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Efficient control over entanglement in spin chains is useful for quantum information processing applications.
In this paper, we propose the use of a combination of two different configurations of strong static and oscillating
fields to control and generate near-perfect entanglement between any two spins in a spin chain, even in the
presence of noise. This is made possible by the fact that our control fields not only decouple the spin chain
from its environment but also selectively modify the spin-spin interactions. By suitably tuning these spin-spin
interactions via the control fields, we show that the quantum state of any two spins in the spin chain can be made
to be a Bell state. We illustrate our results for various spin chains, such as the XY model, the XYZ model, and the
Ising spin chain.
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I. INTRODUCTION

Quantum spin chains have been the subject of extensive
theoretical and experimental studies [1]. They are paradig-
matic systems providing convenient and tractable models that
yield insights into a range of physical phenomena [2–4]. In
particular, spin chains have attracted considerable attention
due to their potential use in quantum information applications
such as quantum computation and short-distance quantum
communication [1]. Achieving entanglement between spins
is imperative when it comes to quantum information applica-
tions and has been a long-standing goal and a focus of many
studies [5–9]. For instance, long-range Ising-type interactions
[10], local effective magnetic fields [11], staggered magnetic
fields [12], and dynamical decoupling [13] have been made to
realize this goal. Driven spin chains as high-quality quantum
routers, which generate highly entangled states over arbitrary
distances in spin chains by applying external fields, have also
been proposed [14]. Spin chains may also act as quantum me-
diators to achieve perfect long-range entanglement between
remote spins in bulk and on the surfaces of magnetic nanos-
tructures [15].

Like any physical system, spin chains interact with their
environment, which eventually leads to the loss of the
quantum character of the system, a phenomenon known as
decoherence [16]. Moreover, entangled states are very fragile
when exposed to the environment [17]. This poses a severe
problem when it comes to using the quantum state of the
spin chain for quantum information processing tasks [18–21].
One reliable method of suppressing the system-environment
interaction of an open quantum system is dynamical decou-
pling [22–33]. Dynamical decoupling works by averaging out
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unwanted effects of the environment interaction through the
application of control fields, which effectively modulate the
system-environment interaction [13]. In the context of spin
chains, Ref. [13] has shown that the application of strong static
and oscillating fields not only protects the spin chain from
decoherence but also modulates the spin-chain interaction
such that the effective Hamiltonian of the spin chain includes
interaction terms that are not present in the original spin chain
Hamiltonian. This shows that in addition to protecting the spin
chain from the environment, control fields can potentially be
used to achieve perfect quantum state transfer and improved
two-spin entanglement generation in the spin chain.

Our aim in this paper is to look for a configuration of con-
trol fields that selectively suppresses the spin-spin interactions
in addition to decoupling the chain from the environment. If
such control fields exist, can we devise a scheme that allows
us to perfectly entangle spins in the chain while protecting
it from decoherence? We answer this question by showing
that we can apply different control fields to the even and
odd indexed sites in a chain to decouple the spins from the
environment and remove spin-spin interactions in the chain,
effectively obtaining a chain of isolated spins or qubits. We
refer to this configuration of fields as a staggered configura-
tion. This then opens up the possibility of inducing two-qubit
interactions in the spin chain by applying the same control
fields to two spins and staggered fields to the rest of the
spin chain. We propose a scheme that allows us to use such
two-qubit interactions to entangle any two spins in the spin
chain. We note that simply decoupling the spin chain from the
environment using control fields may also result in a modu-
lated spin chain Hamiltonian that generates entanglement in
the chain [13]. Such a modulated Hamiltonian may be consid-
ered to be a consequence of decoupling the spin chain from
the environment and, therefore, entangles different spins to
varying degrees depending on their positions and the original
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spin chain Hamiltonian. Generally speaking, the entanglement
generation is far from ideal. The technique we discuss in this
paper generates entanglement by first suppressing spin-spin
interactions in the chain and then using a sequence of two-
qubit interactions to entangle any two spins of our choice. As a
result, we have greater control over the entanglement process,
allowing us to predict the duration of each interaction and the
state of the spin chain when it is perfectly entangled.

We begin by considering a general one-dimensional spin
chain that interacts with its environment [34]. We show that a
staggered configuration of control fields can not only protect
the spin chain from the environment but can also suppress
spin-spin interactions in the chain. This is achieved by proving
that the time-averaged effective Hamiltonian is zero when
staggered control fields are applied. Applying the same con-
trol fields to spins is called a constant configuration. By using
a constant configuration of control fields to two neighboring
spins and a staggered configuration of control fields to the rest
of the spin chain, we can induce a two-qubit interaction that
can perfectly entangle the two neighboring spins. We then pro-
pose a scheme that uses a sequence of two-qubit interactions
between neighboring spins to entangle any two spins in the
chain perfectly. As an example, we solve this scheme for the
XY chain, showing analytically that any two spins in the chain
can be perfectly entangled by choosing appropriate interaction
durations. Since the interaction is only between two spins
at any point in time, we essentially solve a system of two
spins evolving under the action of the effective Hamiltonian.
We find a way to remarkably simplify the quantum state of
the spin chain at the end of each two-qubit interaction - the
generation of entanglement is then evident. Thereafter, we
apply our scheme to other spin chains, such as the XYZ model,
and present numerical results conclusively demonstrating the
effectiveness of our scheme.

