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Extracting ergotropy from nonequilibrium steady states of an XXZ spin-chain quantum battery
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Coupling of a quantum battery (QB) to two thermal reservoirs brings it to a nonequilibrium steady-state
(NESS). In this situation, although, the QB can be charged through the NESS heat current, no work may be
extracted from it through unitary cyclic processes. We exemplify this statement by studying the two- and three-
qubit XXZ spin-chain QBs coupled weakly to two different thermal reservoirs in a symmetric configuration
wherein each end of chain interacts with an individual reservoir. We show that the work can be extracted at
positive temperature bias when two ends of a XXZ chain are collectively coupled to the hot reservoir.
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I. INTRODUCTION

In recent years, with advancements in quantum thermo-
dynamics, there has been a radical change of perspective in
the framework of energy manipulation based on the electro-
chemical principles. The possibility to create an alternative
and efficient energy storage device at small scale introduces
the concept of the quantum battery (QB), which was proposed
by Alicki and Fennes in 2013 [1] and subsequently became a
significant field of research. As their name indicates, QBs are
finite-dimensional quantum systems that are able to temporar-
ily store energy in their quantum degrees of freedom for later
use. Indeed, the key point here is that nonclassical features
such as quantum coherence, entanglement, and many-body
collective behaviors can be used to obtain more efficient and
faster charging processes than the macroscopic counterpart.
During the last years, studies on the QBs have been gener-
alized in different directions. They included proposing the
theoretical schemes [2–10], examining performance of such
devices by analyzing some figures of merit such as the charg-
ing power (energy stored in a given time interval) [11,12], and
ergotropy (the maximum amount of energy which can be ex-
tracted via cyclic unitary transformations) [13–15], advising
an appropriate control strategy to achieve a quantum charging
advantage [16–24], and discussing the environmental induced
decoherence on charging and discharging processes of QBs
[25–31]. At the same time, several experimental schemes have
been also proposed to implement QBs based on the two-level
systems such as trapped ions [8,32,33], cold atoms [34] and
superconducting qubits [35].

One of the most important issues related to performance
of QBs is their charging process, during which the system
transits from a lower energy level into the higher ones. A
QB is generally charged based on an interaction protocol
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between QB itself with an external field which serves as a
charger. So far, the main focus has lied on charging a QB by
means coupling to other quantum systems [8] driving with an
external field [36–39], unitary operations [11,40] as well as
performing projective measurements [41]. Particularly inter-
esting is charging by means the thermal environments [28],
which would require much less control and greater stability
in compare with the other ones. Considering that the battery
undergoes an environmental-induced dissipation dynamics,
charging by means the thermal environment portrays a pos-
itive role of decoherence in improving the potentialities of
open QBs. However, this charging mechanism does not work
when the quantum system is coupled to a Markovian thermal
reservoir because it evolves the battery to the familiar Gibbs
thermal states, which are the passive states (namely the states
from which one cannot extract any energy by means of unitary
transformations). In Ref. [2] Farina et al. have shown that
indirect thermal charging, where the interaction between the
battery and the thermal environment mediated by an ancilla
system, may produce some active steady states. On the other
hand, the steady state of a composite system in contact with
two or more independent thermal baths does not obey the
Gibbs distribution, so it is expected that, under the proper
circumstances, active steady states could be produced out
of thermal equilibrium. Generally, moving out of the ther-
mal equilibrium induces heat current among the interacting
subsystems which may changes the steady-state population
distribution among the eigenstates of composite systems [42],
and potentially produces a non-Gibbsian active state under the
proper conditions [43,44].

In this paper, we show that presence of an inherent asym-
metry induced by the asymmetrically couplings of a QB to
two independent reservoirs results in a finite ergotropy of
nonequilibrium steady state (NESS). Here, we propose an
open QB modeled as a two-qubit XXZ spin chain coupled
to two independent Markovian thermal reservoirs in two sym-
metrical coupling or asymmetrical coupling configurations. In
the symmetrical coupling configuration, one qubit is coupled
to only one reservoir, while in the asymmetrical coupling
configuration, one of qubits is coupled to the both reservoirs
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and the other only to one reservoir. The battery is initiated in a
state in which both qubits are in its ground state. The battery is
charged through both the environmental induced decoherence
in their energy eigenbasis as well as incoherent heat flow
resulting from the weak coupling of the qubits to the reservoirs
at different temperatures. However, in the equilibrium case
(i.e., when temperature difference of reservoirs is zero), it is
charged only by means environmental induced decoherence in
their energy eigenbasis. We investigate how the mean temper-
ature and temperature gradient of the reservoirs, as well as the
chain anisotropy can affect the charging performance of QB
in the steady-state limit. We analytically show that the steady
state of the two-qubit spin-chain QB coupled symmetrically to
the reservoirs is passive, while in the asymmetrical coupling
configuration, it is possible to extract work through unitary
cyclic processes. We confirm these results by numerical sim-
ulation of a three-qubit spin-chain counterpart. Our results
present a robust way to generate and store ergotropy in a QB
through relaxation of a nonequilibrium quantum system into
its steady state by purely thermal means while assuming a
weak but asymmetrical coupling between the system and its
thermal reservoirs.

The rest of the paper is organized as follows: In Sec. II
we introduce the model for a two-qubit spin-chain QB and
derive in detail the Markovian master equation describing the
nonequilibrium dynamics of system coupled to its thermal
reservoirs. In Sec. III, we analyze the steady state stored en-
ergy in both the symmetric and asymmetric coupling settings
with emphasis on the control role of the chain anisotropy and
nonequilibrium effects. Then, we examine the ergotropy of
the NESS of our battery in Sec. IV. In Sec. V, we analyze
the charging performance of the battery for the case of three
qubits. Finally, we draw some conclusions from the present
study in Sec. VI. The proof of passivity of the two-qubit QB
with symmetric qubit-reservoir coupling configuration can
be found in the Appendix A. In addition, the emission and
absorption rates between energy levels of the three-qubit QB,
and the dynamical equations for its density-matrix elements
are given in Appendixes B and C, respectively.

II. THE MODEL AND ITS NONEQUILIBRIUM
STEADY-STATE SOLUTIONS

We consider a QB composite of a two-qubit anisotropic
XXZ spin chain in the presence of a uniform magnetic field
B0, which is described by the Hamiltonian

HB = 1
2

[
B0σ

(1)
z + B0σ

(2)
z + Jσ (1)

x σ (2)
x + Jσ (1)

y σ (2)
y

+�σ (1)
z σ (2)

z

]
, (1)

where σ (i)
x , σ (i)

y , and σ (i)
z are spin 1/2 operators for the ith spin,

and B0 is a magnetic field in the z direction. J is the interqubit
coupling and (−1 � � � 1) denotes the chain anisotropy in
the z direction. For J > 0 and � > 0 the chain is called anti-
ferromagnetic while for J < 0 and � < 0 it is a ferromagnetic
chain [45,46]. Remarkably, for the particular values � = 0
and � = J , the Hamiltonian (1) corresponds to the XX [47]
and XXX [48] spin chains, respectively. The eigenenergies

FIG. 1. The schematic diagram of the XXZ spin-chain QB with
two coupled qubits 1 and 2 interacting with a nonequilibrium envi-
ronment consists of left and right reservoirs. The key ε is used to
switch on or of f the coupling between the qubit 2 and left reservoir,
which allow us to control chain-reservoir coupling asymmetry.

