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Fast remote spectral discrimination through ghost spectrometry
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Assessing the presence of chemical, biological, radiological, and nuclear threats is a crucial task which is
usually dealt with in spectroscopic measurements by analyzing the presence of spectral features in a measured
absorption profile. The use of quantum ghost spectroscopy opens up the enticing perspective to perform these
measurements remotely without compromising the measurement accuracy. However, in order to have the
necessary signal-to-noise ratio, long acquisition times are typically required, hence subtracting from the benefits
provided by remote sensing. In many instances, though, reconstructing the full spectral lineshape of an object is
not needed and the interest lies in ascertaining the presence of a spectrally absorbing object. Here, we present
an experimental investigation on the employ of the hypothesis testing framework to obtain a fast and accurate
discrimination, carried out by ghost spectrometry. We discuss the experimental results obtained with different
samples and complement them with simulations to explore the most common scenarios.
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I. INTRODUCTION

Spectroscopic techniques are a fundamental tool for the
characterization of materials [1]. For centuries these have
been successfully employed in a variety of fields and have
been diversified to account for the most diverse scenarios and
needs [2–7]. Incorporating the new capabilities enabled by
quantum light has widened the already vast range of possi-
ble applications, particularly concerning harnessing quantum
frequency correlations [8]. In recent years, two main routes
have been pursued. The first exploits spectral correlations
between two photons in nondegenerate configurations [9], so
that hardly accessible spectral regions can be explored by
looking at their correlated counterpart in the visible range
[10–12]. The second employs correlations to perform remote
sensing measurements [13–15], akin to ghost imaging pro-
tocols [16–20]. This latter route represents an advantageous
solution when the objects at hand are not easily accessible or
constitute a so-called chemical, biological, radiological, and
nuclear (CBRN) threat [21]. In these instances it is vital to
extract the information at a distance, both to ensure the safety
of the users and to ease measurement operations. Although
this is also possible using classical spectral correlations, us-
ing quantum ones can show a better performance [22–24],
especially when the number of modes to be considered is
large [25].
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Dangerous compounds can be recognized by features in
the absorbance spectrum, however, in order to fully retrieve
the lineshape of such spectral objects a good signal-to-noise
ratio (SNR) is desirable and, given the typical brightness and
detection efficiencies, this usually results in long accumula-
tion times. This poses a strong limitation to this technique
and dramatically hinders the benefits arising from the use of
quantum resources.

If we are interested in swiftly assessing the presence of a
threat, retrieving its full lineshape may not be necessary. We
may, in fact, recast the problem as a discrimination one, and
wonder whether it is possible to infer the presence of the threat
comparing a fast low-signal spectral measurement performed
on the supposed threat, with a reference measurement. Com-
mon techniques for discrimination make use of the correlation
coefficient between vectors representing the spectra, or, alter-
natively, of their distance [26]. These are versatile tests, since
no requirements on the distribution are needed; on the other
hand, these are prone to artifacts at low SNRs, leading to the
wrong attributions.

A decision procedure (an inference strategy) prescribes
which hypothesis has to be chosen given a set of data. Then,
one assigns a cost to the choice of the null hypothesis (e.g., no
threat) when the alternative hypothesis is true and looks for a
strategy minimizing the average cost. In a Bayesian approach,
one assigns the equal cost to any wrong inference and zero
cost to the correct one, such that the average cost equals the
overall probability of error. This approach has been applied to
spectroscopy with success [27], but a fully Bayesian approach
for large set of data may be challenging. One rather employs
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FIG. 1. Conceptual scheme. A ghost-spectrometry scheme is implemented using frequency-correlated photon pairs: one photon is directed
toward the supposed location of the spectral object, and detected with a bucket detector, while the other photon is analyzed in frequency.
By comparing the recorded coincidences at low SNR with a reference measurement using a Kolmogorov-Smirnov test, it is possible to asses
whether the two profiles are samples drawn from the same distribution or not.

the concept of likelihood ratios to evaluate the posterior prob-
abilities.

For binary discrimination problems, where the alternative
hypothesis has a low a priori probability to occur (i.e., when
the threat is not likely to be present), one may also employ the
so-called Neyman-Pearson strategy instead of the Bayesian
one [28]. The optimal Neyman-Pearson strategy maximizes
the probability of revealing the threat when it is there instead
of minimizing the probability of error [29]. Following these
ideas, we tackle the problem of risk detection by perform-
ing a Kolmogorov-Smirnov test (KST) [30] between a high
SNR reference and a low SNR measurement with a ghost
spectrometer. The KST was specifically developed to test the
hypothesis that two samples come from the same distribution
and still represents one of the most powerful nonparametric
tools of hypothesis testing.

