terms with λu = 1 and λu = 0 are of electric and magnetic
types, respectively. GE represents the first-order DCGF with
energy parameter E of the intermediate virtual states [29].
The one-body transition operator V denotes the interaction of
the electron with the electromagnetic field [10]. Separating in
the standard way the spin-angular and radial parts in matrix
elements for the diagram (u, v,w), leads to

S[(w), (v), (u)] = (−i)Lw+Lv+Lu (4π )3/2

×
∑
j1 j2

Bj1 j2 (w, v, u)θ j1 j2 (w, v, u). (3)

For computation purposes, it is convenient to express the
radial integrals in a matrix form as

Bj1 j2 (w, v, u) = 	 j1 j2 (w, v, u)
〈
U (λwLw )

f (ωw )|�(λvLv )(ωv )|
× U (λuLu )

i (ωu)
〉
, (4)

where the elements of the vectors |U (λL)
i 〉 and |U (λL)

f 〉 and the

matrix �(λL) are respectively given by

U (λL)
i,n1κ1

= M (λL)
n1κ1,niκi

,

U (λL)
f ,n2κ2

= M (λL)
n f κ f ,n2κ2

,

�(λL)
n2κ2,n1κ1

= M (λL)
n2κ2,n1κ1

. (5)

It should be noted that transitions proceed through in-
termediate virtual states related to the quantum numbers
(n1, j1, κ1, m1) and (n2, j2, κ2, m2) which form a complete set
of states, including both positive and negative energies of the
Dirac spectrum. The radial quantum numbers are such that
−∞ < n2, n1 < ∞, while the Dirac angular quantum num-
bers κ2 and κ1 run over all possible integer values allowed by
three-photon selection rules. The initial and final ionic bound
states are defined by the quantum numbers (ni, ji, κi, mi ) and
(n f , j f , κ f , m f ) related to energies Ei and E f , respectively. As
for the angular couplings, they read

	 j1 j2 (w, v, u) = [ j f , j2, j1, ji]
1/2

(
j f Lw j2

1/2 0 −1/2

)(
j2 Lv j1

1/2 0 −1/2

)(
j1 Lu ji

1/2 0 −1/2

)
, (6)

θ j1 j2 (w, v, u) = [ j2, j1]1/2
∑
m1m2

(−1)χ
(

j f Lw j2
−m f −Mw m2

)(
j2 Lv j1

−m2 −Mv m1

)(
j1 Lu ji

−m1 −Mu mi

)
, (7)
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with [a, b, . . . , c] = (2a + 1)(2b + 1) . . . (2c + 1) and χ = m2 + m1 + mi − 1/2. Our aim is to derive an analytical and simple
expression for the double differential emission rate. This is accomplished after very lengthy manipulations, and finally we are
able to transform Eq. (1) to the following general closed form:

d2W

dy1dy2
= 2α3y1y2y3ω

5
0

π2(2 ji + 1)

∑
all λL

{
5∑

k=1

Pk

}
, (8)

where the first term stands for the direct partial contributions of the possible Feynman diagrams

P1 =
∑
j1 j2

{|Bj1 j2 (3, 2, 1)|2 + 5 permutations}, (9)

and the others contributions are cross terms

P2 = 2
∑
j1 j2

⎧⎨⎩Bj1 j2 (3, 2, 1)
∑

j′1

K̂ (1)
j1 j′1

(2, 1)B∗
j′1 j2 (3, 1, 2) + Bj1 j2 (1, 3, 2)

∑
j′1

K̂ (1)
j1 j′1

(3, 2)B∗
j′1 j2 (1, 2, 3)

+ Bj1 j2 (2, 1, 3)
∑

j′1

K̂ (1)
j1 j′1

(1, 3)B∗
j′1 j2 (2, 3, 1)

⎫⎬⎭, (10)

P3 = 2
∑
j1 j2

⎧⎨⎩Bj1 j2 (3, 2, 1)
∑

j′2

Ǩ (1)
j2 j′2

(3, 2)B∗
j1 j′2

(2, 3, 1) + Bj1 j2 (1, 3, 2)
∑

j′2

Ǩ (1)
j2 j′2

(1, 3)B∗
j1 j′2

(3, 1, 2)

+ Bj1 j2 (2, 1, 3)
∑

j′2

Ǩ (1)
j2 j′2

(2, 1)B∗
j1 j′2

(1, 2, 3)

⎫⎬⎭, (11)

P4 = 2
∑

j1 j2 j′1 j′2

[
K̂ (1)

j1 j′1
(2, 1)Ǩ (2)

j2 j′2
(3, 1)Bj1 j2 (3, 2, 1)B∗

j′1 j′2
(1, 3, 2) + K̂ (2)

j1 j′1
(3, 1)Ǩ (1)

j2 j′2
(3, 2)Bj1 j2 (3, 2, 1)B∗

j′1 j′2
(2, 1, 3)

+ K̂ (1)
j1 j′1

(3, 2)Ǩ (2)
j2 j′2

(1, 2)Bj1 j2 (1, 3, 2)B∗
j′1 j′2

(2, 1, 3) + K̂ (1)
j1 j′1

(1, 2)Ǩ (2)
j2 j′2

(3, 2)Bj1 j2 (3, 1, 2)B∗
j′1 j′2

(2, 3, 1)

+ K̂ (2)
j1 j′1

(3, 2)Ǩ (1)
j2 j′2

(3, 1)Bj1 j2 (3, 1, 2)B∗
j′1 j′2

(1, 2, 3) + K̂ (1)
j1 j′1

(3, 1)Ǩ (2)
j2 j′2

(2, 1)Bj1 j2 (2, 3, 1)B∗
j′1 j′2

(1, 2, 3)
]
, (12)

P5 = 2
∑

j1 j2 j′1 j′2

[Kj1 j2 j′1 j′2 (3, 2, 1)Bj1 j2 (3, 2, 1)B∗
j′1 j′2

(1, 2, 3) + Kj1 j2 j′1 j′2 (1, 3, 2)Bj1 j2 (1, 3, 2)B∗
j′1 j′2

(2, 3, 1)

+ Kj1 j2 j′1 j′2 (2, 1, 3)Bj1 j2 (2, 1, 3)B∗
j′1 j′2

(3, 1, 2)]. (13)

Owing to the energy conservation requirement, we have

ω0 = Ei − E f =
3∑

u=1

ωu, ωu = yuω0, 0 < yu < 1. (14)

yu is the fraction of energy carried by the uth photon and ω0

is the energy of the atomic transition. The spin-angular cou-
pling coefficients K̂ (1)

j1 j′1
, K̂ (2)

j1 j′1
, Ǩ (1)

j2 j′2
, Ǩ (2)

j2 j′2
, Kj1 j2 j′1 j′2 expressed

in terms of 6 j and 9 j Wigner symbols are outlined in the
Appendix.