and corresponding eigenbasis of HB in the two-qubit bare
basis {|1, 1〉, |1, 0〉, |0, 1〉, |0, 0〉} are

|�1〉 = |0, 0〉, E1 = 1

2
(� − 2B0), (2a)

|�2〉 = |1, 1〉, E2 = 1

2
(� + 2B0), (2b)

|�3〉 = 1√
2

[|0, 1〉 − |1, 0〉], E3 = −�

2
− J, (2c)

|�4〉 = 1√
2

[|1, 0〉 + |0, 1〉], E4 = −�

2
+ J. (2d)

In the bare basis {|1, 1〉, |1, 0〉, |0, 1〉, |0, 0〉}, the Hamilto-
nian HB can be represented as

HB =

⎛
⎜⎜⎝

�+2B0
2 0 0 0
0 −�

2 J 0
0 J −�

2 0
0 0 0 �−2B0

2

⎞
⎟⎟⎠. (3)

Figure 1 illustrates a schematic diagram of the nonequilibrium
charging protocol of the QB. As can be seen, a coupling
switch is used to provide the nonequilibrium charging of QB
in two independent protocols. In the first charging proto-
col where the switch is off, the battery’s qubits are coupled
symmetrically to the left (right) reservoirs RL (RR) with
temperatures TL (TR). The qubit 1 is coupled with the left
reservoir and the qubit 2 interacts with the right reservoir.
In the second protocol, the switch is flipped on, and an extra
coupling between the qubit 2 and the left reservoir will be es-
tablished. At this time, the qubits are coupled to the reservoirs
in an asymmetric configuration wherein qubit 2 interacts with
both reservoirs, whereas the qubit 1 is coupled to just the left
reservoir. The left and right heat reservoirs are modeled as a
collection of independent harmonic oscillators with the mode
frequencies ω

(L)
j and ω

(R)
j , respectively, and described by the

Hamiltonian (h̄ = 1 and kB = 1 in the following)

Hres =
∑

j

[
ω

(L)
j a†

j a j + ω
(R)
j b†

jb j
]
, (4)
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where a†
j (a j ) and b†

j (b j ) are the creation (annihilation) oper-
ators associated with the jth bosonic mode of the left and right
reservoir, respectively. For simplicity, we just consider the
dissipative interaction between the system and environment
inducing the energy exchange between the qubits and corre-
sponding local reservoirs and exclude pure dephasing type
environmental noises. The dissipative interaction between
the battery and the thermal reservoirs is described by the
Hamiltonian

HB-res =
∑

j

λ
(L)
j

(
σ (1)

x + ε σ (2)
x

)
(a†

j + a j )

+
∑

j

λ
(R)
j σ (2)

x (b†
j + b j ), (5)

where λ
(L)
j (λ(R)

j ) is the dissipative interaction strength be-
tween the QB and the left (right) reservoirs. In addition, ε

is a switching parameter which gets 0 or 1. Precisely, ε = 0
switches off the interaction between the qubit 2 and the left
reservoir. In this situation we have a symmetric configuration,
the qubit 1 interacts only with the left reservoir and the qubit
2 interacts only with the right one. However, ε = 1 switches
on the coupling between the qubit 2 and the left reservoir
and induces an inherent asymmetry in the qubit-reservoir
coupling. In such an asymmetric coupling setting the qubit 1
interacts only with the left reservoir, while the qubit 2 interacts
simultaneously with both the left and right reservoirs.

We now assume that the battery-reservoir interaction
strength is in the weak-coupling regime, so under the Born-
Markov approximation, the dynamics of QB can be described
by the following Lindblad-form master equation [49]

ρ̇(t ) = −i[HB, ρ(t )] + DL(ρ) + DR(ρ), (6)

where Dν (ρ), (ν = L, R) are dissipators associated with the
reservoir Rν in contact with the qubits, and take the form as

Dν (ρ) =
∑
ω>0

Jν (ω)(1 + nν (ω))

[
Aν (ω) ρ(t )A†

ν (ω) − 1

2
{A†

ν (ω)Aν (ω), ρ(t )}
]

+
∑
ω>0

Jν (ω)nν (ω)

[
A†

ν (ω) ρ(t )Aν (ω) − 1

2
{Aν (ω)A†

ν (ω), ρ(t )}
]
. (7)

Here Jν (ω) = π
∑

j |λν
j |2δ(ω − ω

(ν)
j ) is the spectral density of the reservoir Rν and nν (ω) = [eω/Tν − 1]−1 denotes the average

particle number on frequency ω in that reservoir. In addition, Aν (ω) and A†
ν (ω) are the Lindblad operators which are chosen

according to the form of the interaction Hamiltonian HB−res in Eq. (5) to satisfy Aν (ω) = A†
ν (−ω) and [HB, Aν (ω)] = −ωAν (ω).

They are given by

AL(ω) =
∑

ωi j=ω>0

|� j〉〈� j |
(
σ (1)

x + εσ (2)
x

)|�i〉〈�i|, (8a)

AR(ω) =
∑

ωi j=ω>0

|� j〉〈� j |σ (2)
x |�i〉〈�i|, (8b)

for all positive eigenfrequencies ω = ωi j = Ei − Ej > 0, corresponding to the transitions |�i〉 → |� j〉. Substituting Eq. (7) into
(6), and then using the Eqs. (8a) and (8b) we get

ρ̇(t ) = −i[HB, ρ(t )] + L(1)
L (ρ) + L(2)

R (ρ) + ε
(
L(2)

L (ρ) + L(1,2)
L (ρ)

)
, (9)

where the dissipator L(k)
ν (ρ) represents dissipation due to the qubit k coupled individually to the reservoir Rν , while the dissipator

L(1,2)
L (ρ) reflects the collective dissipation due to the qubits 1 and 2 commonly coupled to the left reservoir. The dissipators

L(k)
ν (ρ) and L(1,2)

L (ρ) have the following form

L(k)
ν (ρ) =

∑
ω>0

J (k)
ν (ω)(1 + nν (ω))

[
V (k)(ω) ρ(t )V (k)†(ω) − 1

2
{V (k)†(ω)V (k)(ω), ρ(t )}

]

+
∑
ω>0

J (k)
ν (ω)nν (ω)

[
V (k)†(ω) ρ(t )V (k)(ω) − 1

2
{V (k)(ω)V (k)†(ω), ρ(t )}

]
, (10a)

L(1,2)
L (ρ) =

∑
ω>0

J (1,2)
L (ω)(1 + nL(ω))

[
V (1)(ω) ρ(t )V (2)†(ω) − 1

2
{V (2)†(ω)V (1)(ω), ρ(t )}

]

+
∑
ω>0

J (1,2)
L (ω)nL(ω)

[
V (1)†(ω) ρ(t )V (2)(ω) − 1

2
{V (2)(ω)V (1)†(ω), ρ(t )}

]
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+
∑
ω>0

J (1,2)
L (ω)(1 + nL(ω))

[
V (2)(ω) ρ(t )V (1)†(ω) − 1

2
{V (1)†(ω)V (2)(ω), ρ(t )}

]

+
∑
ω>0

J (1,2)
L (ω)nL(ω)

[
V (2)†(ω) ρ(t )V (1)(ω) − 1

2
{V (1)(ω)V (2)†(ω), ρ(t )}

]
, (10b)

V (k)(ω) =
∑
ω>0

|� j〉〈� j |σ (k)
x |�i〉〈�i|, (10c)

where V †(k)(ωi j ) and V (k)(ωi j ) are transition operators which describe respectively processes in which the QB receives energy
from the reservoir Rν through an excitation of the qubit k or dissipates energy to it through a deexcitation of that qubit. They
are eigenoperators of HB, that satisfy V (k)(ωi j ) = V †(k)(−ωi j ) and [HB,V (k)(ωi j )] = −ωi jV (k)(ωi j ). In addition, J (1,2)

L (ω) =
[J (1)

L (ω)J (2)
L (ω)]1/2 = JL(ω) represents collective damping rate of the qubits 1 and 2 induced by the left reservoir.