This paper is organized as follows. In Sec. II, we show
how a staggered configuration of static and oscillating con-
trol fields can decouple a spin chain from the environment
and suppress spin-spin interactions in the chain. Section III
considers the XY model and describes how a combination of
constant and staggered control fields can be used to induce
two-qubit interactions, which can be used to generate perfect
entanglement in the spin chain. Section IV provides results
from numerical simulations that corroborate our presented
scheme and show how our proposed method can be used for
other spin chains, such as the Ising chain and the XYZ model.
We conclude the paper in Sec. V.

II. FORMALISM

We begin by showing how strong static and oscillating
control fields can decouple a spin chain from its environment.
Instead of using the same control fields for every site in
the spin chain, we propose a configuration of control fields
such that there is one type of control field for spins at odd-
numbered sites and another type of control field for spins at
even-numbered sites. We call this a staggered configuration.
This achieves a two-fold task. First, it decouples the spin chain
from its environment to the lowest order. Second, it suppresses
the spin-spin interactions in the chain, effectively producing
a chain of non-interacting qubits. Note that if the same field

is applied to all the spins, the spin-spin interactions are not
removed [13].

Consider then a spin chain with nearest neighbor interac-
tions. We write the Hamiltonian as (we take h̄ = 1 throughout)

H0 =
N−1∑
j=1

3∑
k=1

ζ jkσ
( j)
k σ

( j+1)
k , (1)

where ζ jk are the coupling strengths between the spins, j
labels the sites, and k = 1, 2, 3 denotes x, y, and z, respec-
tively. The Pauli spin operators follow the usual commutation
relations [σ (p)

j , σ
(m)
k ] = 2iδpmε jklσ

(p)
l . Note that we are not

using cyclic boundary conditions. We assume the spin chain
interaction with its environment to be given by

HSB =
N−1∑
j=1

3∑
k=1

B( j)
k σ

( j)
k , (2)

where B( j)
k are arbitrary environment operators; they can also

represent randomly fluctuating noise terms for a classical bath.
Although we are not considering terms that are nonlinear
in σ

( j)
k (so, for example, we are ignoring a coupling of the

spin chain with its environment proportional to σ
( j)
x σ

( j+1)
x ),

our considered HSB is quite general in the sense that it can
include both dissipation and decoherence in a variety of dif-
ferent physical situations [35–37]. Our first task is to find
periodic control fields that decouple the spin chain from its
environment, at least to the lowest order. Corresponding to
the control fields is a unitary operator Uc(t ) that satisfies

i
∂Uc(t )

∂t
= Hc(t )Uc(t ), where Hc(t ) is the Hamiltonian that

describes the action of the control fields on the system. More-
over, the fields we consider for this task are periodic; the
unitary operator satisfies Uc(t + tc) = Uc(t ), where tc is the
time period. For the control fields to decouple the spin chain
from the environment to the lowest order, we must have that
[34,35,38,39] ∫ tc

0
dt U †

c (t )HSBUc(t ) = 0 (3)

Keeping in mind the form of the interaction between the spin
chain and the environment, we guess that a field configuration
represented by the following unitary operator may decouple
the spin chain from its environment:

Uc(t ) =
⎛⎝ N∏

i=1,3,5,...

eiωnxσ
(i)
x t eiωnyσ

(i)
y t

⎞⎠
×

⎛⎝ N−1∏
i=2,4,6,...

eiωmxσ
(i)
x t eiωmyσ

(i)
y t

⎞⎠. (4)

For concreteness, here we have considered N to be odd;
the case of even N is dealt with in a similar fashion. Here
ω = 2π/tc, and the integers nx and ny (for spins at odd in-
dexed sites) and mx and my (for spins at even indexed sites)
differentiate between the two types of control fields applied
to alternate spins. In other words, Uc(t ) represents a staggered
field configuration in which different control fields are applied

042622-2



CONTINUOUS DYNAMICAL DECOUPLING OF SPIN … PHYSICAL REVIEW A 109, 042622 (2024)

to spins located at odd and even-numbered sites in the chain.
Now, it is obvious that our unitary operator Uc(t ) satisfies
Uc(t + tc) = Uc(t ). Our task then is to show that this configu-
ration of control fields satisfies the decoupling condition given
in Eq. (3). We expect this to be the case - loosely put, eiωnxσ