B. Emission rates for ions with a nonzero nuclear spin

The hyperfine structure of the atomic levels is considered
here by taking into account the nonzero nuclear spin I of the
H-like ion. Accordingly, its total angular momentum is F =
j + I with | j − I| � F � j + I . Thus, the matrix elements to
be used in this case for 3-PRT between different hyperfine
sublevels of different fine-structure levels can be obtained in

virtue of the Wigner-Eckart theorem, as

〈ασ jσ Iσ , Fσ Mσ |T k
q |ατ jτ Iτ , Fτ Mτ 〉

= δIσ Iτ (−1)Fσ +Fτ + jσ +k+I−Mσ [Fσ , Fτ ]1/2

(
Fσ k Fτ

−Mσ q Mτ

)
×

{
Fσ k Fτ

jτ I jσ

}
〈ασ jσ‖T k‖ατ jτ 〉. (15)

The notation Iσ = Iτ = I comes from the Kronecker’ s sym-
bol δIσ Iτ . The reduced matrix element 〈ασ jσ‖T k‖ατ jτ 〉 was
evaluated in Refs. [18,30,31]. By exploiting this result and
following the same procedure, we arrive at

d2Ŵ

dy1dy2
= 2α3y1y2y3ω

5
0

π2(2Fi + 1)

∑
all λL

{
5∑

k=1

P̂k

}
, (16)

where the terms P̂k can be obtained from the formulas (9)
to (13) by simple substitutions, namely,

∑
j1 j2

→ ∑
j1 j2F1F2

,
j → F in the angular couplings coefficients K̂ (i), Ǩ (i), K , and
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Bj1 j2 → B j1 j2F1F2 for the radial integrals.

B j1 j2F1F2 (w, v, u) = Bj1 j2 (w, v, u)� j1 j2F1F2 (w, v, u), (17)

with

� j1 j2F1F2 (w, v, u) = [ j2, j1]1/2[Ff , F2, F1, Fi]
1/2

{
Ff Lw F2

j2 I j f

}{
F2 Lv F1

j1 I j2

}{
F1 Lu Fi

ji I j1

}
. (18)

From the 6 j symbols in Eq. (18), we get the selection rules of the total angular momentum F1 and F2, i.e., |Fi − Lu| � F1 �
Fi + Lu, | j1 − I| � F1 � j1 + I , |F2 − Lv| � F1 � F2 + Lv , |Ff − Lw| � F2 � Ff + Lw, | j2 − I| � F2 � j2 + I .

III. NONRELATIVISTIC APPROACH OF THREE-PHOTON DECAYS

This section is devoted to derive explicitly the theory of 3-PRT in nonrelativistic hydrogenic ions. This will serve as a test for
relativistic calculations, particularly for low nuclear charges, and to estimate retardation effects as well as the influence of the
negative spectrum of the Dirac-Coulomb Sturmians. Only electric multipole are considered in what follows, i.e., λu = 1 ≡ E ,
u = 1, 2, 3. Atomic units (a.u.) are used throughout this section.

A. Spectral distribution with retardation

The nonrelativistic length form of the electric multipole transition operator which includes retardation, is defined as [28]

VLM(r, ω) = −(−i)L

(
4πω

R

)1/2
√

L + 1

L
jL(αωr)Y ∗

LM(r̂). (19)

jL is the spherical Bessel function. The use of the Schrödinger-Coulomb representation of the Green function expressed by the
partial wave decomposition [18,32–34], together with Eq. (19), yields the NRT-RC spectral distribution

d2W̃

dy1dy2
= 2α3y1y2y3ω̃

5
0

π2(2�i + 1)

∑
all L

ζL1,L2,L3

∑
mim f

∑
all M

∣∣̃S[(3), (2), (1)] + 5 permutations
∣∣2

, (20)

where

ζL1,L2,L3 =
3∏

k=1

(Lk + 1)(2Lk + 1)

Lk
, ω̃0 = ξi − ξ f , (21)

S̃[(w), (v), (u)] =
∑
�1�2

B̃�1�2 (w, v, u)̃θ�1�2 (w, v, u), (22)

with

θ̃�1�2 (w, v, u) = [�1, �2]1/2
∑
m1m2

(−1)χ̃
(

� f Lw �2

−m f −Mw m2

)(
�2 Lv �1

−m2 −Mv m1

)(
�1 Lu �i

−m1 −Mu mi

)
, (23)

B̃�1�2 (w, v, u) = 	̃�1�2 (w, v, u)
〈
Ũ

(λwLw )
f (ωw )

∣∣�̃(λvLv )
(ωv )

∣∣Ũ (λuLu )
i (ωu)

〉
, (24)

	̃�1�2 (w, v, u) = [� f , �2, �1, �i]
1/2

(
� f Lw �2

0 0 0

)(
�2 Lv �1

0 0 0

)(
�1 Lu �i

0 0 0

)
, (25)

and χ̃ = m2 + m1 + mi. As in the previous section, the vectors Ũ
(L)
f , Ũ

(L)
i and the matrix �̃

(L)
are given by

Ũ (L)
f ,n2κ2

= ηn2�2 M̃ (L)
n f � f ,n2�2

, Ũ (L)
i,n1κ1

= ηn1�1 M̃ (L)
n1�1,ni�i

, �̃
(L)
n2�2,n1�1

= M̃ (L)
n2�2,n1�1

, (26)

while the factor ηn� and the radial integrals take the form

ηn� = n + � + 1

λ[λ(n + � + 1) − Z]
, M̃ (L)

n′�′,n�(ω) =
∫ ∞

0
dr Sn′�′ (r) jL(αωr)Sn�(r). (27)

λ = √−2ξ and Sn�(r) are the Schrödinger-Coulomb radial Sturmian functions [18]. It should be noted that the intermediate
virtual states are characterized by the quantum numbers (n1, �1, m1) and (n2, �2, m2). They follow through selection rules
for given initial and final atomic states. The radial quantum numbers in this case are assumed to be nonnegative. After some
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calculations, one can establish Eq. (20) in the final form

d2W̃

dy1dy2
= 2α3y1y2y3ω̃

5
0

π2(2�i + 1)

∑
L1L2L3

ζL1,L2,L3

{
5∑

k=1

P̃k

}
, (28)

P̃1 =
∑
�1�2

{|B̃�1�2 (3, 2, 1)|2 + 5 permutations}, (29)

P̃2 = −2
∑
�1�2

⎧⎨⎩B̃�1�2 (3, 2, 1)
∑
�′

1

K̂ (1)
�1�

′
1
(2, 1)B̃∗

�′
1�2

(3, 1, 2) + B̃�1�2 (1, 3, 2)
∑
�′

1

K̂ (1)
�1�

′
1
(3, 2)B̃∗

�′
1�2

(1, 2, 3)