In the following we are interested in the Ohmic dissipation, Jν (ω) = κω, where κ is a dimensionless constant which quantifies
dissipation strength. It should be noted that in order to guarantee the validity of the Markovian approximation, κ needs to satisfy
the condition κ � {B0, J,�}. By substituting Eqs. (10a), (10b), and (3) into Eq. (6), the master equation reads

ρ̇(t ) = −i[HB, ρ(t )] +
∑

ν=L,R

[
γ

(ν,e)
31 Lτ13 + γ

(ν,a)
31 Lτ31 + γ

(ν,e)
14 Lτ14 + γ

(ν,a)
14 Lτ41 + γ

(ν,e)
23 Lτ32 + γ

(ν,a)
23 Lτ23 + γ

(ν,e)
24 Lτ42 + γ

(ν,a)
24 Lτ24

]
,

(11)

where τi j = |�i〉〈� j |, LX = XρX † − 1
2 {ρ, X †X }, and

γ
(L,e)

i j = κωi j (ε + (−1) j )2

2
[1 + nL(ωi j )], γ

(R,e)
i j = κωi j

2
[1 + nR(ωi j )], (12a)

γ
(L,a)

i j = κωi j (ε + (−1) j )2

2
nL(ωi j ), γ

(R,a)
i j = κωi j

2
nR(ωi j ), (12b)

where γ
(ν,e)

i j (γ (ν,a)
i j ) is emission (absorption) rate from |�i〉

to |� j〉 (|� j〉 to |�i〉), thanks to the interaction of the battery
with the reservoir ν. From the above equations, we note that,
the emission and absorption rates γ

(L,e)
31 , γ

(L,a)
31 , γ

(L,e)
23 , and

γ
(L,a)

23 are zero in the presence of the asymmetry (ε = 1). This
means that the energy transition |�1〉 ↔ |�3〉 and |�2〉 ↔
|�3〉 induced by the hot (left) reservoir are impossible. All
allowed energy transitions induced by the right and left reser-
voirs are depicted in Fig. 2, at which a four-level qudit will
be populated due to the interaction with both the left and right
reservoirs.

The steady-state solution dρ/dt = 0 for the QB can be
obtained by rewriting the master equation in the Eq. (9)
in the energy basis representation. The advantage of this
representation is that the master equations for diagonal ele-
ments decouple from nondiagonal ones. For our system, all

FIG. 2. Level structure of the QB asymmetrically coupled to the
left and right reservoirs (the case ε = 1). Red (blue) arrows indicate
the allowed transitions in the interaction with the hot (cold) reservoir.

coherence components (nondiagonal elements) of the density
matrix vanish in the steady-state limit (t → ∞). As a con-
sequence, the steady-state density matrix ρNESS in the energy
basis representation is a diagonal matrix with the following
diagonal elements

ρ11 = E31η1 + E41η2

η1(A31 + A41)
ρ33, (13a)

ρ22 = A23η1 + A24η2

η1(E23 + E24)
ρ33, (13b)

ρ33 =
[

E31η1 + E41η2

η1(A31 + A41)
+ A23η1 + A24η2

η1(E23 + E24)
+ η2

η1
+ 1

]−1

,

(13c)

ρ44 = η2

η1
ρ33, (13d)

where

η1 = A31E41

(A23 + E31)(A31 + A41)
+ E23A24

(A23 + E31)(E23 + E24)
,

η2 = 1 − A31E31

(A23 + E31)(A31 + A41)

− E23A23

(A23 + E31)(E23 + E24)
,

Ai j = γ
(L,a)

i j + γ
(R,a)

i j , Ei j = γ
(L,e)

i j + γ
(R,e)

i j . (14)

Now we have all the expressions in hand required to ana-
lyze the charging performance of the proposed spin chain QB
in the NESS. In the following, we want to explore the nonequi-
librium effects on the steady-state activation and steady-state
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FIG. 3. The stored energy �EB(∞) in the NESS of a ferromag-
netic XXZ QB versus � and �T for different values of TM in the
symmetric coupling setting. The uniform magnetic field is set as
B0 = 2. All parameters of QB are in units of interspin coupling
|J| = 1.

charging performances of a two-qubit XXZ spin-chain QB.
Specially, we investigate how to improve the NESS charg-
ing performance of the QB by the introducing an inherent
asymmetry induced by turning the coupling of qubit 2 to
the left thermal reservoir, and find the proper circumstances
to optimize the stored energy as well as ergotropy of QB.
Furthermore, we show how such an asymmetry leads to the
generation of active states that would be impossible to gener-
ate without such coupling.

To follow with the computation, we have to specify the
initial state of QB. We assume here the battery is prepared
initially in its ground state |�1〉 = |0, 0〉, where both spins are
in their ground states. Therefore, in order to charge the battery,
the system parameters have to be adjusted in the regime of
strong magnetic field B > |J + �|.

III. ENERGY STORED IN THE NONEQUILIBRIUM
STEADY STATE OF THE XXZ SPIN-CHAIN

QUANTUM BATTERY

First, we investigate the nonequilibrium effects on the
steady-state stored energy of ferromagnetic (J < 0 and � <

0) and antiferromagnetic (J > 0 and � > 0) spin-chain QBs
for the symmetric coupling setting (ε = 0). The energy stored
in the QB, after a given time t , is evaluated from the quantum
mechanics postulates [1] as

�EB(t ) = Tr(ρ(t )HB) − Egs, (15)

where ρ(t ) is the density matrix of the battery at time t
and Egs = E1 = 1

2 (� − 2B0) is the ground-state energy of
the QB. In Fig. 3 (4) we plot the NESS stored energy
�EB(∞) = [EB(∞) − Egs]/�Emax

B of a ferromagnetic (anti-
ferromagnetic) spin-chain QB as a function of the temperature
gradient of reservoirs �T = TL − TR and the chain anisotropy

FIG. 4. The stored energy �EB(∞) in the NESS of an antifer-
romagnetic XXZ QB versus � and �T for different values of TM

in the symmetric coupling setting. The uniform magnetic field is set
as B0 = 2. All parameters of QB are in units of interspin coupling
|J| = 1.

� by considering different values of the mean temperature
of reservoirs TM = (TL + TR)/2. According to these figures,
energy stored in the ferromagnetic and antiferromagnetic QBs
can be controlled by the mean temperature of the reservoirs
TM as well as chain anisotropy �; �EB(∞) increases with
mean temperature of reservoirs. For a given TM , the best
energy storage in the steady state of the ferromagnetic and
antiferromagnetic QBs are achieved, respectively, at � → −1
and � = 0. Interestingly, comparing Figs. 3 and 4 reveals that
energy stored in the steady state of a ferromagnetic QB is
more than that of the antiferromagnetic one.

Figures 3 and 4 also display a constructive role that the
nonequilibrium effects play in enhancing the energy stored in
the steady state of both ferromagnetic and antiferromagnetic
BQs, albeit at the low mean temperatures (e.g., TM = 2 in
the figures). We clearly see that �EB(∞) is symmetric in
terms of the temperature gradient. This is expected because
in the nonequilibrium regime, our QB is charged by means
the heat current. And, based on the energy conservation at the
steady state, the absorbed steady-state heat from the left (hot)
reservoir is equal with the released steady-state heat to the
right (cold) reservoir, which is the result of switching off the
coupling between qubit 2 and the left reservoir.