(i)
x t

averages out the contribution of the noise due to σ (i)
y and σ (i)

z ,

while eiωnyσ
(i)
y t takes care of the remaining noise. To verify that

this is indeed the case, it is useful to define

h j,k,p(t ) = U †
c (t )σ ( j)

k Uc(t ),

where k = 1, 2, 3, σ
( j)
1 = σ

( j)
x , σ

( j)
2 = σ

( j)
y , σ

( j)
3 = σ

( j)
z , and

p = j mod 2. The index p tells us if the constants used in the
control field at site j are nx, ny or mx, my; p = 0 means that the
field represented by nx, ny is being applied, and p = 1 means
that the field represented by mx, my is being applied. Using
the commutation relations for the Pauli spin operators, it is
straightforward to show that

h j,1,0(t ) = cos(2ωnyt )σ ( j)
x − sin(2ωnyt )σ ( j)

z ,

h j,2,0(t ) = sin(2ωnxt ) sin(2ωnyt )σ ( j)
x + cos(2ωnxt )σ ( j)

y

+ sin(2ωnxt ) cos(2ωnyt )σ ( j)
z ,

h j,3,0(t ) = cos(2ωnxt ) sin(2ωnyt )σ ( j)
x − sin(2ωnxt )σ ( j)

y

+ cos(2ωnxt ) cos(2ωnyt )σ ( j)
z ,

h j,1,1(t ), h j,2,1(t ), and h j,3,1(t ) are the same as h j,1,0(t ),
hj,2,0(t ), and h j,3,0(t ) respectively, except that nx is replaced
by mx and ny by my. With these relations, it is easy to show that
Eq. (3) is satisfied if nx �= ny and mx �= my, meaning that Uc(t )
effectively decouples the spin chain from its environment (at
least to lowest order). The control field Hamiltonian corre-
sponding to Uc(t ) is found from the Schrodinger equation
to be

Hc(t ) =
N∑

i=1,3,5,...

{
ωny

[
sin(2ωnxt )σ (i)

z

− cos(2ωnxt )σ (i)
y

] − ωnxσ
(i)
x

}
+

N∑
i=2,4,8,...

{
ωmy

[
sin(2ωmxt )σ (i)

z

− cos(2ωmxt )σ (i)
y

] − ωmxσ
(i)
x

}
, (5)

with nx �= ny and mx �= my. We must point out that the spin
chain is decoupled from the environment only if the fields
oscillate fast enough. More precisely, decoupling occurs if
tc � τc where τc is the environment correlation time [40];
with a very short environment correlation time, we would
have Markovian time-evolution and our scheme would not
work [41].

In addition to decoupling the spin chain from its envi-
ronment, our staggered control field configuration can also
suppress the spin-spin interactions in the chain. To show this,
we must find the effective Hamiltonian of the spin chain when
control fields are applied. It is known that if the control fields
are strong enough and oscillate fast enough (that is, faster than
the typical timescale of the evolution due to the spin chain
Hamiltonian itself), the effective Hamiltonian can be written

as [34,35]

H̄ = 1

tc

∫ tc

0
dt U †

c (t )H0Uc(t ), (6)

where H0 is the original spin chain Hamiltonian given in
Eq. (1). For our case, the effective Hamiltonian simplifies to

H̄ = 1

tc

N−1∑
j=1

∫ tc

0
dt

3∑
k=1

ζ jkh j,k,p(t )h j+1,k,p′ (t ). (7)

Note that p′ = ( j + 1) mod 2. Because one of the j and j + 1
sites is odd while the other is even, one of p and p′ must be
equal to one while the other must be zero. To simplify Eq. (7)
further, we define the operators

I ( j)
k = 1

tc

∫ tc

0
h j,k,p(t )h j+1,k,p′ (t )dt . (8)

These allow us to write the effective Hamiltonian
succinctly as

H̄ =
N−1∑
j=1

3∑
k=1

ζ jkI ( j)
k . (9)

To explicitly obtain an expression for H̄ , we must evaluate the
integrals I ( j)

k . To remove the spin-spin interactions in the spin
chain, at least to the lowest order, one possible choice, which
we stick to in this paper, is to choose ny = 2nx, my = 2mx,
and nx �= mx. The integrals in I ( j)

k then evaluate to zero for
all j and k, leading to H̄ = 0. Notice that since nx �= mx, the
suppression of the spin-spin interactions depends crucially
on the fact that we apply different control fields to odd and
even-numbered sites. On the other hand, let us examine what
happens if we apply the same fields to two neighboring spins
in the chain. In other words, we have a ‘constant’ configura-
tion of the control fields for the two spins. In this case, we find
that

I ( j)
1 = 1

2

(
σ ( j)

x σ ( j+1)
x + σ ( j)

z σ ( j+1)
z

)
, (10)

I ( j)
2 = 1

4

(
σ ( j)

x σ ( j+1)
x + 2σ ( j)

y σ ( j+1)
y + σ ( j)

x σ ( j+1)
y

+ σ ( j)
y σ ( j+1)

x + σ ( j)
z σ ( j+1)

z

)
, (11)

I ( j)
3 = 1

4

(
σ ( j)

x σ ( j+1)
x + 2σ ( j)

y σ ( j+1)
y − σ ( j)

x σ ( j+1)
y

− σ ( j)
y σ ( j+1)

x + σ ( j)
z σ ( j+1)

z

)
. (12)

The effective Hamiltonian is now not zero. Moreover, since
ny �= nx, the two spins are still decoupled from their envi-
ronment. To sum up, then, both the constant and staggered
configurations of control fields can decouple the spin chain
from its environment. While the staggered configuration
suppresses spin-spin interactions, the constant configuration
modulates the spin-spin interactions, giving us an effective
Hamiltonian that describes the interaction of the spins. We
now show how we can use both staggered and constant field
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configurations in conjunction to generate entanglement be-
tween specific spins in the chain. Note that the effect of the
environment is also suppressed.

