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Collision-resolved pressure sensing
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While a continuous Brownian description of noise from heat and pressure is adequate to model measurements
with relatively long integration times, these forces are ultimately generated by quantized degrees of freedom
like phonons and gas particles. Fundamentally, the ultimate limit of this sensing problem is to resolve all of the
individual system-sensor collisions. Here we propose the use of nanomechanical devices operated with impulse
readout sensitivity around the standard quantum limit to sense ultralow gas pressures by directly counting the
individual collisions of gas particles on a sensor. We illustrate this in two paradigmatic model systems: an
optically levitated nanobead and a tethered membrane system in a phononic band-gap shield.
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I. INTRODUCTION

Mechanical objects placed in imperfect vacuum are sub-
ject to heat and pressure from their environments. While
measurements of the motion of the mechanical object over
long timescales will detect these thermal backgrounds as
continuous random Brownian motion of the system [1,2],
measurements at very fast timescales can be sensitive to
the individual microscopic system-environment interactions
[3–5], a regime in which the continuous Brownian description
breaks down. In this paper, we suggest methods to detect the
individual gas collisions with a mechanical sensing element,
representing the fundamental quantum limit of pressure sens-
ing, using detectors operated at or near the quantum readout
regime [6–9].

A key application of this idea is the development of pri-
mary pressure sensors capable of operating in the ultrahigh
vacuum (UHV) (10−9 Pa < P � 10−6 Pa) and extremely
high vacuum (XHV) (P � 10−9 Pa [10]), an open frontier
in precision metrology [11,12]. This level of environmental
isolation is of increasing importance in a diverse array of
contexts. Precision tests of general relativity and quantum
mechanics are expected to be limited by background gas
collisions even well into the XHV regime, thus requiring
ultraprecise pressure measurements to characterize the result-
ing systematic uncertainties [13–17]. In trapped-ion quantum
computing, gas pressure at the UHV level fundamentally lim-
its computations beyond about 50 qubits due to scattering with
the ions [18]; to scale these systems as well as to implement
error correction protocols, a detailed measurement of the gas
collision spectra at XHV will be needed [19]. In the search
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for dark matter, detection of individual gas collisions will
be required to calibrate backgrounds in many searches for
dark matter with masses below 100 MeV/c2 [20–22]; char-
acterizing the low-momentum tail of the distribution of gas
collisions could enable searches for dark matter masses as low
as 1 MeV/c2 to be performed [23].

Pressure gauges currently serving the UHV and XHV
ranges have significant drawbacks. Ionization gauges have
sensitivity that drifts substantially in time, are highly sensi-
tive to external magnetic fields, and employ a hot filament
which perturbs the vacuum environment [24]. In accelerator
facilities, gravitational wave detectors, quantum computers,
and optical clocks, the limitations of ionization gauges lead
to increased system downtime, difficulty in leak detection,
smaller qubit count, and poorly characterized systematics,
respectively. Recently developed cold-atom vacuum standards
are primary pressure sensors that offer excellent stability and
accuracy [25]. However, they suffer from extremely slow
and intermittent readout, due to small atom-molecule scat-
tering cross sections and the need to periodically reload the
atom trap, respectively [12,25]. The nondestructive mechani-
cal sensors we propose here offer a complementary technique
that allows fast, real-time, nonperturbative, primary pressure
sensing.

To estimate the regime where the continuous thermal noise
model breaks down, consider a small mechanical element of
mass ms and cross-sectional area A in a dilute ideal gas with
pressure P and temperature Tgas. The ambient gas particles,
with mass mg, collide with the sensor and impart momentum
kicks of order �pT ≈ √

mgkBTgas. These kicks occur at an
average rate of order

� = PA

�pT
≈ 3 Hz ×

(
P

10−10 Pa

)(
A

0.1 µm2

)
. (1)
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In the low-pressure small-sensor regime, we see that this rate
can be on the order of one to 100 collisions per second. Here
we use the Boltzmann distribution to compute the typical
velocity of the gas particles, taken to be diatomic hydro-
gen mg ≈ 2 u at room temperature T = 300 K. To resolve
such a kick, the sensor needs to be operated with sensi-
tivity �p � �pT ≈ 7 keV/c and with a bandwidth 1/τ >

�, where τ is the integration time for a measurement of a
single kick.

We now ask if these weak kicks can be resolved by a
macroscopic sensor. One simple answer is given by com-
paring with the standard quantum limit (SQL) for impulses
[26,27],

�pSQL =
√

h̄ms

τ
≈ (0.8 keV/c)

(
ms

1 fg

)1/2(1 ms

τ

)1/2

.