In Figs. 5 and 6 we investigate NESS stored energy of the
ferromagnetic and antiferromagnetic spin-chain QBs, respec-
tively, for the asymmetric setting (ε = 1). We here plot the
steady-state stored energy �EB(∞) as a function of �T and
� for different values of the mean temperature TM , comparing
it with the symmetric couplings setting (ε = 0). Obviously,
�EB(∞) is not symmetric in terms of the temperature gradi-
ent due to the fact that more heat current flows from the left
reservoir to the right reservoir in the asymmetric-coupling set-
ting [42]. It is evident that, similar to the symmetric coupling
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FIG. 5. The stored energy �EB(∞) in the NESS of a ferromag-
netic XXZ QB versus � and �T for different values of TM in the
asymmetric coupling setting. The uniform magnetic field is set as
B0 = 2. All parameters of QB are in units of interspin coupling
|J| = 1.

setting, a constructive role of nonequilibrium effects of heat
current in enhancing energy stored in the steady state of QBs
is observed at low mean temperatures. By increasing mean
temperature of reservoirs, however, the role of nonequilibrium
effects of heat current changes from constructive to destruc-
tive, albeit at positive temperature bias. The destructive role
of the heat current on the NESS stored energy, regardless of
the ferromagnetic or antiferromagnetic properties of QB, is

FIG. 6. The stored energy �EB(∞) in the NESS of an antiferro-
magnetic XXZ QB versus � and �T for different values of TM in
the asymmetric coupling setting. The uniform magnetic field is set
as B0 = 2. All parameters of QB are in units of interspin coupling
|J| = 1.

FIG. 7. NESS population distribution of the ferromagnetic [pan-
els (a) and (c)] and antiferromagnetic [panels (b) and (d)] spin-based
QB versus �T by setting B0 = 2, TM = 20, and � = ±0.5. Panels
(a) and (b) correspond to the symmetric spin-reservoir coupling
setting, while panels (c) and (d) correspond to the asymmetric spin-
reservoir coupling setting. All parameters of QB are in units of
interspin coupling |J| = 1.

distributed unevenly across the chain anisotropy �. Espe-
cially, in the antiferromagnetic QB, the destructive effects of
the heat current are limited roughly at near �T = 2TM .

To gain a physical perspective on the features of �EB(∞)
in Figs. 3–6, we plot in Fig. 7 the NESS population in the
eigenstate representation versus the temperature gradient �T
for TM = 20, B0 = 2, and � = ±0.5. We can see that in
the symmetric coupling setting [see Figs. 7(a) and 7(b)] the
steady-state population distribution of both ferromagnetic and
antiferromagnetic QBs does not change with the temperature
gradient and, therefore, the steady-state stored energy remain
unchanged according to Eq. (15). In the asymmetric coupling
setting, however, the steady-state population distribution is
changed by the temperature gradient [see Figs. 7(c) and 7(d)],
albeit at positive temperature bias. Figure 7(c) shows that, in
the ferromagnetic QB the steady-state population components
ρ11, ρ22, ρ44 (ρ33) increases (decreases) with �T > 0. Taking
into account that the eigenenergies E2 and E3 (E1 and E4) are
positive (negative) for chosen the values of B0 = 2 and � =
−0.5, the increase in positive temperature gradient results in
an increase in negative contribution of ρ11E1 + ρ33E3 + ρ44E4

as well as the positive contribution of ρ22E2. In this situation,
the negative contribution of ρ11E1 + ρ33E3 + ρ44E4 prevails
in the competition with the positive contribution of ρ22E2 and
leads to the destructive role the nonequilibrium effects that
play in increasing the energy stored in the steady state of
the ferromagnetic QB. From Fig. 7(d) we can see that, in
the antiferromagnetic QB, the steady-state population com-
ponents (component) ρ11, ρ22, ρ44 (ρ33) decrease (increases)
with �T > 0. Due to the fact that the eigenenergies E2 and
E4 (E1 and E3) are positive (negative) for the chosen values
of B0 = 2 and � = 0.5, we find a positive contribution ρ11

but negative contribution for ρ22, ρ33, and ρ44. According to
Fig. 7(d), applying a positive temperature gradient results in
an increase in negative contribution of ρ22E2 + ρ33E3 + ρ44E4
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FIG. 8. NESS ergotropy W (ρNESS) of the ferromagnetic spin-
based QB versus � and �T for different values of TM in the
asymmetric spin-reservoir coupling setting. The chain anisotropy is
set as B0 = 2. All parameters of QB are in units of interspin coupling
|J| = 1.

but positive contribution of ρ11E1 to the stored energy in the
steady state of the antiferromagnetic BQ.

IV. EXTRACTING ERGOTROPY FROM THE
NONEQUILIBRIUM STEADY STATE OF THE TWO-SPIN
FERROMAGNETIC AND ANTIFERROMAGNETIC XXZ

QUANTUM BATTERIES

It is well known that, when an isolated system being
in a state ρ = ∑

i ri|ri〉〈ri| evolves unitarily under a certain
Hamiltonian H = ∑

i=1 εi|εi〉〈εi|, its internal energy does not
change over time. However, the internal energy can be low-
ered by properly designed coupling with an external agent
represented by an appropriate time-dependent potential V (t ).
Such a potential is switched on during a certain time in-
terval [0, T ] and causes the Hamiltonian of the system to
change periodically in the given time interval. When the
system evolves under the Hamiltonian Heff = H + V (t ), its
dynamics are governed by the unitary time evolution operator
U (T ) = T exp{−i

∫ T
0 dt[H + V (t )]} for one period T , where

T denotes the time-ordering operator. After the period T ,
the system evolves into U (T )ρU †(T ), and the amount of
work that can be extracted via this unitary cyclic process is
given by Tr(ρH ) − Tr(UρU †H ). By choosing the optimal
unitary cyclic process, through appropriate designing of the
time-dependent potential V (t ), it is possible to optimize the
work extraction. The maximum amount of extractable work is
called ergotropy [14] and is given by

W (ρ) = Tr(ρH ) − min Tr(UρU †H ), (16)

where the minimization runs over all possible unitary opera-
tors that can extract work. The unitary operator Umin which
achieves the maximum work, transforms ρ into a passive state
ρp = ∑

k rk|εk〉〈εk| with decreasing populations rk > rk+1 so

FIG. 9. NESS ergotropy W (ρNESS) of the antiferromagnetic spin-
based QB versus � and �T for different values of TM in the
asymmetric spin-reservoir coupling setting. The chain anisotropy
is set as B0 = 2. All parameters are in units of interspin coupling
|J| = 1.

that work can no longer be extracted from this state cyclically
[50–53]. By considering eigenvectors of H and ρ, the unitary
operator Umin can be constructed as Umin = ∑

i |εi〉〈ri| and
when inserted in Eq. (16) gives the following expression for
the ergotropy

W (ρ) =
∑
i, j

r jεi(|〈r j |εi〉|2 − δi j ), (17)

which is zero for all passive states. It is worth noting that work
can always be extracted from passive states by means of some
collective process and thermal operations [8,11,40,54,55].
Within the family of passive states, thermal states are the
only completely passive states from which no work could be
extracted by means some collective process [56–59].