III. SCHEME FOR ENTANGLEMENT GENERATION

For concreteness, we focus on generating perfect entangle-
ment between the first spin and an arbitrary spin in the spin
chain. Our considerations can be generalized very straight-
forwardly to any two spins in the chain. We start by noting
that the expression for I ( j)

k contains terms from two neigh-
boring spins, namely h j,k,p and h j+1,k,p′ where j is the site of
the spin. Whether or not I ( j)

k and, subsequently, the effective
Hamiltonian for these two neighboring spins is zero depends
on whether the integers defining the control field at both sites
are equal or not. Keeping this fact in mind, we propose a field
configuration such that for the first two spins of the chain,
the integers defining the control field are equal, and for the
rest of the chain, no two neighboring spins have a control
field defined by the same integers. In other words, we have
a constant configuration for the first two spins and a staggered
configuration for the rest of the chain. This allows the first two
spins to interact while the rest of the spin chain is effectively
dormant and non-interacting. The effective Hamiltonian can
be written as

H̄ =
(

3∑
k=1

ζ1kI (1)
k

)
⊗ 1(3) ⊗ 1(4) ⊗ ... ⊗ 1(N ), (13)

where 1 denotes the identity operator. Depending on the in-
teraction, the effective Hamiltonian H̄ may entangle the first
two spins to some degree. For example, one can prove that
if we consider the XY chain with constant coupling strengths
(ζ j1 = ζ j2 = 1 for convenience, ζ j3 = 0), the first two spins
become perfectly entangled if the spin is left to evolve under
H̄ for a certain duration. We label this duration τ1. We then
make a change. We now set the integers for the second and
third spins in the chain equal while keeping the integers of
neighboring sites different for all other neighboring spins in
the chain. Following our previous reasoning, it is clear that
the second and third spins now interact, while the remaining
spins are non-interacting. The effective Hamiltonian is now

H̄ = 1(1) ⊗
(

3∑
k=1

ζ2kI (2)
k

)
⊗ 1(4) ⊗ ... ⊗ 1(N ). (14)

The idea is to now allow the spin chain to evolve under this
effective Hamiltonian until the first and the third spins are
perfectly entangled. The time required for this interaction is
labeled τ2. This process can be continued until the first spin
is perfectly entangled with any spin with which we wish to
entangle it.

Let us now demonstrate this scheme of generating entan-
glement in detail for the XY spin chain with N sites. We set
ζ j1 = ζ j2 = 1 and ζ j3 = 0 in Eq. (1). We begin by setting the
initial state of the system as

|ψ0(0)〉 = |0〉1 ⊗ |0〉2 ⊗ ... ⊗ |0〉N .

We define the states |0〉 and |1〉 as the eigenstates of σz

with eigenvalues +1 and −1 respectively. The effective

Hamiltonian that describes the interaction between two neigh-
boring spins i and i + 1 under the action of the same control
fields applied to the two spins is [see Eqs. (10) and (11)]

H̄i = 1
4

[
3σ (i)

x σ (i+1)
x + 2σ (i)

y σ (i+1)
y + 3σ (i)

z σ (i+1)
z +

σ (i)
x σ (i+1)

y + σ (i)
y σ (i+1)

x

]
. (15)

To find the evolution generated by this two-qubit interaction,
we find that the eigenstates of this effective Hamiltonian,
written in terms of the basis states |00〉i,i+1, |01〉i,i+1, |10〉i,i+1,
and |11〉i,i+1 are

|e1〉 =

⎡⎢⎢⎣
0

−β

β

0

⎤⎥⎥⎦, |e2〉 =

⎡⎢⎢⎣
α∗
0
0

−β

⎤⎥⎥⎦, |e3〉 =

⎡⎢⎢⎣
0
β

β

0

⎤⎥⎥⎦,

|e4〉 =

⎡⎢⎢⎣
α∗
0
0
β

⎤⎥⎥⎦,

where α = (1 + 2i)/
√

10 and β = 1/
√

2. The correspond-
ing eigenvalues are λ1 = −2, λ2 = (3 − √

5)/4, λ3 =
1/2 and λ4 = (3 + √

5)/4. Consequently,

|00〉i,i+1 = α |e2〉 + α |e4〉
|01〉i,i+1 = −β |e1〉 + β |e3〉
|10〉i,i+1 = β |e1〉 + β |e3〉
|11〉i,i+1 = −β |e2〉 + β |e4〉 .