In this work we report an extensive investigation on ap-
plying the KST for spectral discrimination based on ghost
spectroscopy. We demonstrate an experiment on two different
targets and complement our results by simulating different
operational regimes. Our results show that even with a slightly
absorbing spectral object this technique allows to ascertain
the object’s presence with a limited number of resources and
requiring limited processing on the data, thus enabling time-
efficient discrimination.

II. METHOD

Our objective is that of remotely discriminating between
the presence or the absence of an object that has an absorption
profile in a given spectral range. The object could be, for
instance, a CBRN threat that needs to be identified swiftly
and whose location cannot be easily accessed. To perform
the measurement remotely we consider the quantum ghost
spectrometer scheme shown in Fig. 1, by which frequency-
correlated photon pairs are generated. One photon is produced
in the spectral region where the signatures are expected, sent
to the object location, and finally detected by a “bucket”
detector with no frequency-resolving capabilities. The second
photon, instead, is analyzed locally with a spectrally resolved
detection. Due to the frequency correlations between the two

photons, the coincidence events between the bucket and the
analyzer bear information on the absorption of the object. The
appeal of this arrangement is in the fact that one does not need
to transport the analysis setup, but only the simpler bucket
detector. Under many aspects, this approach is complemen-
tary to the one based on induced coherence without induced
emission [31]: this allows to further circumvent the need for
the bucket detector at the cost of an interferometric scheme
[11,12,19,32]. This suggests that ghost spectroscopy may be
more suitable for long-distance operation, since this would
pose additional experimental challenges for maintaining the
necessary phase stability.

The KST for spectral discrimination is based on a three-
step scheme. First, we need to define a reliable reference
spectrum Sr . We thus perform a calibration measurement with
high SNR without any unknown spectral objects. Second, we
perform the actual discrimination measurement to ascertain or
discard the presence of a spectral object, and record the trans-
mitted spectrum Ss. The different operating conditions will
impose a lower SNR, thus making a direct comparison with
the reference unpractical, let alone a best fit on an expected
shape. We then conclude with the third, last step of the data
analysis; the KST allows to follow a model-independent ap-
proach, rooted in hypothesis testing. If there were no spectral
object, Ss and Sr would have to be two samples drawn from the
same distribution. This constitutes our null hypothesis, and we
can thus perform the KST to accept or reject this hypothesis:
starting from the two measured profiles for the reference Sr

and the signal Ss, one builds the two cumulative distributions
Fr and Fs and evaluates the quantity

gKS = max
λ

|Fs(λ) − Fr (λ)|. (1)

This corresponds to the maximum separation between the
cumulative distribution for the reference (blue) and signal
(purple) as illustrated in Fig. 1. The variable gKS is dis-
tributed according to a known statistics, whose critical values
are found depending on the number of events in Sr and Ss;
this allows for a comparison of the samples even with very
different sizes. A value of gKS exceeding a set critical value
rejects the null hypothesis, thus revealing the presence of an
absorbing element; alternatively, the p-value corresponding to
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FIG. 2. (a) Experimental setup: A cw 403-nm laser is used to generate photon pairs through SPDC with a 3-mm type-I BBO crystal. One
photon is sent through a spectrometer and detected with an intensified CCD camera, while the other photon is sent through a spectral object
[either a SGF (orange)] or a solution of gold nanorods (AuNRs) and is detected using a bucket detector. A GBPF (green) acts as a reference.
The GBPF is never removed from the setup throughout the two experiments. (b) Recorded coincidences for the reference. (c) Example of
recorded coincidences for AuNRs at an accumulation time t = 10 s. The wavelength axis refers to the object arm.

the observed gKS can be assessed and contrasted to the desired
confidence level. Performing the KST analysis enables us to
discriminate the presence of a spectral object in regimes where
the reconstruction of the full lineshape would be unfeasible
due to the extremely low SNR levels.

III. EXPERIMENT

We explored this approach by means of the setup shown in
Fig. 2(a). We employed a cw laser at 403 nm to generate pho-
ton pairs through spontaneous parametric down-conversion
(SPDC) using a 3-mm-thick type-I Beta barium borate (BBO)
crystal.