In the previous section we found that the asymmetric
couplings of the QB to the thermal reservoirs induce NESS
distributions of populations, where the ordering of popula-
tions changes as the positive temperature gradient increases.
These results potentially suggest the possibility of activation
of Gibbsian states with the aid of the inherent asymmetry.
In Appendix A we have mathematically shown that, in the
symmetric coupling setting the spin-chain QB initiated in
the separable state |�1〉 is passive and therefore work can-
not be extracted from it by any unitary process. Now in
this section we investigate the possibility of extraction of
work from the NESS of ferromagnetic and antiferromagnetic
spin-chain QBs in the asymmetric coupling setting. Figures 8
and 9 depict the NESS ergotropy of, respectively, the ferro-
magnetic and antiferromagnetic spin-chain QBs versus chain
anisotropy � and temperature gradient �T for different TM

in the asymmetric spin-reservoir coupling setting. Obviously,
the stored energy in the steady state of both ferromagnetic and
antiferromagnetic spin-chain QB can be extracted by unitary
processes, at the positive temperature bias. As can be seen,
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FIG. 10. NESS energy of (a) the antiferromagnetic and (b) the
ferromagnetic XXZ QB versus � and TL in the symmetric coupling
settings (ε = 0). The magnetic field and inverse temperature of the
reference heat reservoir are set as B0 = 2 and βeq = 1/Teq = 1/TR =
0.5, respectively. All parameters of QB are in units of interspin
coupling |J| = 1.

the maximum amount of work is extracted at �T = 2TM .
Moreover, regardless of the ferromagnetic or ferromagnetic
properties of QB, ergotropy increases with the mean temper-
ature of reservoirs TM . More interestingly, comparing Fig. 5
(6) with Fig. 8 (9) indicates, although the steady-state stored
energy of a ferromagnetic QB is more than that of the an-
tiferromagnetic one, more energy can be extracted from the
antiferromagnetic QB compared with the ferromagnetic QB.

It should be noted that our further calculations (not shown
here) illustrate that, without the collective dissipation included
in the model by introducing L(1,2)

L (ρ) in the master equa-
tion (10b), work cannot be extracted from NESS even in the
presence of the inherent asymmetry. In other words, it is the
collective dissipation which actives the NESS of the battery at
the positive bias. Without the collective dissipation, the emis-
sion and absorption rates γ

(R,e)
i j and γ

(R,a)
i j given in (12a) and

(B12) remain unchanged, while the emission and absorption
rates γ

(L,e)
i j and γ

(L,a)
i j associated with the left reservoir are

reduced to

γ
(L,e)

i j = 2κωi j[1 + nL(ωi j )], γ
(L,a)

i j = 2κωi jnL(ωi j ). (18)

With this in mind, passivity of the NESS without the collective
dissipation can be proved analytically by a method similar to
that used to prove its passivity in Appendix A for the case
ε = 0.

Finally, it is needed to remark that some part of the to-
tal energy stored in the passive state of a QB can always
be extracted through a nonunitary process under which the
passive state is transformed to the Gibbsian thermal state
ρeq = e−βeq HB/Tr[e−βeq HB ], in thermal contact with a refer-
ence heat reservoir at inverse temperature βeq. The maximum
extractable energy, under this thermalization process, is called
exergy [55] quantified by the variation of the free energy
[60–62] as ∑

ex

= F (ρp) − F (ρeq ), (19)

where F (ρp) = Tr[HBρp] − β−1
eq S(ρp) is the nonequilibrium

Helmholtz free energy stored in the passive state with the
von Neumann entropy S(ρp) = −Tr[ρp ln ρp] [similarly for
F (ρeq )]. From the energy storage point of view,

∑
ex can be

used to quantify the amount of usable energy stored in the
passive state of an open QB that is charged within a thermal
chamber at inverse temperature βeq by a classical field [36].
For the passive steady state ρNESS at hand, we calculate the ex-
ergy given in (19) numerically in Fig. 10. Here

∑
ex is plotted

as a function of � and TL for Teq = TR. As expected, regardless
of the ferromagnetic or antiferromagnetic properties of the
XXZ QB,

∑
ex increases with temperature gradient. However,

NESS exergy of the ferromagnetic XXZ QB is more than
those of the antiferromagnetic XXZ QB. It is clear that NESS
exergy of the antiferromagnetic QB increases as the chain
anisotropy � decreases, so that a more exergy is extracted
for the special case � = 0 correspond to NESS exergy of the
XX QB. As it is shown, NESS exergy of the ferromagnetic
QB, however, exhibits completely different behaviors with the
increase of �. In this situation, more NESS exergy is extracted
for � = −1, which corresponds to NESS exergy of the XXX
QB.

V. CHARGING A THREE-SPIN ANTIFERROMAGNETIC
XXZ QUANTUM BATTERY AND EXTRACTING
ERGOTROPY FORM ITS NONEQUILIBRIUM

STEADY STATE

In this section we generalize the spin-based QB of Sec. II to
a three-spin XXZ QB with nearest-neighbor interaction. This
spin model is described by the Hamiltonian of the form

HB = 1

2

[
B0

3∑
i=1

σ (i)
z + J

2∑
i=1

σ (i)
x σ (i+1)

x + J
2∑

i=1

σ (i)
y σ (i+1)

y + �

2∑
i=1

σ (i)
z σ (i+1)

z

]
. (20)

The eigenenergies and corresponding eigenbasis of HB in the three-qubit bare basis {|1, 1, 1〉, |1, 1, 0〉, |1, 0, 1〉, |0, 1, 1〉,
|1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉, |0, 0, 0〉} are

|�1〉 = 1√
2

[|0, 0, 1〉 − |1, 0, 0〉], E1 = −B0

2
, (21a)

|�2〉 = 1√
2

[|0, 1, 1〉 − |1, 1, 0〉], E2 = B0

2
, (21b)

|�3〉 = |0, 0, 0〉, E3 = 1

2
(2� − 3B0), (21c)

|�4〉 = |1, 1, 1〉, E4 = 1

2
(2� + 3B0), (21d)
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|�5〉 = 1√(
�+α

J

)2 + 8

[
2|1, 0, 0〉 − � + α

J
|0, 1, 0〉 + 2|0, 0, 1〉

]
, E5 = −1

2
(B0 + � + α), (21e)

|�6〉 = 1√(
�+α

J

)2 + 8

[
2|1, 1, 0〉 − � + α

J
|1, 0, 1〉 + 2|0, 1, 1〉

]
, E6 = 1

2
(B0 − � − α), (21f)

|�7〉 = 1√(
�−α

J

)2 + 8

[
2|1, 0, 0〉 − � − α

J
|0, 1, 0〉 + 2|0, 0, 1〉

]
, E7 = −1

2
(B0 + � − α), (21g)

|�8〉 = 1√(
�−α

J

)2 + 8

[
2|1, 1, 0〉 − � − α

J
|1, 0, 1〉 + 2|0, 1, 1〉

]
, E8 = 1

2
(B0 − � + α), (21h)

where α = (�2 + 8J2)1/2. This spin-chain QB is charged via the NESS heat current resulting from the weak coupling of the
end qubits to two different thermal reservoirs. As illustrated in the schematic diagram in Fig. 11, the end qubits can be coupled
to the reservoirs in two symmetrical coupling and asymmetrical coupling configurations. To establish the symmetrical coupling
and asymmetrical coupling configurations we place a coupling switch between one end of the chain and one of the reservoirs.
When the switch is off, the qubit 1 connects to reservoir RL with temperature TL and the qubit 3 connects to the right reservoir
RR with the temperature TR. In this situation the QB coupled to the thermal reservoirs in a symmetric configuration. However,
when the switch is flipped on, the QB is coupled to the reservoirs in an asymmetric configuration wherein qubit 3 is coupled to
both reservoirs, whereas the qubit 1 is coupled to just the left reservoir. The dissipative interaction between the QB and harmonic
oscillators of the left and right reservoirs is governed by the following Hamiltonian:

HB−res =
∑

j

λ
(L)
j

(
σ (1)

x + ε σ (3)
x

)
(a†

j + a j ) + λ
(R)
j σ (3)

x (b†
j + b j ), (22)

where λ
(L)
j (λ(R)

j ) are the dissipative interaction strengths between the QB and the jth oscillator of the left (right) reservoir

with frequencies ω
(L)
j (ω(R)

j ). In the weak-coupling regime, under the Born-Markov approximation, the master equation for the
reduced density matrix of the chain reads

ρ̇(t ) = −i[HB, ρ(t )] + L(1)
L (ρ) + L(3)

R (ρ) + ε
(
L(3)

L (ρ) + L(1,3)
L (ρ)

)
, (23)

where the operator L(k)
ν (ρ) represents dissipation due to the qubit k coupled individually to the reservoir Rν and takes the form

L(k)
ν (ρ) =

∑
ω>0

Jν (ω)[1 + nν (ω)]

[
V (k)(ω) ρ(t )V (k)†(ω) − 1

2
{V (k)†(ω)V (k)(ω), ρ(t )}

]

+
∑
ω>0

Jν (ω)nν (ω)

[
V (k)†(ω) ρ(t )V (k)(ω) − 1

2
{V (k)(ω)V (k)†(ω), ρ(t )}

]
, (24)

while L(1,3)
L (ρ) represents the collective dissipation due to the qubits 1 and 3 commonly coupled to the left reservoir has the form

L(1,3)
L (ρ) =

∑
ω>0

JL(ω)[1 + nL(ω)]

[
V (1)(ω) ρ(t )V (3)†(ω) − 1

2
{V (3)†(ω)V (1)(ω), ρ(t )}

]

+
∑
ω>0

JL(ω)nL(ω)

[
V (1)†(ω) ρ(t )V (3)(ω) − 1

2
{V (3)(ω)V (1)†(ω), ρ(t )}

]

+
∑
ω>0

JL(ω)[1 + nL(ω)]

[
V (3)(ω) ρ(t )V (1)†(ω) − 1

2
{V (1)†(ω)V (3)(ω), ρ(t )}

]

+
∑
ω>0

JL(ω)nL(ω)

[
V (3)†(ω) ρ(t )V (1)(ω) − 1

2
{V (1)(ω)V (3)†(ω), ρ(t )}

]
. (25)

In the above equations, V (k)(ω) = ∑
Ei−E j=ω>0 |� j〉〈� j |σ (k)

x |�i〉〈�i| is the transition operator corresponding to the transition
between two eigenbasis |�i〉 and |� j〉.
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Now, with the assumed Ohmic type of spectral density, and by substituting Eqs. (24), (25) and (20) into Eq. (23), the master
equation can be reexpressed as

ρ̇(t ) = −i[HB, ρ(t )] +
∑

ν=L,R

[
γ

(ν,e)
13 Lτ31 + γ

(ν,a)
13 Lτ13 + γ

(ν,e)
61 Lτ16 + γ

(ν,a)
61 Lτ61 + γ

(ν,e)
81 Lτ18 + γ

(ν,a)
81 Lτ81 + γ

(ν,e)
42 Lτ24

+ γ
(ν,a)

42 Lτ42 + γ
(ν,e)

25 Lτ52 + γ
(ν,a)

25 Lτ25 + γ
(ν,e)

27 Lτ72 + γ
(ν,a)

27 Lτ27 + γ
(ν,e)

46 Lτ64 + γ
(ν,a)

46 Lτ46 + γ
(ν,e)

65 Lτ56

+ γ
(ν,a)

65 Lτ65 + γ
(ν,e)

67 Lτ76 + γ
(ν,a)

67 Lτ67 + γ
(ν,e)

85 Lτ58 + γ
(ν,a)

85 Lτ85 + γ
(ν,e)

87 Lτ78 + γ
(ν,a)

87 Lτ87

]
, (26)

where τi j = |�i〉〈� j |, LX = XρX † − 1
2 {ρ, X †X }. The emis-

sion and absorption rates associated with interaction between
the QB and right reservoir are of the form

γ
(R,e)

i j = 1
2κωi j[1 + nR(ωi j )], γ

(R,a)
i j = 1

2κωi j nR(ωi j ),

(27)

The emission and absorption rates associated with interaction
between the QB and left reservoir are given in Appendix B.

The master equation (26) can be represented in the en-
ergy basis. In this representation, dynamical equations for the
density-matrix elements are given in Appendix C. With these
dynamical equations, the elements of steady-state density ma-
trix can be obtained by solving the equation dρ/dt = 0. The
explicit form of the steady-state density matrix elements are
relatively complex and so we not report them here.

In what follows, we explore the nonequilibrium effects
on the steady-state ergotropy as well as stored energy in the
steady state of the three-qubit XXZ spin-chain QB. Here we
restrict to charging processes in which the battery is initially
in |�3〉 = |0, 0, 0〉. Therefore, in order to inject energy to the
battery, the system parameters have to be set B > | 3�+α

2 |.
In Fig. 12 we plot the NESS stored energy �EB(∞)

and NESS ergotropy W (∞) of a three-spin antiferromagnetic
XXZ QB as a function of the chain anisotropy � for different
values of mean temperature TM and positive temperature bias
�T in the both symmetric and asymmetric coupling settings.
The NESS stored energy, as shown in Fig. 12(a), in general
displays monotonic behaviors with respect to � in both the

FIG. 11. The schematic diagram of the three-spin XXZ spin-
chain QB with two end qubits 1 and 3 interacting with a
nonequilibrium environment consists of left and right reservoirs. The
key ε is used to switch on and off the coupling between the end qubit
3 and the left reservoir, which allows us to control chain-reservoir
coupling asymmetry.

symmetric and asymmetric coupling configurations; at low
mean temperatures, �EB(∞) does not change significantly
with �, while at enough mean temperature it decreases with
�. Figure 12(a) shows that, similar to the case of two-qubit
spin-chain QB, nonequilibrium effects play constructive role
in enhancing the NESS stored energy in both the symmet-
ric and asymmetric coupling configurations. Comparing the
NESS stored energy in the symmetrical coupling configura-
tion with that in the asymmetrical coupling configuration, we
find that more energy is stored in the steady state of QB when
it is asymmetrically coupled to the thermal reservoirs.

Figure 12(b) reveals that the stored energy in the steady
state of the three-qubit XXZ spin-chain QB can be extracted
by unitary processes only when the coupling switch between
the qubit 3 and the left reservoir is on (ε = 1). As can be seen,
in this case, the nonequilibrium effects play constructive role
in enhancing the NESS ergotropy. More specifically, more
energy can be extracted from the steady state of QB when the
temperature gradient is increased to �T = 2TM .

VI. OUTLOOK AND SUMMARY

To summarize, we proposed a two-qubit XXZ spin-chain
QB coupled weakly to two independent Ohmic thermal
reservoirs. We considered two different coupling settings, a
symmetric configuration wherein each qubit interacts with an
individual reservoir, and an asymmetric configuration wherein
one qubit interacts with both reservoirs, whereas the another
qubit is coupled to just one of them. This QB could be imple-
mented in a circuit QED system [42], where an anharmonic
circuit with Josephson junctions, as a four-level transmon
qudit, is coupled to two thermal reservoir circuits.