+ B̃�1�2 (2, 1, 3)
∑
�′

1

K̂ (1)
�1�

′
1
(1, 3)B̃∗

�′
1�2

(2, 3, 1)

⎫⎬⎭, (30)

P̃3 = −2
∑
�1�2

⎧⎨⎩B̃�1�2 (3, 2, 1)
∑
�′

2

Ǩ (1)
�2�

′
2
(3, 2)B̃∗

�1�
′
2
(2, 3, 1) + B̃�1�2 (1, 3, 2)

∑
�′

2

Ǩ (1)
�2�

′
2
(1, 3)B̃∗

�1�
′
2
(3, 1, 2)

+ B̃�1�2 (2, 1, 3)
∑
�′

2

Ǩ (1)
�2�

′
2
(2, 1)B̃∗

�1�
′
2
(1, 2, 3)

⎫⎬⎭, (31)

P̃4 = 2
∑

�1�2�
′
1�

′
2

[
K̂ (1)

�1�
′
1
(2, 1)Ǩ (2)

�2�
′
2
(3, 1)B̃�1�2 (3, 2, 1)B̃∗

�′
1�

′
2
(1, 3, 2) + K̂ (2)

�1�
′
1
(3, 1)Ǩ (1)

�2�
′
2
(3, 2)B̃�1�2 (3, 2, 1)B̃∗

�′
1�

′
2
(2, 1, 3)

+ K̂ (1)
�1�

′
1
(3, 2)Ǩ (2)

�2�
′
2
(1, 2)B̃�1�2 (1, 3, 2)B̃∗

�′
1�

′
2
(2, 1, 3) + K̂ (1)

�1�
′
1
(1, 2)Ǩ (2)

�2�
′
2
(3, 2)B̃�1�2 (3, 1, 2)B̃∗

�′
1�

′
2
(2, 3, 1)

+ K̂ (2)
�1�

′
1
(3, 2)Ǩ (1)

�2�
′
2
(3, 1)B̃�1�2 (3, 1, 2)B̃∗

�′
1�

′
2
(1, 2, 3) + K̂ (1)

�1�
′
1
(3, 1)Ǩ (2)

�2�
′
2
(2, 1)B̃�1�2 (2, 3, 1)B̃∗

�′
1�

′
2
(1, 2, 3)

]
, (32)

P̃5 = 2
∑

�1�2�
′
1�

′
2

[
K�1�2�

′
1�

′
2
(3, 2, 1)B̃�1�2 (3, 2, 1)B̃∗

�′
1�

′
2
(1, 2, 3) + K�1�2�

′
1�

′
2
(1, 3, 2)B̃�1�2 (1, 3, 2)B̃∗

�′
1�

′
2
(2, 3, 1)

+ K�1�2�
′
1�

′
2
(2, 1, 3)B̃�1�2 (2, 1, 3)B̃∗

�′
1�

′
2
(3, 1, 2)

]
, (33)

where the expressions K̂ (1)
�1�

′
1
, K̂ (2)

�1�
′
1
, Ǩ (1)

�2�
′
2
, Ǩ (2)

�2�
′
2
, K�1�2�

′
1�

′
2

are analogously defined from their relativistic counterparts, namely that

they are obtained from the substitutions jν → �ν , j′ν → �′
ν in Eqs. (A14) to (A18).

B. Long wavelengths approximation of the spectral distribution

Within the long wavelength approximation, i.e., by retaining only the leading retardation term in the series expansion of the
spherical Bessel function [35] in the nonrelativistic transition operator (19), it becomes

V (LWA)
LM (r, ω) = −(−i)L

(
4πω

R

)1/2
√

L + 1

L

(αω)L

(2L + 1)!!
rLY ∗

LM(r̂). (34)

By inserting this expression in the transition amplitudes and after some manipulations, we get the formula of the NRT-LWA
spectral distribution as follows:

d2W̃ (LWA)

dy1dy2
= 2ω̃2

0

π2(2�i + 1)

∑
L1L2L3

α2L1+2L2+2L3+3ζ
(LWA)
L1,L2,L3

ω
2L1+1
1 ω

2L2+1
2 ω

2L3+1
3

{
5∑

k=1

P̃ (LWA)
k

}
, (35)

ζ
(LWA)
L1,L2,L3

=
3∏

k=1

(Lk + 1)(2Lk + 1)

Lk[(2Lk + 1)!!]2 . (36)

The passage from P̃k to P̃ (LWA)
k is implemented with the use of radial integrals

q�1�2 (w, v, u) = 	̃(w, v, u) I�1�2 (ξ2, ξ1; w, v, u), (37)

where

I�1�2 (ξ2, ξ1; w, v, u) =
∫ ∞

0
dr3

∫ ∞

0
dr2

∫ ∞

0
dr1rLw+1

3 rLv

2 rLu+1
1 Pf (r3)g�2 (ξ2, r3, r2)g�1 (ξ1, r2, r1)Pi(r1). (38)
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Let us now apply the spectral formulas (35) to (38) to the transition 2s → 1s + 3γ (E2) whose intermediate virtual states are
n2d n1d . The integral (38) can be evaluated by the following general formula [36]:

D�1�2 (m; p, s, q; λ2, λ1) = Zm
∫ ∞

0
dr3

∫ ∞

0
dr2

∫ ∞

0
dr1e−Z (r3+r1/2)rp

3 rs
2rq

1 g�2 (ξ2, r3, r2)g�1 (ξ1, r2, r1)

= Cν1ν2
�1�2

∞∑
n2=0

∞∑
n1=0

(n2 + 2�2 + 1)!

(n2 + �2 + 1 − ν2)n2!

(n1 + 2�1 + 1)!

(n1 + �1 + 1 − ν1)n1!

× 2F1

(
−n2, �2 + p + 2; 2�2 + 2;

2

ν2 + 1

)
× 2F1

(
−n1; �1 + q + 2; 2�1 + 2;

4

ν1 + 1

)
Kn1n2

�1�2
(ν2, ν1), (39)

where

Cν1ν2
�1�2

= 22�2+3�1+q+6ν
�1+p+s+4
2 ν

�2+q+s+4
1

(ν2 + 1)�2+p+2(ν2 + ν1)�2+�1+s+3(ν1 + 2)�1+q+2

(�2 + p + 1)!(�1 + q + 1)!