We now return to our original problem. With the first two spins
interacting, the state at time t is

|ψ (t )〉 = (γ1(t ) |00〉1,2 + γ2(t ) |11〉1,2) |0〉 , (16)

where

γ1(t ) = |α|2(e−iλ4t + e−iλ2t ), (17)

γ2(t ) = αβ(e−iλ4t − e−iλ2t ), (18)

and |0〉 denotes that the other spins are all in the state |0〉. This
evolution is consistent with the fact that σ (i)

z σ (i+1)
z commutes

with the effective Hamiltonian. The idea now is to continue
this evolution until time τ1, which is the time required for
spins 1 and 2 to become perfectly entangled. That this is
possible can easily be shown by calculating the concurrence
[42]; this can also be seen in the results we present in the next
section. The next step is to make spins 2 and 3 interact. To find
the subsequent evolution, let us first note that we can write

|ψ (τ1)〉
= [|0〉1 ⊗ (γ1(τ1) |00〉2,3) + |1〉1 ⊗ (γ2(τ1) |10〉2,3)] |0〉 .
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FIG. 1. A tree diagram is a useful way to keep track of the evolution of the spin chain. Each state vector in this diagram should be appended
with |0〉, meaning that the other spins are in the state |0〉. As we continue evolving the spin chain using the two-qubit Hamiltonian, the state of
the chain becomes a linear combination of a larger number of different state vectors. The complete state just after each interaction is given by
the sum of the states in each column. For example, the sum of the four terms in the third column represents the state of the system when spins
1 and 3 have interacted.

Now,

e−iH̄it |00〉i,i+1 = γ1(t ) |00〉i,i+1 + γ2(t ) |11〉i,i+1 ,

e−iH̄it |10〉i,i+1 = η1(t ) |01〉i,i+1 + η2(t ) |10〉i,i+1 ,

where γ1(t ) and γ2(t ) are given by Eqs. (17) and (18), and
η1(t ) and η2(t ) are given by

η1(t ) = −β2(e−iλ1t − e−iλ3t ), (19)

η2(t ) = β2(e−iλ1t + e−iλ3t ). (20)

These results can then be used to work out the evolution of the
spin chain due to the interaction between the second and third
spins. After that, the third spin and the fourth spin interact, and
so on. The state of the spin chain becomes increasingly com-
plicated. Noticing that e−iH̄it acts on both |00〉i,i+1 and |10〉i,i+1
to produce a linear combination of |00〉i,i+1 and |10〉i,i+1, we
can represent the evolution of the spin chain by using the tree
diagram shown in Fig. 1.

We now use the worked-out evolution of the spin chain to
find suitable interaction durations τ1, τ2, ..., τi such that spins
1 and i + 1 are perfectly entangled. We propose a question that
could help us find out how this can be done: can the interaction
durations be chosen such that the two-qubit state of the spins
1 and i + 1 ends up in a Bell state with the rest of the spins
in the |0〉 state? For this to be possible, we can see in our tree
diagram that only two terms in the complete spin chain state
must be non-zero. These are the terms given by⎡⎣ i∏

j=1

γ1(τ j )

⎤⎦ |0〉1 ⊗
i∏

j=2

|0〉 j ⊗ |0〉i+1 ,

and

γ2(τ1)

⎡⎣ i∏
j=2

η1(τ j )

⎤⎦ |1〉1 ⊗
i∏

j=2

|0〉 j ⊗ |1〉i+1 .

If the coefficients of all the other terms in the state are zero,
we are simply left with the state

|ψ f 〉 =
[⎛⎝ i∏

j=1

γ1(τ j )

⎞⎠ |00〉1,i+1 +

γ2(τ1)

⎛⎝ i∏
j=2

η1(τ j )

⎞⎠ |11〉1,i+1

]
⊗ |0〉 . (21)

The two-qubit state of the first spin and the i + 1 spin is then
obvious. This state is fully entangled if∣∣∣∣∣∣γ1(τ1) γ2(τ1)

⎛⎝ i∏
j=2

γ1(τ j ) η1(τ j )

⎞⎠∣∣∣∣∣∣ = 0.5. (22)

Notice that γ1(τ1) γ2(τ1) comes from the first two-qubit in-
teraction. Each additional two-qubit interaction is responsible
for a γ1(τ j ) η1(τ j ) term. Fig. 2 shows that τ1 can be cho-
sen such that |γ1(τ1) γ2(τ1)| = 0.5. Moreover, Fig. 3 shows
that the interaction duration can always be chosen such that

FIG. 2. A plot of D(t ) against time, where D(t ) = |γ1(t ) γ2(t )|.
Note that we are using dimensionless units throughout with h̄ = 1.
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FIG. 3. A plot of D(t ) against time, where now D(t ) =
|γ1(t ) η1(t )|.

|γ1(τ j ) η1(τ j )| = 1 with j � 2. As a result, we conclude that
Eq. (22) can always be satisfied by choosing suitable inter-
action durations. We have also checked that if we choose
such interaction durations, the coefficients of all other terms in
the complete state of the spin chain are zero, justifying writing
the state of the spin chain in the form given by Eq. (21).
Since the first interaction duration is obtained by finding a
maximum of |γ1(τ1) γ2(τ1)| and all other interaction durations
are obtained by finding a maximum of |γ1(τ j ) η1(τ j )|, we
expect the first interaction to require a duration different from
the following interactions, all of which may be chosen to be
the same. Also, we see from our graphs that |γ1(τ1) γ2(τ1)| and
|γ1(τ j ) η1(τ j )| are periodic. For the numerical simulations that
follow, we will take the durations that give the first maximum.