By assuming that both qubits are initiated in their ground
states, we showed that the QB can be charged via the
nonequilibrium steady-state (NESS) heat current in a weak

FIG. 12. (a) The NESS stored energy �EB(∞) and (b) the NESS
ergotropy W (ρNESS) of a three-spin antiferromagnetic XXZ QB ver-
sus � for different values of TM and �T in the symmetric and
asymmetric coupling settings. The chain anisotropy is set as B0 = 5.
All parameters of QB are in units of interspin coupling |J| = 1.
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qubit-reservoir coupling regime. Our numerical results re-
vealed, regardless the ferromagnetic or antiferromagnetic
properties of chain, nonequilibrium effects of heat current
play constructive role at low base temperature of the reser-
voirs, while they act destructively when the temperature is
high enough. We found that the inherent asymmetry induced
by the asymmetrically couplings of QB to the reservoirs,
suppresses the destructive effects of heat current generated at
large negative bias. Finally, we proved our main results of this
paper, and showed that the two-qubit QB coupled symmetri-
cally to two thermal reservoirs is passive, while asymmetric
coupling of such QB to the thermal reservoirs brings it to
a NESS from which it is possible to extract work through
unitary cyclic processes, i.e., the QB can have nonzero er-
gotropy. We found that ergotropy is achievable at the positive
temperature bias �T > 0, and it can be significantly enhanced
close to �T = 2TM .

To confirm the same conclusions are also applicable to
the battery with more spins, we numerically discussed the
case of antiferromagnetic XXZ spin-chain QB composed of
three spins. We found that considering more spins does not
change the conclusions.

Our results present a charging protocol to have an active
QB, without need for further control. This charging proto-
col can be easily implemented in the circuit-QED setups
where qubit-reservoir interaction is tuned through including
some LC circuit band-pass filters between the qudit transmon
and one of the thermal circuits. Here the asymmetry in the
qudit-reservoir coupling can be modeled by inclusion some
additional filters between the qudit transmon and the hot ther-
mal circuit.

APPENDIX A: A MATHEMATICAL PROOF FOR THE
PASSIVITY OF ρNESS IN THE CASE OF ε = 0

Here we prove why ρNESS with components given in (13a)–
(13d) is a passive state in the symmetric battery-reservoir
coupling setting (i.e., ε = 0). In what follows, we first prove
this for the antiferromagnetic battery (J > 0 and � > 0).

Recall that in the limit we are working in (B > |J + �|),
the eigenenergies of the antiferromagnetic battery satisfy the
ordering E2 > E4 > E3 > E1. So to show that ρNESS is a pas-
sive state, we must prove that its components in the energy
basis satisfy ρ11 > ρ33 > ρ44 > ρ22. Depending on whether
J < � or � < J , the transition frequencies ωi j satisfy the
following inequality relations:

ω23 > ω24 > ω41 > ω31, J < �, (A1)

ω23 > ω41 > ω24 > ω31, J > �. (A2)

According to the above inequalities, we would have

1

e
ω24
TL − 1

+ 1

e
ω24
TR − 1

>
1

e
ω23
TL − 1

+ 1

e
ω23
TR − 1

, (A3)

1

e
ω31
TL − 1

+ 1

e
ω31
TR − 1

>
1

e
ω41
TL − 1

+ 1

e
ω41
TR − 1

. (A4)

Now, by multiplying both sides of the inequalities (A3)
and (A4), respectively, by 2ω24ω23 and 2ω41ω31, we

obtain

2ω23
(
γ

(L,a)
24 + γ

(R,a)
24

)
> 2ω24

(
γ

(L,a)
23 + γ

(R,a)
23

)
, (A5)

2ω41
(
γ

(L,a)
31 + γ

(R,a)
31

)
> 2ω31

(
γ

(L,a)
41 + γ

(R,a)
41

)
, (A6)

for ε = 0. Next, adding the positive terms (γ (L,a)
24 + γ

(R,a)
24 ) +

(γ (L,a)
23 + γ

(R,a)
23 ) and (γ (L,a)

31 + γ
(R,a)

31 ) + (γ (L,a)
41 + γ

(R,a)
41 ), re-

spectively, in both sides of (A.5) and (A.6), implies the
following results:

A24E23 > A23E24, (A7)

A31E41 > A41E31, (A8)

where we have used γ
(L,e)

i j = γ
(L,a)

i j + κωi j/2 which is a
direct consequence of symmetric battery-reservoir coupling
configuration. Now dividing the both sides of (A7) and
(A8) respectively by (A23 + E31)(E23 + E24) and (A23 +
E31)(A31 + A41) and adding the respective sides of the re-
sulting inequalities, we get η1 > η2, and hence we obtain
ρ33 > ρ44.

On the other hand, From Eqs. (A1) and (A2), we conclude

1

eω41/Tν − 1
>

1

eω23/Tν − 1

(ν = L, R). By replacing ν with L and again with R, adding
the respective sides of the resulting inequalities and using

nL(ω) = [
e

ω
TL − 1

]−1
, nR(ω) = [

e
ω

TR − 1
]−1

,

we obtain

nL(ω41) + nR(ω41) > nL(ω23) + nR(ω23). (A9)

Next, by multiplying both sides of the above inequality by
2ω41ω23 and using the Eq. (B12), we obtain

ω23

A23
>

ω41

A41
. (A10)

Using the γ
(L,e)

i j = γ
(L,a)

i j + κωi j/2 which hold true only for
ε = 0, we conclude that

E23A41E31 > A31E41A23, (A11)

where we have used E31 > A31. Multiplying the inequality
E24 > A24 by

E23A23

E23 + E24
+ η2,

dividing inequality (A11) by A31 + A41, adding the respective
sides of the resulting inequalities, we obtain η2(E23 + E24) >

η1A23 + η2A24. Hence we get

ρ44

ρ22
= η2(E23 + E24)

η1A23 + η2A24
> 1. (A12)

Furthermore, in the limit we are working, the transition fre-
quency ω23 is less than ω24 + ω14. It is then easy to see that
the following inequality holds true for any T ,

e
ω24+ω14

T − 1

e
ω23

T − 1
> 1. (A13)
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Now by replacing T in the above inequality once with TM and
once with 2TM , we get the following inequalities(

e
ω24
TM − 1

)(
e

ω41
TM − 1

) + (
e

ω24
TM − 1

) + (
e

ω41
TM − 1

)
> e

ω23
TM − 1,

(A14)(
e

ω24
2TM − 1

)(
e

ω41
2TM − 1

) + (
e

ω24
2TM − 1

) + (
e

ω41
2TM − 1

)
> e

ω23
2TM − 1.

(A15)

Multiplying both sides of the inequalities (A14) and (A15) by
1/2 and using

nL(R)(ω) = [
e

ω
TM ±�T /2 − 1

]−1
,

we conclude that the following inequality holds true for �T =
0 as well as �T = ±2TM :

2

[nL(ω41) + nR(ω41)][nL(ω24) + nR(ω24)]

+ 1

nL(ω41) + nR(ω41)
+ 1

nL(ω24) + nR(ω24)

>
1

nL(ω23) + nR(ω23)
. (A16)

Since both sides of the inequality (A16) are strictly increasing
(decreasing) functions on an interval �T ∈ [−2TM, 0] (�T ∈

[0, 2TM ]), one can conclude that the inequality (A16) holds
true for any �T and therefore for any T .

Now, by multiplying the numerator as well as denominator
of left (right) side of (A15) by ω41ω24 (ω23) one can obtain

2ω41ω24

A41A24
+ ω41

A24
+ ω24

A24
>

ω23

A23
, (A17)

which can be simplified to

E41

A41

E24

A24
>

E23

A23
, (A18)

where we have used Ei j = Ai j + ωi j . Furthermore, by
multiplying both sides of (A18) and the inequality
E31 > A31, respectively by A23A41A24/(E23 + E24) and
E41A41/(A31 + A41) + η1, then adding the respective sides
of the resulting inequalities, we obtain η2E41 + η1E31 >

η1(A31 + A41) and hence we get ρ11 > ρ33.
For the ferromagnetic case (J < 0 and � < 0), one can in a

similar manner prove that Ei > Ej implies ρii � ρ j j ∀ i, j, so
ρNESS associated with the ferromagnetic QB is a passive state
in the symmetric battery-reservoir coupling setting.