Z p+s+q−m+5[(2�2 + 1)!(2�1 + 1)!]2 , (40)

Kn1n2
�1�2

(ν2, ν1) =
∫ ∞

0
dx e−x x�2+�1+s+2Qn1n2

�1�2
(x), (41)

Qn1n2
�1�2

(x) = 1F1

(
−n2; 2�2 + 2;

2ν1x

ν2 + ν1

)
1F1

(
−n1; 2�1 + 2;

2ν2x

ν2 + ν1

)
, (42)

νk =
√−2ξk

Z
, k = 1, 2. (43)

2F1 and 1F1 are the Gauss and confluent hypergeometric functions [35], respectively. Since Qn1n2
�1�2

(x) is a polynomial of degree
n1 + n2 in x, a simple Gauss-Laguerre quadrature is well adapted to a highly accurate calculation of Eq. (41). With these
expressions, the spectral distribution takes the final form

d2W̃ (LWA)

dy1dy2
= 314

221587π2
α(αZ )14y5

1y5
2y5

3

⎧⎨⎩
6∑

k=1

[
Ĩ22

(
ν

(k)
2 , ν

(k)
1

)]2 + 2
5∑

j=1

Ĩ22
(
ν

( j)
2 , ν

( j)
1

) 6∑
k= j+1

Ĩ22
(
ν

(k)
2 , ν

(k)
1

)⎫⎬⎭, (44)

where

Ĩ22(b, a) = b11a11

(b + 1)7(b + a)9(a + 2)7

∞∑
n2=0

∞∑
n1=0

(n2 + 5)!

n2!(n2 + 3 − b)

(n1 + 5)!

n1!(n1 + 3 − a) 2F1

(
−n2, 7; 6;

2

b + 1

)

×
[

2F1

(
−n1, 7; 6;

4

a + 2

)
− 7a

a + 2
2F1

(
−n1, 8; 6;

4

a + 2

)]
K̃22(b, a), (45)

K̃22(b, a) =
∫ ∞

0
dx e−x x8

1F1

(
−n2; 6;

2ax

b + a

)
1F1

(
−n1; 6;

2bx

b + a

)
. (46)

The pairs (ν (k)
2 , ν

(k)
1 ) refer to the Feynman diagrams (k) ≡ (u, v,w), k = 1, . . . , 6. They are such that

ν
(k)
1 = 2√

1 + 3yu
, ν

(k)
2 = 2√

4 − 3yw

. (47)

Performing the evaluation of the total decay rate

W̃ (LWA) = 1

3!

∫ 1

0

∫ 1

0

(
d2W̃ (LWA)

dy1dy2

)
dy1dy2, (48)

we get

2s → 1s + 3γ (E2) : W̃ (LWA)(3E2) = 3.469 252 162 7 × 10−12 α(αZ )14. (49)
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TABLE I. Virtual states allowed in the multipole contributions included in calculations of relativistic three-photon decay rates with a
spinless nucleus for the 2s1/2 → 1s1/2 and 2p1/2 → 1s1/2 transitions, and nonrelativistic three-photon decay rates for the 2s → 1s and 2p → 1s
transitions.

Multipoles Virtual states Multipoles Virtual states

2s1/2 → 1s1/2 2s → 1s 2p1/2 → 1s1/2 2p → 1s

3E2 n2d3/2 n1d3/2, n2d3/2 n1d5/2, n2d n1d 3E1 n2 p1/2 n1s1/2, n2 p1/2 n1d3/2, n2 p n1s, n2 p n1d

n2d5/2 n1d3/2, n2d5/2 n1d5/2 n2 p3/2 n1s1/2, n2 p3/2 n1d3/2

2E1E2 n2 p1/2 n1 p3/2, n2 p1/2 n1d3/2, n2 p n1 p, n2 p n1d , 2E2E1 n2 p1/2 n1 p3/2, n2 p1/2 n1 f5/2, n2 p n1 p, n2 p n1 f ,

n2 p3/2 n1 p1/2, n2 p3/2 n1 p3/2, n2d n1 p n2 p3/2 n1 p3/2, n2 p3/2 n1 f5/2, n2d n1s, n2d n1 p,

n2 p3/2 n1d3/2, n2 p3/2 n1d5/2, n2d3/2 n1s1/2, n2d3/2 n1 p3/2, n2d n1d , n2d n1 f

n2d3/2 n1 p1/2, n2d3/2 n1 p3/2, n2d3/2 n1d3/2, n2d3/2 n1 f5/2,

n2d5/2 n1 p3/2 n2d5/2 n1s1/2, n2d5/2 n1 p3/2,

n2d5/2 n1d3/2, n2d5/2 n1 f5/2

We carried out in the same way calculations for three others transitions and obtained the formulas

2p → 1s + 3γ (E1) : W̃ (LWA)(3E1) = 4.816 308 365 9 × 10−6 α(αZ )8, (50)

2s → 1s + 2γ (E1) + γ (E2) : W̃ (LWA)(2E1E2) = 1.390 521 835 3 × 10−7 α(αZ )10, (51)

2p → 1s + 2γ (E2) + γ (E1) : W̃ (LWA)(2E2E1) = 1.657 122 982 3 × 10−9 α(αZ )12. (52)

IV. COMPUTATIONAL RESULTS

The formulas derived above enable us to assess the effec-
tiveness of our DCGF fully relativistic approach to a large
selection of hydrogenic ions with nuclear charge Z ranging
from 1 to 100 for certain well-defined electric transitions.
Prior to the presentation of our numerical results and the
comparison withthose of Zalialiutdinov et al. [19], some in-
troductory statements are in order.

First, let us extend the well-known standard spectral distri-
bution formula introduced by Spitzer and Greenstein [37] to
three-photon emission spectra in the form

d2W

dy1dy2
= 33

215
αZqψ (Z, y1, y2), Z = αZ, (53)

where the variables y1 and y2 are the fractions of energy
carried by two of the three photons. From Eqs. (49) to (52),
the multipoles 3E1, 2E1E2, 2E2E1, and 3E2 scale as q =
8, 10, 12 and 14, respectively. By integrating Eq. (53), one
easily obtains the single differential probability and the total
rate

dW

dy
= 33

215
αZqϕ(Z, y), W = αZqφ(Z ), (54)

respectively, where the variable y is the fraction of energy
carried by one of the photons. It should be noted that the
integrations over y1 and y2 are performed by means of a
Gauss-Legendre quadrature [35].

Second, in the sums over the radial quantum numbers n1

and n2 occurring in equations of Secs. II and III, a finite
expansion length nmax is used to obtain converged values.
In the computations, we focus our attention on W̃ and W ,
W+ corresponding to the full −nmax � n1, n2 � nmax and the

nonnegative 0 � n1, n2 � nmax parts of the Dirac Sturmians
basis, respectively.