One photon is directed toward the spectral object and
is then detected with an avalanche photodiode (APD, Fast
Excelitas SPCM-AQRH-41-FC, corresponding to the bucket
detector). The correlated photon is analyzed by a spectrom-
eter (Andor Kymera 328i) and an intensified charge-coupled
device (CCD) camera (Andor iStar DH334T-18U-73). A 20-
m fiber is used to delay this photon before it reaches the
camera: this is needed to allow proper activation of the CCD
locked to a trigger from the APD. Fine tuning of this time
delay is achieved by means of an Field-Programmable Gate
Array (FPGA) board. Our setup allows us to record coin-
cidence events directly, thus measuring the sought spectral
distributions.

Figures 2(b) and 2(c) show two examples of detected co-
incidences for the reference (b) and signal (c). In order to
retrieve the spectral profiles these are integrated over the spa-
tial axis, having selected a region of interest. The spectral axis
refers directly to the frequencies of the objects, taking into
account the correlation. The reference in Fig. 2(b) consists
in the spectral profile of a Gaussian bandpass filter (GBPF)
centered at 810 nm. The GBPF acts as the reference and is
kept fixed throughout all the experiments performed. This

mimics the conditions in real applications where it can be
useful to limit the observation to a specific bandwidth in which
the features are expected. For the calibration step, we aim at
reconstructing the reference with good statistics, hence high
SNR. By contrast, the events collected in the second step for
the signal measurement, Fig. 2(c), appear sparse, and do not
form a definite shape, due to the low level of the counts. This
is akin to what is expected in remote sensing conditions. Such
low SNR is what motivates the employ of the KST.

We first test our technique by using as the spectral object
a bandpass fourth-order super-Gaussian filter (SGF) centered
at 807 nm with a FWHM of 7.5 nm. We collect the reference
spectrum by performing a measurement without any object
inserted, but with the GBPF alone, with a long accumulation
time (t = 600 s) to achieve a good SNR. The reference profile
shown in the inset of Fig. 3(a) provides the calibration of the
system and, in case of threat detection, it can be performed in
a separated safe environment.

Then, keeping the GBPF as the reference, we insert also
the spectral object, i.e., the SGF filter, and collect measure-
ments with an accumulation time varying from 1 s to 10 s.
Figures 3(b) and 3(c) show the profiles collected at t = 1 s
and t = 10 s. We used the measured profiles to perform the
KST, and report the obtained p-values in Fig. 3(a) as a function
of the accumulation time. This showcases the advantage of a
reduced data collection: even for the signal at t = 1 s, which
corresponds to a total of 228 detected photons, we were able
to reject the null hypothesis with a p-value of 3 × 10−12. All
the values obtained are below the usual thresholds of 1% and
5%, reported in the graph as the dashed and continuous blue
lines. While the signal in Fig. 3(b) collected after t = 1 s
is sufficient to perform the discrimination through the KST
analysis, it would be impossible to use the same signal to
perform the fitting procedure and the deconvolution needed
to extract the lineshape. The discrimination thus occurs on
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(a) (b)

(c)

FIG. 3. Results with super-Gaussian filter. (a) Measured p-values obtained from a KS test between the reference (blue inset) and the signal
measured with the super-Gaussian filter inserted in the beam at different accumulation times t. The blue dashed and solid lines are the rejection
confidence level at 0.05 and 0.01, respectively. (b) and (c) recorded coincidence counts at t = 1 s and t = 10 s. The wavelength axis refers to
the object arm.

much faster time scales than what would be demanded for an
appropriate reconstruction of the lineshape.

While this is remarkable given the limited counts required
for a successful discrimination, the profile of the object and
the reference do differ significantly, having two different
shapes and being centered at different wavelengths. This is not
necessarily the case in a general scenario, where the spectral
object may introduce more subtle discrepancies between the

reference and the signal. For this reason, we consider a second
spectral object, i.e., a solution of gold nanorods (AuNRs)
with a broad surface plasmon resonance band at 695 nm
[33]. The reference was collected with the distilled water in a
quartz cuvette with a 1-cm path length, selecting the spectral
bandwidth as before using the GBPF: this is shown as the
blue points in Fig. 4(a). This spectrum is at the tail of the
resonance band, therefore the absorption, shown as the orange

(a) (b) (c) (d)

(e) (f) (g)

FIG. 4. Nanorod profiles. (a) Reference measurement (blue) and AuNRs absorbance (orange). The absorbance was measured using an
UV/VIS spectrophotometer. (b)–(d) C1 coincidence measurements at t = 5, 25, and 50. (e)–(g) C2 coincidence measurements at t = 1, 5, and
10. (b) and (e) correspond to a rejection rate of 0.3, (c) and (f) to a rejection rate of 0.7 for C1 and 0.8 for C2, and (d) and (g) to a rejection rate
of 0.95. The wavelength axis refers to the object arm.
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(a) (b)