IV. RESULTS

To test our predictions of perfect entanglement for the XY
spin chain, we now perform numerical simulations. To mea-
sure the degree of entanglement, we calculate the concurrence
between the two spins [42]. We calculate the partial trace of
the density matrix of the system over all spins other than the
two spins whose concurrence we aim to find and refer to it as
ρ2. We then calculate

R =
√√

ρ2ρ̃2
√

ρ2, (23)

where ρ̃2 = (σy ⊗ σy)ρ∗
2 (σy ⊗ σy). The concurrence is

given by

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (24)

where λ1, λ2, λ3, and λ4 are the eigenvalues of the R in de-
scending order. We evolve the spin chain in two different
ways. First, we apply control fields to a spin chain interacting
with the environment and plot the concurrence between two
spins as a function of time. We refer to this as the complete
Hamiltonian picture, with the complete Hamiltonian given by
H0 + HSB + Hc(t ). Second, we show that the dynamics can be
reproduced using the time-averaged effective Hamiltonian H̄ .
We refer to this as the effective Hamiltonian picture. In both
approaches, we use the scheme discussed previously. That is,
we make spins 1 and 2 interact until they are entangled and

FIG. 4. The diagram shows the general scheme we use to entan-
gle the ends of a spin chain with N = 5. In the complete Hamiltonian
picture, a white circle at site i represents a control field Hamiltonian
at site i described by the constants nx and ny, and a black circle at
site i represents a control field Hamiltonian at site i described by the
constants mx and my. Notice that at each step, the two neighboring
spins that are interacting have the same control field Hamiltonian at
their sites, while the control field Hamiltonian for the rest of the chain
is staggered. In the effective Hamiltonian picture, the two gray circles
in each step represent the two-qubit interaction H̄i [see Eq. (15)] that
is caused by the same control field Hamiltonians at those sites. The
white circles represent no interaction, which is caused by staggered
fields at those sites.

then turn off the interaction by switching the control fields.
Then, we make spins 2 and 3 interact until spins 1 and 3 are
entangled and then turn off the interaction. We continue this
process until we reach the spin we wish to entangle with the
first spin. Fig. 4 illustrates the scheme for a chain with five
spins.

We now present our numerical results illustrating the en-
tanglement at the end of each step. Recall that the spin chain
is initialized in the state

∏N
i=1 |0〉i. The noise terms B( j)

k in the
expression for HSB [see Eq. (2)] are taken to be the same for
each site for simplicity. These noise terms are generated via
independent Ornstein-Uhlenbeck processes with zero mean,

FIG. 5. Step 1. Spins 1 and 2 in an XY chain (N = 5) interact for
τ1 (≈1.4) to become perfectly entangled, after which the interaction
is effectively turned off. The concurrence between spins 1 and 2 is
given by C(t ). The solid blue curve is the concurrence using the ef-
fective Hamiltonian, the dotted-dashed gray curve is the concurrence
using the complete Hamiltonian, and the dashed black curve is the
concurrence without the control fields. We use dimensionless units
throughout with h̄ = 1, and we have set ζ j,k = 1.
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FIG. 6. Step 2. Spins 2 and 3 interact for τ2 (≈11.3), after which
spins 1 and 3 are perfectly entangled, as shown by their concurrence
C(t ). Notice that C(t ) = 0 for the duration τ1 since that is the dura-
tion for which spins 1 and 2 were interacting while all other spins
were decoupled from each other.

correlation time τ = 0.5, and standard deviation σ = 2.0.
Results for the concurrence are presented in Figs. 5–8. Each
plot shows the concurrence C(t ) between the first spin and the
most recent spin to have experienced an interaction with its
neighboring spin. The solid, blue curve shows the concurrence
using the effective Hamiltonian, the dot-dashed gray curve
shows the concurrence using the complete Hamiltonian, and
the black, dashed curve shows the concurrence using only
H0 + HSB (that is, no control fields are applied). Due to the
noise, it is not surprising that the black dashed curve largely
overlaps with the horizontal axis. The overlap of the solid blue
and dot-dashed gray curves shows that the effective Hamilto-
nian approach captures the exact dynamics very well. Notice
that by the end of step 4, the concurrence between the first
and last spins is practically one. We have also checked that
the state of spins 1 and 5 at the end of step 4 is very close
to 1√

2
(|00〉 + i |11〉). For N > 5, simulating the chain via the

FIG. 7. Step 3. Spins 3 and 4 interact for τ3 (≈11.3), after which
spins 1 and 4 are perfectly entangled, as shown by their concurrence
C(t ). C(t ) begins to increase after (τ1 + τ2) since that is the duration
during which the first two steps of the scheme take place.

FIG. 8. Step 4. Spins 4 and 5 interact for τ4 (≈11.3), after which
spins 1 and 5 are perfectly entangled, as shown by their concurrence
C(t ). We have checked that when C(t ) is approximately one, the state
of spins 1 and 5 is very close to 1√

2
(|00〉 + i |11〉), which is a perfectly

entangled state.

complete Hamiltonian requires long durations. Since we have
already shown the equivalence of the complete and effective
Hamiltonian pictures, we simply use the effective Hamilto-
nian to simulate longer spin chains. Our scheme works, as
expected, for a longer spin chain as well [see Fig. 9].