Finally, let

d1(%) = 100 × |W̃ (LWA) − W (OTD)|
W̃ (LWA)

,

d2(%) = 100 × |W − W (ZSL)|
W

, (55)

be a measure of the difference, on one hand, between
the nonrelativistic results in the long wavelengths approx-
imation W̃ (LWA) and the other theoretical data W (OTD) ≡
W, W+, W̃ , and W (ZSL) from the scheme denoted hereafter
ZSL (Ref. [19]), and on the other hand, between our fully rel-
ativistic results considered as reference numbers and those of
ZSL. With these useful tools we are now able to evaluate and
adequately analyze three-photon decay rates of the selected
2s1/2, 2p1/2, and 2p3/2 atomic states investigated in this paper.

In Table I are listed the allowed virtual states involved
in the summations of Eqs. (8), (16), (28), and (35) for the
multipole decay channels considered here. They are dipole
and quadrupole moments of each photon field, and all of
electric type, namely, 3E1, 3E2, 2E1E2, and 2E2E1. It is ob-
vious that when the moments of photons are not identical, the
number of intermediate states increases rapidly especially in
the relativistic case. This leads to tediously long calculations,
and if one is not careful significant roundoff errors can occur.
That is why great care has been exercised in evaluating radial
integrals and the most crucial parameter nmax = 30 has been
used to reach the full convergence and the gauge (velocity and
length) invariance of our results.

The partial three-photon decay rates of 3E1 and 3E2 mul-
tipoles for the transitions 2p1/2 → 1s1/2 and 2s1/2 → 1s1/2

are presented in Table II. Plots of percentage differences d1
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TABLE II. Three-photon decay rates in s−1 of combinations of 3E1 and 3E2 multipoles for the transitions 2p1/2 → 1s1/2 and 2s1/2 → 1s1/2,
respectively, as a function of the nuclear charge. First entry: W ; second entry: W+; third entry: W−; fourth entry: W (ZSL)

vel (Zalialiutdinov et al.
[19]); fifth entry: W (ZSL)

len (Zalialiutdinov et al. [19]); sixth entry: W̃ ; seventh entry: W̃ (LWA). Powers of ten are given in parentheses.

Z W (3E1) W (3E2) Z W (3E1) W (3E2) Z W (3E1) W (3E2)

1 1.168349(−8) 1.270639(−27) 35 2.522157(4) 5.100624(−6) 70 5.605106(6) 7.562072(−2)
1.168344(−8) 1.270627(−27) 2.509935(4) 5.042402(−6) 5.481418(6) 7.191555(−2)
8.657862(−32) 1.218649(−49) 4.587387(−7) 1.373462(−15) 3.355831(−2) 6.501112(−8)
1.168620(−8) 1.284270(−27) – – 5.579235(6) 7.601921(−2)
1.168632(−8) 1.284254(−27) – – 5.579255(6) 7.602718(−2)
1.168367(−8) 1.270839(−27) 2.574487(4) 5.113693(−6) 6.176422(6) 7.698558(−2)
1.168388(−8) 1.270869(−27) 2.631065(4) 5.260819(−6) 6.735525(6) 8.619325(−2)

5 4.560170(−3) 7.747346(−18) 40 7.242774(4) 3.287441(−5) 75 9.435201(6) 1.944611(−1)
4.559737(−3) 7.745571(−18) 7.196334(4) 3.276170(−5) 9.189500(6) 1.833669(−1)
1.322087(−20) 2.904537(−34) 3.901737(−6) 3.148102(−14) 1.035105(−1) 2.813930(−7)
4.561173(−3) 7.833773(−18) 7.237156(4) 3.306380(−5) – –
4.561219(−3) 7.833681(−18) 7.237208(4) 3.307976(−5) – –
4.561990(−3) 7.752272(−18) 7.442873(4) 3.287441(−5) 1.059018(7) 1.989218(−1)
4.564016(−3) 7.756767(−18) 7.657149(4) 3.411462(−5) 1.169707(7) 2.264427(−1)

10 1.164449 1.267718(−13) 45 1.829930(5) 1.685837(−4) 80 1.526970(7) 4.695684(−1)
1.164006 1.266555(−13) 1.814865(5) 1.652729(−4) 1.480459(7) 4.389944(−1)
8.685674(−16) 1.226286(−27) 2.606695(−5) 6.230732(−13) 3.010389(−1) 1.413162(−6)
1.164659 1.281043(−13) – – 1.514879(7) 0.470047
1.164670 1.284925(−13) – – 1.514883(7) 0.470080
1.166314 1.267926(−13) 1.895365(5) 1.693290(−4) 1.750731(7) 4.823789(−1)
1.168388 1.270869(−13) 1.964659(5) 1.774500(−4) 1.960230(7) 5.589340(−1)

15 2.971733(1) 3.689464(−11) 50 4.177085(5) 7.272263(−4) 85 2.385144(7) 1.067271
2.969177(1) 3.681844(−11) 4.133876(5) 7.101204(−4) 2.300361(7) 9.864567(−1)
5.727330(−13) 9.452561(−24) 1.441539(−4) 6.986868(−12) 7.992066(−1) 1.782239(−5)

– – 4.170711(5) 7.335633(−4) – –
– – 4.170735(5) 7.337452(−4) – –

2.982508(1) 3.690737(−11) 4.366196(5) 7.321130(−4) 2.802626(7) 1.106154
2.994451(1) 3.710038(−11) 4.564016(5) 7.756767(−4) 3.183747(7) 1.306068

20 2.950721(2) 2.061505(−9) 55 8.777790(5) 2.724497(−3) 90 3.606051(7) 2.308361
2.946181(2) 2.053907(−9) 8.666009(5) 2.644430(−3) 3.457417(7) 2.108665
5.735036(−11) 5.817424(−21) 6.523573(−4) 6.934832(−11) 2.031121 5.844450(−5)
2.950782(2) 2.082775(−9) – – 3.554091(7) 2.304994
2.950754(2) 2.087035(−9) – – 3.554098(7) 2.305110
2.969901(2) 2.062977(−9) 9.272884(5) 2.746773(−3) 4.360108(7) 2.413735
2.991074(2) 2.082191(−9) 9.783374(5) 2.945631(−3) 5.029528(7) 2.907340

25 1.745222(3) 4.661210(−8) 60 1.721858(6) 9.067125(−3) 95 5.288051(7) 4.766324
1.740995(3) 4.634245(−8) 1.695238(6) 8.738897(−3) 5.036480(7) 4.297233
2.033998(−9) 7.194352(−19) 2.681234(−3) 6.323082(−10) 5.431575 4.578344(−4)

– – 1.717285(6) 9.129899(−3) 5.182120(7) 4.744875
– – 1.717293(6) 9.131310(−3) 5.182120(7) 4.745083

1.763144(3) 4.666286(−8) 1.841256(6) 9.164668(−3) 6.611811(7) 5.038400
1.782819(3) 4.734355(−8) 1.962443(6) 9.959057(−3) 7.751326(7) 6.197709

30 7.432853(3) 5.943212(−7) 65 3.186122(6) 2.731937(−2) 100 7.535322(7) 9.432437
7.406680(3) 5.893471(−7) 3.126788(6) 2.618000(−2) 7.119085(7) 8.379830
3.860289(−8) 4.039676(−17) 1.136066(−2) 1.024228(−8) 1.229039(1) 1.942871(−3)
7.430658(3) 6.001701(−7) – – – –
7.430721(3) 6.008097(−7) – – – –
7.544301(3) 5.953116(−7) 3.454806(6) 2.770444(−2) 9.798032(7) 1.010548(1)
7.665795(3) 6.078526(−7) 3.723008(6) 3.054131(−2) 1.168388(8) 1.270869(1)

and d2, and normalized integrated decay rates derived from
these numbers are displayed against Z in Fig. 1. When cross-
examining this figure together with the table, a few relevant
features become apparent, including the following.