(c)

FIG. 5. Results of AuNRs: (a) KS rejection rate for concentration C1 and C2. Green bars indicate the successful rejection. Pink bars indicate
acceptance of the null hypothesis. (b) p-values for C1 and (c) p-values for C2. Blue dashed line: 0.05 confidence level; blue solid line: 0.01
confidence level; the box center indicates the average value, while the box edges indicate the 25th and 75th percentile; the whiskers extend to
all measured values.

points in Fig. 4(a), will present a relatively flat spectral behav-
ior, imposing only a slight change to the signal transmitted
through the AuNRs with respect to the reference (Fig. 4): the
two spectral distributions will differ considerably less than
in the previous case. The AuNRs solution was contained
in an identical cuvette and we performed the measurement
for two different concentrations, C1 = 125 ppm and C2 = 188
ppm, for different accumulation times ranging from t = 1 s to
t = 100 s. In Figs. 4(c)–4(e) we report the profiles for the two
concentrations measured for different acquisition times. For
each accumulation time we recorded 20 measurements, and
for each measurement we ran the KST against the reference.
The results are shown in Fig. 5. In Fig. 5(a) we report the
rejection rate (green) for the two concentrations at different
accumulation times, normalized over the 20 measurements.

The higher concentration results in a spectral distribution
which will differ more from the reference compared to the
lower concentration. This means that less resources are re-
quired for a successful discrimination. On the other hand,
the lower concentration is more transparent, hence more re-
sources will be collected per accumulation time. Even by
taking this into account, while the rejection rate for C2 reaches
100% at t = 25 s (corresponding to 3000 detected photons),
for C1 the same is achieved at t = 75 s (corresponding to
24 000 detected photons). This is reflected in the measured
p-values, which are shown in Figs. 5(b) and 5(c) for C1 and
C2, respectively.

IV. SIMULATIONS

In order to investigate the performance of our approach
under typical regimes of operation, we complement the exper-
imental results with numerical simulations. We explore two
different scenarios: to provide an ideal benchmark to the ex-
ample just discussed, we first look at the instance in which the

absorption is much broader compared to the spectral region
where the reference lies. Such broad spectra usually occur
in UV-VIS spectroscopy [34]. We then explore the regime
in which the absorption is a narrow line compared to the
reference region, as this is the most common occurrence when
looking for narrow peaks in the fingerprint region of a IR [35]
or in a Raman spectrum [36].

For the first simulation, we consider as a reference a
Gaussian envelope R = exp[−(ω − ω0)2/(2σ 2

w )] centered at
λ0 = 805 nm = 2πc/ω0, with σλ = 4 nm = 2πcσw/ω2

0, and a
spectral object with transmittance T = 1 − αλ with α varying
between 0 and 0.016 1/nm, as shown in Fig. 6(a). We simulate
the measured reference by considering a total of NR = 350k
resources and generating the measured counts by extracting
random values from a Poissonian distribution centered at NRR.

The simulated signal is obtained analogously, by multiply-
ing the signal profile by the resources interacting with the
spectral object NT . Since different values of α correspond
to a different transmittivity, this will amount to a different
number of detected photons depending on the spectral profile.
We vary NT from 300 to 30 000, and for each level of signal
we randomly extract 100 simulated profiles and perform a
KST for each profile. In Fig. 7 we report the rejection rate
normalized over the 100 simulated experiments for varying
α and NT .

When α = 0 the signal is equivalent to the reference: in-
deed, the rejection rate is below 3% at all signal levels. This
shows that even with very low signal levels, the absence of the
spectral object is almost always correctly detected. The higher
the α, the more different the signal distribution from the ref-
erence, and the fewer resources are needed for discriminating
the two profiles. In Fig. 8 we report the p-values for each α

as a function of the number of resources NT . As expected, for
α = 0 the p-values are well above the confidence level and as
α increases the p-value becomes smaller.
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(a) (b) (c)

FIG. 6. Simulation broad absorption on a structured reference. (a) Blue: reference, yellow dashed lines: spectral object transmission;
purple: signal obtained with the yellow transmission profile. (b) Simulated reference and (c) simulated signal for α = 0.016 at the level of
signal resulting in a 100% rejection rate.