APPENDIX B: EXPRESSIONS OF γ
(L,e)
i j AND γ

(L,a)
i j GIVEN IN EQ. (26)

The emission and absorption rates, thanks to the interaction of the QB with the left reservoir given in Eq. (26) have the
following expressions:

γ
(L,e)

13 = 1

2
κω13(ε − 1)2[1 + nL(ω13)], γ

(L,a)
13 = 1

2
κω13(ε − 1)2 nL(ω13), (B1)

γ
(L,e)

61 = 1

2
κω61(ε − 1)2

(
� + α

J

)2

x2[1 + nL(ω61)], γ
(L,a)

61 = 1

2
κω61(ε − 1)2

(
� + α

J

)2

x2 nL(ω61), (B2)

γ
(L,e)

81 = 1

2
κω81(ε − 1)2

(
� − α

J

)2

y2[1 + nL(ω61)], γ
(L,a)

81 = 1

2
κω81(ε − 1)2

(
� − α

J

)2

y2 nL(ω81), (B3)

γ
(L,e)

42 = 1

2
κω42(ε − 1)2[1 + nL(ω42)], γ

(L,a)
42 = 1

2
κω42(ε − 1)2 nL(ω42), (B4)

γ
(L,e)

25 = 1

2
κω25(ε − 1)2

(
� + α

J

)2

x2[1 + nL(ω25)], γ
(L,a)

25 = 1

2
κω25(ε − 1)2

(
� + α

J

)2

x2 nL(ω25), (B5)

γ
(L,e)

27 = 1

2
κω27(ε − 1)2

(
� − α

J

)2

y2[1 + nL(ω27)], γ
(L,a)

27 = 1

2
κω27(ε − 1)2

(
� − α

J

)2

y2 nL(ω27), (B6)

γ
(L,e)

46 = 4κω46(ε + 1)2x2[1 + nL(ω46)], γ
(L,a)

46 = 4κω46(ε + 1)2x2 nL(ω46), (B7)

γ
(L,e)

48 = 4κω48(ε + 1)2y2[1 + nL(ω48)], γ
(L,a)

48 = 4κω48(ε + 1)2y2 nL(ω48), (B8)

γ
(L,e)

65 = 16κω65(ε + 1)2

(
� + α

J

)2

x2[1 + nL(ω65)], γ
(L,a)

65 = 16κω65(ε + 1)2

(
� + α

J

)2

x2 nL(ω65), (B9)

γ
(L,e)

67 = 16κω67(ε + 1)2

(
�

J

)2

x2y2[1 + nL(ω67)], γ
(L,a)

67 = 16κω67(ε + 1)2

(
�

J

)2

x2y2 nL(ω67), (B10)

γ
(L,e)

85 = 16κω85(ε + 1)2

(
�

J

)2

x2y2[1 + nL(ω85)], γ
(L,a)

85 = 16κω85(ε + 1)2

(
�

J

)2

x2y2 nL(ω85), (B11)
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γ
(L,e)

87 = 16κω87(ε + 1)2

(
� − α

J

)2

y4[1 + nL(ω87)], γ
(L,a)

87 = 16κω87(ε + 1)2

(
� − α

J

)2

y4 nL(ω87), (B12)

with x = [( �+α
J )2 + 8]−

1
2 and y = [( �−α

J )2 + 8]−
1
2 .

APPENDIX C: DYNAMICAL MASTER EQUATION (26) IN THE ENERGY-BASIS REPRESENTATION

To obtain the steady-state solution of the three-spin XXZ QB, first, we rewrite the master equation (26) in the energy basis
representation and derive a set of 64 dynamical equations for the density-matrix elements. Eight of them are coupled differential
equations for diagonal elements, decoupled from nondiagonal ones, that describe the evolution of the populations of the eight
energy levels, {ρii} (i = 1, 2, . . . , 8), and the rest are decoupled differential equations for nondiagonal elements that describe
coherence between the eight energy levels {ρi j} (i �= j = 1, 2, . . . , 8). The differential equations for the diagonal elements are

ρ̇11 =
∑

ν=L,R

[
γ

(ν,a)
13 ρ33 + γ

(ν,e)
61 ρ66 + γ

(ν,e)
81 ρ88 − (

γ
(ν,e)

13 + γ
(ν,a)

61 + γ
(ν,a)

81

)
ρ11

]
, (C1)

ρ̇22 =
∑

ν=L,R

[
γ

(ν,e)
42 ρ44 + γ

(ν,a)
25 ρ55 + γ

(ν,a)
27 ρ77 − (

γ
(ν,a)

42 + γ
(ν,e)

25 + γ
(ν,e)

27

)
ρ22

]
, (C2)

ρ̇33 =
∑

ν=L,R

[
γ

(ν,e)
13 ρ11 − γ

(ν,a)
13 ρ33

]
, (C3)

ρ̇44 =
∑

ν=L,R

[
γ

(ν,a)
42 ρ22 + γ

(ν,a)
46 ρ66 + γ

(ν,a)
48 ρ88 − (

γ
(ν,e)

42 + γ
(ν,e)

46 + γ
(ν,e)

48

)
ρ44

]
, (C4)

ρ̇55 =
∑

ν=L,R

[
γ

(ν,e)
25 ρ22 + γ

(ν,e)
65 ρ66 + γ

(ν,e)
85 ρ88 − (

γ
(ν,a)

25 + γ
(ν,a)

65 + γ
(ν,a)

85

)
ρ55

]
, (C5)

ρ̇66 =
∑

ν=L,R

[
γ

(ν,a)
61 ρ11 + γ

(ν,e)
46 ρ44 + γ

(ν,a)
65 ρ55 + γ

(ν,a)
67 ρ77 − (

γ
(ν,e)

61 + γ
(ν,a)

46 + γ
(ν,e)

65 + γ
(ν,e)

67

)
ρ66

]
, (C6)

ρ̇77 =
∑

ν=L,R

[
γ

(ν,e)
27 ρ22 + γ

(ν,e)
67 ρ66 + γ

(ν,e)
87 ρ88 − (

γ
(ν,a)

27 + γ
(ν,a)

67 + γ
(ν,a)

87

)
ρ77

]
, (C7)

ρ̇88 =
∑

ν=L,R

[
γ

(ν,a)
81 ρ11 + γ

(ν,e)
48 ρ44 + γ

(ν,a)
85 ρ55 + γ

(ν,a)
87 ρ77 − (

γ
(ν,e)

81 + γ
(ν,a)

46 + γ
(ν,e)

85 + γ
(ν,e)

87

)
ρ88

]
. (C8)

Moreover, we find that the differential equations for the nondiagonal elements have exponential solutions which become zero in
the steady-state limit (t → ∞). Therefore, all the nondiagonal elements of the density matrix are irrelevant for the steady-state
performance of the QB.

Writing the above set of equations (C1)–(C8) in vector-matrix form as d
dt |ρ〉 = M|ρ〉, with |ρ〉 = (ρ11, ρ22, . . . , ρ77, 1 −∑7

i=1 ρii )T , we obtain uniquely the relevant steady-state density matrix elements by obtaining the kernel of M, that is,
M|ρNESS〉 = 0.
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