(i) Figures 1(a) and 1(e) clearly depict that the ZSL
scheme is in error for the 3E2 channel. Its curves not only
exhibit an irregular behavior, but also reveal a large dis-
crepancy with the nonrelativistic values for the ions in the
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FIG. 1. An illustration of the behavior of the percentage differences and the normalized integrated decay rate for the transitions 2s1/2 →
1s1/2(3E2) and 2p1/2 → 1s1/2(3E1) as a function of the nuclear charge. Upper panel: d1 between W̃ (LWA) and W̃ (dashed line), W (solid dark
line), W+ (solid blue line), W (ZSL) (dashed red line); middle panel: d2 between W and W (ZSL) (solid green line); lower panel: φ(Z ) is associated
to W̃ (LWA) (dotted line), W̃ (dashed line), W (solid dark line), W+ (solid blue line), and W (ZSL) (dashed red line, Ref. [19]). Curves are drawn to
guide the eye.

range Z = 1–20. Notably at the starting point Z = 1, the ZSL
difference is d (ZSL)

1 = 1.05% whereas our relativistic and
NRT-RC numbers are d (R)

1 = 1.8 × 10−2% and d (RC)
1 = 2.3 ×

10−3%, which illustrates how closely our DCGF approach

compares well with the two versions of the nonrelativistic
approach.

(ii) To be more informative on the reliability of predictions,
we plot in Fig. 1(c) the variation of the percent errors d2 of
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TABLE III. Three-photon decay rates in s−1 of combinations of 2E1E2 and 2E2E1 multipoles for the transitions 2s1/2 → 1s1/2 and
2p1/2 → 1s1/2, respectively, as a function of the nuclear charge. First entry: W ; second entry: W+; third entry: W−; fourth entry: W̃ ; fifth entry:
W̃ (LWA). Powers of ten are given in parentheses.

Z W (2E1E2) W (2E2E1) Z W (2E1E2) W (2E2E1) Z W (2E1E2) W (2E2E1)

1 3.277693(−14) 1.139904(−20) 35 8.387728(1) 3.655203(−2) 70 6.936210(4) 1.261596(2)
3.277669(−14) 1.139896(−20) 8.312591(1) 3.625060(−2) 6.663111(4) 1.217161(2)
5.608246(−37) 2.559297(−43) 3.838298(−9) 2.452990(−12) 3.483686(−3) 3.029391(−5)
3.277860(−14) 1.139936(−20) 8.840371(1) 3.761398(−2) 8.462855(4) 1.434903(2)
3.277920(−14) 1.139958(−20) 9.042298(1) 3.852170(−2) 9.259313(4) 1.577849(2)

5 3.195873(−7) 2.780158(−12) 40 3.119348(2) 1.785071(−1) 75 1.324185(5) 2.782625(2)
3.195301(−7) 2.779700(−12) 3.082004(2) 1.765714(−1) 1.265871(5) 2.667309(2)
2.142355(−24) 2.444452(−29) 4.705920(−8) 4.800707(−11) 1.292221(−2) 1.210431(−4)
3.199617(−7) 2.781745(−12) 3.337284(2) 1.853909(−1) 1.664976(5) 3.238320(2)
3.201094(−7) 2.783101(−12) 3.437149(2) 1.912532(−1) 1.845912(5) 3.610972(2)

10 3.256789(−4) 1.135162(−8) 45 9.879274(2) 7.199563(−1) 80 2.408690(5) 5.788423(2)
3.254455(−4) 1.134414(−8) 9.731206(2) 7.099817(−1) 2.283530(5) 5.514756(2)
5.620329(−19) 2.547438(−23) 3.987816(−7) 6.205913(−10) 3.837870(−2) 6.851647(−4)
3.271874(−4) 1.137738(−8) 1.075289(3) 7.556768(−1) 3.130178(5) 6.921440(2)
3.277920(−4) 1.139958(−8) 1.116152(3) 7.860299(−1) 3.519640(5) 7.833733(2)

15 1.863187(−2) 1.465050(−6) 50 2.756648(3) 2.494908 85 4.188488(5) 1.143922(3)
1.860174(−2) 1.462872(−6) 2.704719(3) 2.452076 3.941845(5) 1.082655(3)
8.482307(−16) 8.583036(−20) 2.791521(−6) 5.937305(−9) 3.503034(−1) 4.999190(−3)
1.882380(−2) 1.472582(−6) 3.057116(3) 2.651101 5.653913(5) 1.410170(3)
1.890214(−2) 1.479054(−6) 3.201094(3) 2.783101 6.453386(5) 1.621497(3)

20 3.272616(−1) 4.590827(−5) 55 6.936369(3) 7.644187 90 7.019176(5) 2.164816(3)
3.263180(−1) 4.578659(−5) 6.777167(3) 7.482819 6.525950(5) 2.028963(3)
1.520319(−13) 2.779302(−17) 1.861510(−5) 5.490398(−8) 9.343477(−1) 1.353255(−2)
3.331904(−1) 4.633017(−5) 7.853383(3) 8.236125 9.855870(5) 2.753470(3)
3.356590(−1) 4.669269(−5) 8.302813(3) 8.734563 1.142940(6) 3.219579(3)

25 3.005977 6.616057(−4) 60 1.601617(4) 2.114500(1) 95 1.135536(6) 3.925245(3)
2.992395 6.588634(−4) 1.557488(4) 2.060216(1) 1.045678(6) 3.623710(3)
8.359406(−12) 2.456880(−15) 9.367157(−5) 4.710968(−7) 6.384563 1.178928(−1)
3.090229 6.712455(−4) 1.855103(4) 2.313961(1) 1.664322(6) 5.175828(3)
3.126068 6.794680(−4) 1.982033(4) 2.481441(1) 1.962612(6) 6.159879(3)

30 1.830636(1) 5.829911(−3) 65 3.440175(4) 5.359065(1) 100 1.771644(6) 6.807850(3)
1.818604(1) 5.794804(−3) 3.325718(4) 5.197598(1) 1.618206(6) 6.229189(3)
2.642219(−10) 1.075139(−13) 8.946347(−4) 4.871306(−6) 3.409566(1) 4.068287(−1)
1.903715(1) 5.952952(−3) 4.083420(4) 5.973916(1) 2.731221(6) 9.402125(3)
1.935579(1) 6.058205(−3) 4.412980(4) 6.484093(1) 3.277920(6) 1.139958(4)

ZSL results for the 3E2 multipole. It is obvious that with the
growth of the nuclear charge, the DCGF and ZSL calculations
agree with each other quite well. More precisely, as the nu-
clear charge grows larger, i.e., in the region Z > 70, the two
methods agree to within 0.5%.