The entanglement scheme we have presented is not just
restricted to the XY model. A necessary condition for our
scheme to work is that the effective Hamiltonian must be able
to generate perfect entanglement between two neighboring
spins, given a suitable initial state. Let us then examine the
isotropic XYZ model (or the XXX model) with ζ j1 = ζ j2 =
ζ j3 = 1 in Eq. (1). We now choose the initial state of the spin
chain to be

|ψ (0)〉 = |10〉1,2 ⊗ |0〉 .

The effective Hamiltonian describing the spin-spin interac-
tions between two spins when the same control fields are

FIG. 9. C(t ) is the concurrence between spins 1 and 10 in an XY
chain (N = 10, ζ jk = 1). From t = 0 to t ≈ 80, consecutive pairs of
neighboring spins interact. After that, spins 9 and 10 are made to
effectively interact until spins 1 and 10 are perfectly entangled.
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applied to the two spins is now

H̄i = σ (i)
x σ (i+1)

x + σ (i)
y σ (i+1)

y + σ (i)
z σ (i+1)

z . (25)

As in Sec. III, we find the evolution due to this effective inter-
action by finding the eigenstates of the effective Hamiltonian
in the {|00〉i,i+1, |01〉i,i+1, |10〉i,i+1, |11〉i,i+1} basis. These very
familiar eigenstates are

|e1〉 = 1√
2

⎡⎢⎢⎣
0
1

−1
0

⎤⎥⎥⎦, |e2〉 =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦,

|e3〉 = 1√
2

⎡⎢⎢⎣
0
1
1
0

⎤⎥⎥⎦, |e4〉 =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦,

with eigenvalues λ1 = −3, λ2 = 0, λ3 = 1 and λ4 = 1 re-
spectively. We can then also write

|00〉i,i+1 = |e2〉 ,

|01〉i,i+1 = − 1√
2

|e1〉 + 1√
2

|e3〉 ,

|10〉i,i+1 = 1√
2

|e1〉 + 1√
2

|e3〉 ,

|11〉i,i+1 = |e4〉 .

We now let the first two spins interact. After time t ,

|ψ (t )〉 = (χ1(t ) |10〉1,2 + χ2(t ) |01〉1,2) |0〉 , (26)

where

χ1(t ) = 1
2 (e−it + ei3t ), (27)

χ2(t ) = 1
2 (e−it − ei3t ). (28)

As before, we select a time τ1 such that spins 1 and 2 are per-
fectly entangled. Then, we let the next spins interact pairwise
for time τ j . We arrive at a similar condition to Eq. (22) for
spins 1 and i + 1 to be fully entangled:∣∣∣∣∣∣χ1(τ1) χ2(τ1)

i∏
j=2

χ2(τ j )

∣∣∣∣∣∣ = 0.5. (29)

Note that this is a somewhat simpler condition as compared
to Eq. (22) since we do not have to consider the evolution
of |00〉 j, j+1 since it is an eigenstate of the effective Hamilto-
nian. To fulfill this condition, we can choose |χ1(τ1)χ2(τ1)| =
0.5 and |χ2(τ j )| = 1 with all τ j equal to τ2. We can work
out the required values of τ1 and τ2 by first finding that
|χ1(τ1)χ2(τ1)| = 1

2 sin(4τ1) and |χ2(τ2)| = sin(2τ2). It then
follows that we can choose τ1 = π

8 and τ2 = π
4 . With these

times, spins 1 and i + 1 are in a Bell state, while all the other
spins are in the state |0〉. Fig. 10 illustrates the first and last
spins of a XX spin chain being entangled via our scheme.

Let us now consider the quantum Ising spin chain with
ζ j1 = 1 and ζ j2 = ζ j3 = 0. The effective Hamiltonian, in this

FIG. 10. C(t ) is the concurrence between spins 1 and 10 for the
XXX model with N = 10. From t = 0 to t ≈ 5.9, consecutive pairs
of neighboring spins interact. From t ≈ 5.9 onwards spins 9 and 10
are made to interact until spins 1 and 10 are perfectly entangled. As
always, we are using dimensionless units with h̄ = 1, and we have
set ζ j1 = ζ j2 = ζ j3 = 1.

case, is

H̄i = 1
2

[
σ (i)

x σ (i+1)
x + σ (i)

z σ (i+1)
z

]
. (30)

This is the usual XX interaction since, by performing a rotation
of the coordinate axes, we can write the effective Hamiltonian
in terms of σy instead. That is,

H̄ ′
i = 1

2

(
σ i

xσ
i+1
x + σ i

yσ
i+1
y

)
. (31)

In this rotated basis, we choose the initial state to be
|10〉1,2 ⊗ |0〉. The eigenbasis |ei〉 is the same as that for
the XXX model with eigenvalues λ1 = −1, λ2 = 0, λ3 = 1,