We now turn to the scenario in which the reference is
broader than the absorption feature. We consider a flat ref-
erence profile and we model the transmission as T = 1 −
α{exp[−(λ − λ0)2/(2σ 2)]}. We keep α = 0.2 fixed and vary
the width σ from 0 to 6 nm. The resulting profiles are shown
in Fig. 9(a). As before, we simulate the measured reference
and the signal; however, given the different profile shape, to
attain the same average counts per bin for the reference we
now employ NR = 600k resources. The simulated reference
profile is shown in Fig. 9(b). We then simulate the transmitted
profile following the same procedure described above, gener-
ating 100 simulated profiles for each level of signal and σ . In
Fig. 9(c) we show an example of simulated signal relative to
the transmission profile with the broadest dip, for NT = 15k
resources. For each generated signal we perform a KST and
report the obtained rejection rate in Fig. 10. Even under these
unfavorable conditions, dictated by a low absorption (α =
0.2) and by a narrow peak, the method achieves satisfactory
results, albeit requiring more resources than in the previous
instance. In Fig. 11 we report the obtained p-values for each
σ as a function of NT .

V. CONCLUSIONS

In this article we have explored the use of a quantum ghost
spectrometer for discriminating the presence of an absorbing
spectral object using the Kolmogorov-Smirnov test. We have
been able to asses the presence of an object by exploiting
a limited amount of resources in an efficient way. We have
demonstrated our technique with experiments on two distinct
samples, as well as with simulations extending the experimen-
tal results to typical spectral regimes.

Our technique provides a viable route for fast discrimi-
nation of a spectral object in all the examined conditions.
In particular, the more different the spectral profile after the
absorption, the fewer resources are needed for a successful
discrimination. This makes our technique an optimal solution
when dealing with systems that strongly affect the trans-
mission, resulting in exceedingly low signal rates, which,
coincidentally, are those that would otherwise require more
effort for reconstructing the full lineshape. While the dis-
crimination approach does not require hardware modifications
to the conventional ghost spectroscopy apparatus, it takes a

FIG. 7. KS rejection rate for different values of α and resources NT . Green bars indicate the successful rejection. Pink bars indicate
acceptance of the null hypothesis.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 8. p-values (a) α = 0, (b) α = 0.004, (c) α = 0.006, (d) α = 0.008, (e) α = 0.010, (f) α = 0.012, (g) α = 0.014, and (h) α = 0.016.
Dashed blue line: 0.05 confidence level; solid blue line: 0.01 confidence level. The box center (black dot) indicates the average value, while
the box edges (dark solid pink) indicate the 25th and 75th percentile; the whiskers extend to all measured values.

more sophisticated approach to data analysis, which is key to
achieving the sought efficiency. We are persuaded that a more
critical and embracing attitude to advanced tools in statistical
analysis may prompt the introduction of novel applications
beyond what we have demonstrated.

Moreover, our approach can benefit from the control
of the phase-matching conditions to ensure operation over
large spectral ranges [11,37–39] and in energy nondegenerate
emission [32,40–43]. This enables the investigation in other-
wise hardly accessible spectral regimes. Before actual remote
operation becomes possible, however, the problem of in-
stalling and operating the bucket detector to the interested
location needs an effective solution; work in this direction is
currently underway [44,45].

Our results can be extended in different directions. So-
lutions taken from fuzzy logic [46] or machine learning
algorithms [47] can benefit the hypothesis testing approach.

In this respect, machine learning has been employed for clas-
sification of nonspectral features [48]. This suggests that the
efficiency of the method can be further optimized. As for
the extension of the capabilities, incorporating other degrees
of freedom, notably, the spatial domain or the polarization,
would be particularly helpful in determining not only the
presence of a threat but also its position and size.
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(a) (b) (c)

FIG. 9. Simulation for broad reference and narrow absorption. (a) Blue: reference; dashed lines: spectral object transmission; purple: signal
obtained with the yellow transmission profile. (b) simulated reference and (c) simulated signal for σ = 6 nm for NT = 15k, resulting in a 100%
rejection rate.
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FIG. 10. KS rejection rate for different values of σ and resources NT . Green bars indicate the successful rejection. Pink bars indicate
acceptance of the null hypothesis.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 11. p-values (a) σ = 0 nm, (b) σ = 1 nm, (c) σ = 1.5 nm, (d) σ = 2 nm, (e) σ = 3 nm, (f) σ = 4 nm, (g) σ = 5 nm, and (h)
σ = 6 nm. Dashed blue line: 0.05 confidence level; solid blue line: 0.01 confidence level. The box center (black dot) indicates the average
value, while the box edges (dark solid pink) indicate the 25th and 75th percentile; the whiskers extend to all measured values.
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