(iii) Switching our attention to the 3E1 multipole in
Fig. 1(d), one observes an overlap region of the two schemes
for low and medium nuclear charges Z � 40. There the
percent error is stabilized to within d2 = 8 × 10−2%. Then
it starts increasing and rather rapidly for heavy ions with
Z � 70. It gets worse at Z = 95 where it experiences a 2%
divergence.

(iv) The general trend of the curves in Figs. 1(a) and 1(b) is
relevant to the fact that relativistic effects increase smoothly
except for 3E2 of ZSL as mentioned above, and become
substantial with the nuclear charge. It is also apparent that
interferences between the nonnegative and negative parts of

the complete set of relativistic Sturmian functions of the first
order are more important in the 3E2 channel.

(v) As evident in Figs. 1(e) and 1(f), corrections arising
from relativity in the normalized integrated emission rate φ(Z )
manifest themselves in the same way as in the case of two-
photon decays studied in detail in Ref. [18].

(vi) Finally, in the NRT-RC approach, we employ a length
transition operator that includes nondipole corrections, and
acting on the Schrödinger-Coulomb Sturmian wave functions
in the matrix elements. In comparison to NRT-LWA, one sees
in Figs. 1(a), 1(b), 1(e), and 1(f) a significant improvement
in the NRT-RC results, particularly for 3E2. Thus introducing
nondipole effects in the transition operator gives better results.

As a further step for more investigations of three-photon
decays, we present in Table III data of our computations
for 2s1/2 → 1s1/2(2E1E2) and 2p1/2 → 1s1/2(2E2E1) tran-
sitions and for Z ranging from 1 to 100. The corresponding
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FIG. 2. An illustration of the behavior of the percentage difference and the normalized integrated decay rate for the transitions 2s1/2 →
1s1/2(2E1E2) and 2p1/2 → 1s1/2(2E2E1) as a function of the nuclear charge. Upper panel: d1 between W̃ (LWA) and W̃ (dashed line), W (solid
dark line), W+ (solid blue line); lower panel: φ(Z ) is associated to W̃ (LWA) (dotted line), W̃ (dashed line), W (solid dark line), and W+ (solid
blue line). Curves are drawn to guide the eye.

percentage differences, normalized integrated decay rates and
single differential probabilities as defined previously are dis-
played in Figs. 2 and 3. The plots clearly depict the features
and tendencies that are mentioned above with, however, a
marked difference. The overall influence of retardation as well
as the effects of the negative spectrum of the Sturmian basis
are less significant. The shapes as well as the maxima of the
spectral distributions in Fig. 3 are almost the same at Z = 25,
50, 75, and 100. The curves of NRT-LWA and NRT-RC are
peaked at ymax = 0.313 whatever the nuclear charge. For the

relativistic schemes, the maximum is slightly shifted at ymax =
0.327 for Z = 75 and 100, which is close to the value 1/3 of
the energy equipartition. It is worth noting that the emission
spectra are not symmetric due to a small tail at their right-hand
side. To end, let us underline that relativistic corrections make
the single differential probabilities less sharp and reduce their
intensities.

We also check in this work the Bose-Einstein statistics in
the emission processes under consideration. It is lengthily dis-
cussed by Zalialiutdinov et al. in Refs. [20,21]. According to

042803-11



FOTSING AND KWATO NJOCK PHYSICAL REVIEW A 109, 042803 (2024)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
10-5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
10-5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
10-5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
10-5

FIG. 3. Single differential probabilities for the transition 2p1/2 → 1s1/2(2E2E1) versus the energy fraction of a photon and for the nuclear
charges Z = 25, 50, 75 and 100. ϕ(Z, y) is associated to W̃ (LWA) (dotted line), W̃ (dashed line), W (solid dark line), and W+ (solid blue line).
The dashed purple and green vertical lines indicate the maxima of the nonrelativistic and relativistic results respectively. Curves are drawn to
guide the eye.

the so-called second spin-statistics selection rule (SSSR-2) es-
tablished by these authors, three equivalent photons involved
in any atomic transition can only have odd values for the
total angular momentum. Note that equivalent photons are
of the same type with equal frequencies and equal angular
momenta. This exclusion principle for photons is confirmed in
Fig. 4 where are depicted double differential probabilities of
some three-dipole-photon hyperfine transitions versus energy

fractions y1 and y2 at Z = 100. Figures 4(b) and 4(d) are
two-dimensional (2D) sectional cuts at y2 = 1/3 of Figs. 4(a)
and 4(c) for the transitions 2p3/2(Fi = 0) → 2s1/2(Ff = 2)
and 2p3/2(Fi = 2) → 2s1/2(Ff = 0), respectively. The nu-
clear spins are 3/2 in the first and 1/2 in the second. These
2D curves exhibit a pit at the bottom of which lies the low-
est zero point with the abscissa y1 = 1/3. In other words,
for the even value 2 of the total angular momentum of

042803-12



GENERAL ANALYTICAL THEORY OF THREE-PHOTON … PHYSICAL REVIEW A 109, 042803 (2024)

FIG. 4. Double differential probabilities ψ (Z = 100, y1, y2) versus photon energy fractions y1 and y2 (left column) and two-dimensional
sectional cuts at y2 = 1/3 (right column) for Z = 100 and 3E1 multipole. Upper panel: 2p3/2(Fi = 0) → 2s1/2(Ff = 2) with I = 3/2; middle
panel: 2p3/2(Fi = 2) → 2s1/2(Ff = 0) with I = 1/2; lower panel: 2p1/2(Fi = 1) → 1s1/2(Ff = 0) with I = 1/2. The dashed blue lines indicate
the mimima for (a) and (c), and the maximum for (e). Curves are drawn to guide the eye.

three-photon system, the decay probabilities turn to zero when
the energy fractions of the emitted photons are equal. Switch-
ing our attention to Figs. 4(e) and 4(f) for the transition
2p1/2(Fi = 1) → 1s1/2(Ff = 0) with I = 1/2, as expected,
one sees a hump in the 2D distribution with a maximum at
y1 = 1/3. Thus, unlike the foregoing case, the odd value 1 of
the total angular momentum is not forbidden according to the
SSSR-2.