λ4 = 0. Letting the first two spins interact, we have

|ψ (t )〉 = (α1(t ) |10〉1,2 + α2(t ) |01〉1,2) |0〉 , (32)

FIG. 11. C(t ) is the concurrence between spins 1 and 10 for the
quantum Ising model with N = 10 following our scheme.
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FIG. 12. A plot of D(t ) against time, where D(t ) = |μ1(t ) μ2(t )|.

where

α1(t ) = 1
2 (e−it + eit ) = cos(t ), (33)

α2(t ) = 1
2 (e−it − eit ) = −i sin(t ). (34)

To get spins 1 and i + 1 in a maximally entangled state, we
now have the condition∣∣∣∣α1(τ1) α2(τ1)

i∏
j=2

α2(τ j )

∣∣∣∣ = 0.5, (35)

To fulfill this, we can choose τ1 such that |cos(τ1) sin(τ1)| =
0.5, and setting all the τ j to be equal to τ2 such that
|sin(τ2)| = 1. With these times, spins 1 and i + 1 are in a Bell
state, and all the other spins are in the state |0〉. The generation
of the entanglement is illustrated in Fig. 11.

Finally, let us consider an anisotropic XYZ model. We take
ζ j1 = 1.1, ζ j2 = 1, ζ j3 = 1. By now, it should be obvious how
to proceed with our scheme. The effective Hamiltonian is

H̄i = 1.05
[
σ (i)

x σ (i+1)
x + σ (i)

z σ (i+1)
z

] + σ (i)
y σ (i+1)

y . (36)

FIG. 13. A plot of D(t ) against time, where D(t ) = |μ1(t ) ν1(t )|.

FIG. 14. Step 1. Spins 1 and 2 in an anisotropic XYZ chain (N =
5, ζ j1 = 1.1, ζ j2 = 1, ζ j3 = 1) interact for τ1 (≈15.7).

We choose the initial state as |0〉. Spins 1 and i + 1 are now
maximally entangled if∣∣∣∣∣∣μ1(τ1) μ2(τ1)

(
i∏

j=2

μ1(τ j ) ν1(τ j )

)∣∣∣∣∣∣ = 0.5, (37)

where

μ1 = 1
2 (e−iλ4t + e−iλ2t ), (38)

μ2 = 1
2 (e−iλ4t − e−iλ2t ), (39)

ν1 = 1
2 (e−iλ1t − e−iλ3t ), (40)

and λ1 = −3.1, λ2 = 1, λ3 = 1 and λ4 = 1.1. To fulfill
this condition, we can set |μ1(τ1) μ2(τ1)| = 0.5, and
|μ1(τ2) ν1(τ2)| = 1, where all the τ j have been set equal to τ2.
Figs. 12 and 13 show that these two conditions can indeed be
satisfied. Proceeding further, Figs. 14–17 show how entan-
glement is generated between the first spin and the rest of the
spins one by one. As before, the dot-dashed gray curve shows
the concurrence obtained using the complete Hamiltonian,
the solid blue curve results from the effective Hamiltonian

FIG. 15. Step 2. Spins 2 and 3 interact for τ2 (≈0.77). C(t ) is the
concurrence between spins 1 and 3.
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FIG. 16. Step 3. Spins 3 and 4 interact for τ3 (≈0.77). C(t ) is the
concurrence between spins 1 and 4.

approach, and the black dashed curve is the concurrence in the
absence of any control fields. These plots illustrate not only
the validity of the effective Hamiltonian approach with highly
efficient removal of the effect of the environment but also
the fact that maximal bipartite entanglement can be generated
between two spins in the spin chain.

V. CONCLUSION

In conclusion, we have shown that by applying staggered
fields to a spin chain, we can largely decouple the spin chain
from the environment and suppress the spin-spin interac-
tions, effectively obtaining a chain of non-interacting spins.
Then, by considering a combination of constant and stag-
gered configurations of strong static and oscillating fields, we
demonstrated how interactions between two spins in the chain
can be selectively induced. By diagonalizing the effective two-

FIG. 17. Step 4. Spins 4 and 5 interact for τ4 (≈0.77). C(t ) is the
concurrence between spins 1 and 5. At the point when the interaction
stops, C(t ) = 0.997 rounded off to three decimal places.

qubit interaction Hamiltonian, we evolved the XX, XXX, Ising,
and anisotropic XYZ spin chains under a series of interactions
that allowed us to generate maximal entanglement between
any two spins in the spin chain. Our results are interesting,
given the significance of entanglement in spin chains and the
importance of protecting the entanglement from the environ-
ment when considering applications in quantum computation
and information. Our proposed scheme can potentially lead to
the generation of near-perfect entanglement between the far
ends of a long spin chain, even in the presence of significant
external noise. To this end, implementations of spin chains in
liquid NMR [43], solid NMR [44], trapped ions [45], ultracold
atoms [46], quantum dots [47], and nitrogen-vacancy centers
[48] can be explored. Finally, we note that we have neglected
next-nearest neighbor interactions in the present paper. By
adding in a third control field configuration, we can potentially
tune such next-nearest neighbor interactions as well.
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