V. CONCLUDING REMARKS

The purpose of this work was first to extend the DCGF
approach previously developed for 2-PRT to 3-PRT, and sec-
ond to assess the effectiveness and usefulness of our scheme
for H-like ions with nuclear charge values ranging from 1
to 100. To this end, we have formulated a general analytical
relativistic theory of spectral distributions and total decay
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rates for atomic systems with either a spinless nucleus or
a nonzero nuclear spin. Moreover, we have derived explic-
itly two other nonrelativistic limiting cases to evaluate the
relativistic effects, the influence of the negative spectrum
of the Sturmian basis, and the effects of nondipole correc-
tions incorporated in the transition operator. These approaches
have been applied with a great care to four electric mul-
tipole channels, namely, 3E1, 3E2, 2E1E2, and 2E2E1.
Then, our numerical results have been compared to those
obtained by the group of Zalialiutdinov. It emerges that
the degree of agreement between the two computations is
quite satisfactory except at low and high nuclear charges
for the 3E2 and 3E1 channels, respectively. Finally, we
have checked the validity of the SSSR-2 for three equivalent
photons. We are, at present, using this extended model for
extensive applications to transitions involving magnetic mul-
tipoles. This work will be reported in a forthcoming paper.
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APPENDIX: EVALUATION OF SPIN-ANGULAR
COUPLING FACTORS INVOLVING SUMS OF PRODUCTS

OF SIX WIGNER-3 j-SYMBOLS

Spin-angular coupling factors (SACF) that occur in tran-
sition matrix elements of the right hand side of Eq. (1) as
cumbersome sums of products of six 3 j symbols, are written

�
j′1 j′2
j1 j2

[(w, v, u), (w′, v′, u′)]

=
∑
mim f

∑
all M

θ j1 j2 (w, v, u)θ j′1 j′2 (w′, v′, u′), (A1)

where {u, v,w, u′, v′,w′ = 1, 2, 3}. They can be conve-
niently cast into analytical forms suitable for numerical
computations. Thus, by using sum rules of 3 j symbols and
Clebsch-Gordan coefficients [38], and after lengthy calcula-
tions and simplifications, we find the following expressions of
the possible 21 SACF.

(i) Six direct terms of identical pairs of triple endexes
{(w, v, u), (w, v, u)}

�
j′1 j′2
j1 j2

[(w, v, u), (w, v, u)] = δ j1 j′1 δ j2 j′2 , (A2)

where δ j j′ is the Kronecker’ s symbol.

(ii) Three cross terms of circular-circular type

�
j′1 j′2
j1 j2

[(3, 2, 1), (1, 3, 2)] = K̂ (1)
j1 j′1

(2, 1)Ǩ (2)
j2 j′2

(3, 1), (A3)

�
j′1 j′2
j1 j2

[(3, 2, 1), (2, 1, 3)] = K̂ (2)
j1 j′1

(3, 1)Ǩ (1)
j2 j′2

(3, 2), (A4)

�
j′1 j′2
j1 j2

[(1, 3, 2), (2, 1, 3)] = K̂ (1)
j1 j′1

(3, 2)Ǩ (2)
j2 j′2

(1, 2). (A5)

(iii) Three cross terms of noncircular-noncircular type

�
j′1 j′2
j1 j2

[(3, 1, 2), (2, 3, 1)] = K̂ (1)
j1 j′1

(1, 2)Ǩ (2)
j2 j′2

(3, 2), (A6)

�
j′1 j′2
j1 j2

[(3, 1, 2), (1, 2, 3)] = K̂ (2)
j1 j′1

(3, 2)Ǩ (1)
j2 j′2

(3, 1), (A7)

�
j′1 j′2
j1 j2

[(2, 3, 1), (1, 2, 3)] = K̂ (1)
j1 j′1

(3, 1)Ǩ (2)
j2 j′2

(2, 1). (A8)

(iv) Nine cross terms of circular-noncircular type

�
j′1 j′2
j1 j2

[(3, 2, 1), (3, 1, 2)] = K̂ (1)
j1 j′1

(2, 1)δ j2 j′2 ,

�
j′1 j′2
j1 j2

[(1, 3, 2), (1, 2, 3)] = K̂ (1)
j1 j′1

(3, 2)δ j2 j′2 , (A9)

�
j′1 j′2
j1 j2

[(2, 1, 3), (2, 3, 1)] = K̂ (1)
j1 j′1

(1, 3)δ j2 j′2 ,

�
j′1 j′2
j1 j2

[(3, 2, 1), (2, 3, 1)] = δ j1 j′1 Ǩ (1)
j2 j′2

(3, 2), (A10)

�
j′1 j′2
j1 j2

[(1, 3, 2), (3, 1, 2)] = δ j1 j′1 Ǩ (1)
j2 j′2

(1, 3),

�
j′1 j′2
j1 j2

[(2, 1, 3), (1, 2, 3)] = δ j1 j′1 Ǩ (1)
j2 j′2

(2, 1), (A11)

�
j′1 j′2
j1 j2

[(3, 2, 1), (1, 2, 3)] = Kj1 j2 j′1 j′2 (3, 2, 1),

�
j′1 j′2
j1 j2

[(1, 3, 2), (2, 3, 1)] = Kj1 j2 j′1 j′2 (1, 3, 2), (A12)

�
j′1 j′2
j1 j2

[(2, 1, 3), (3, 1, 2)] = Kj1 j2 j′1 j′2 (2, 1, 3). (A13)

The angular factors K̂ , Ǩ, and K are given by

K̂ (1)
j1 j′1

(v, u) = (−1)ϕ[ j1, j′1]1/2

{
j2 j′1 Lu

ji j1 Lv

}
, (A14)

K̂ (2)
j1 j′1

(v, u) = (−1)ϕ[ j1, j′1]1/2

{
j′2 j′1 Lu

ji j1 Lv

}
, (A15)

Ǩ (1)
j2 j′2

(v, u) = (−1)ϕ[ j2, j′2]1/2

{
j f j′2 Lu

j1 j2 Lv

}
, (A16)

Ǩ (2)
j2 j′2

(v, u) = (−1)ϕ[ j2, j′2]1/2

{
j f j′2 Lu

j′1 j2 Lv

}
, (A17)

Kj1 j2 j′1 j′2 (w, v, u) = [ j1, j2, j′1, j′2]1/2

⎧⎨⎩Lw j2 j f

ji j1 Lu

j′1 Lv j′2

⎫⎬⎭,

(A18)

where ϕ = Lu + Lv + 1.
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