(2)

The sensor mass ms in this example is benchmarked against
a 50-nm-radius silica sphere for comparison with (1). As
discussed below, measurements at this SQL level have been
achieved to a good approximation in a number of nanome-
chanical devices [28,29]. Taken together, these numbers
indicate that quantum-limited nanomechanical devices mon-
itored for impulses at subsecond integration times and with
near-SQL sensitivity could be sensitive to discrete kicks from
the ambient gas in UHV and XHV environments [23,27,30].

In what follows, we provide more detailed calculations and
proposals toward achieving such measurements. Our primary
concern will be on feasibility of achieving the relevant limits
above, especially the bandwidth requirements: The quantum
noise (2) scales favorably �pSQL ∼ 1/

√
τ with longer mea-

surement time, but this must be balanced against common
technical noise sources with approximately flat power, which
lead to �ptech ∼ √

τ .

II. SENSOR CONCEPT AND DESIGN

We consider opto- or electromechanical devices operated
as impulse sensors. These devices consist of a mode of a
mechanical element of mass ms, which we approximate as
executing harmonic motion at frequency ωs, continuously
monitored by an optical or microwave field. Typically one
monitors the position x(t ) of the mechanics; assuming we
have knowledge of the linear response of the device to an input
force, we can infer the applied force time series F (t ).

First, consider optically monitoring the center-of-mass
motion x(t ) of a levitated dielectric bead [31–33] (see the
left-hand side of Fig. 1). Levitation of dielectric beads with
radii ranging from 50 nm to 10 µm and oscillation frequencies
in the range from 0.1 kHz to 1 MHz has been demonstrated.
In particular, very recently, a pair of experiments have demon-
strated feedback cooling to the center-of-mass ground state in
optically levitated beads with radius around 100 nm, trapped
at around ωs/2π ≈ 100 kHz [28,29]. This feedback cooling
mechanism operates by continuously monitoring the bead’s
position fluctuations and applying feedback kicks in order to
drive it to the ground state. To reach the ground state this
way requires precisely that one can monitor the fluctuations
near the SQL, corresponding to the ground-state uncertainty

FIG. 1. Schematics of the basic detection scheme, with either
a levitated nanoparticle or tethered membrane in the unit cell of
a phononic band-gap shield [34,35]. When an environmental gas
particle collides with the mechanical element, it deposits momentum
�p, which can be detected by continuously monitoring the position
x(t ) of the element.

�xSQL = √
h̄/msωs of the mass. Thus these systems are al-

ready operating in the SQL regime, although at two orders
of magnitude higher frequency than the optimal integration
time assumed in (2). Even at this sensitivity, they should
be capable of sensing the high-energy tail of the Boltzmann
distribution [30].

Alternatively, one could consider a tethered system like
a membrane. In this approach, one monitors the amplitude
of the vibrations [36], for example, of the first transverse
vibrational mode in the geometry of Fig. 1. For example,
an atomically thin membrane made from graphene [37] or a
nonconductive material like silicon nitride [38,39] around
20 nm on each side would have a mass around ms ≈ 10−3 fg
and thus could achieve the required sensitivity if its fundamen-
tal mode could be tuned to around ωs/2π ≈ 10 MHz. Such a
small membrane would have to be read out capacitively [37];
alternatively, a larger (approximately micron scale) membrane
operated at lower (approximately kilohertz) frequencies could
also be used in the optical domain.

The collision of a gas particle with the mechanical sensing
element can be modeled as a sharp impulse

Fsig(t ) ≈ �pδ(t − t0), (3)

where, for example, a typical gas collision will have �p ≈
�pT = √

mgkBTgas. In the measured position data x(t ), such
an impulse will appear as a kick followed by a ringdown.
Individual collisions can be resolved if the size �p of these
kicks is large compared to the continuous noise acting on
the device. We model this noise, which comes from both the
quantum-limited readout and any technical noise sources, as
an additional net force F (t ) = Fsig(t ) + Fnoise(t ), which leads
to an uncertainty

�p2
noise = �p2

SQL + �p2
tech. (4)

The first term is the quantum readout noise, given in Eq. (2),
and assuming that τ � 1/ωs; for even longer integration
times, one should replace τ → 1/ωs. The second term en-
capsulates any additional technical noises, typically modeled
as Johnson-Nyquist noise �ptech = √

4mskBTnoiseγsτ at some
effective bath temperature Tnoise, where γs = ωs/Q is the ef-
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fective damping rate and Q is the mechanical quality factor
[9,27]. Taking the integration time τ ∼ 1/ωs, i.e., measuring
for roughly one oscillation time, we have

�p2
noise = h̄msωs

(
1 + 4kBTnoise

h̄ωsQ

)
. (5)

To achieve the SQL (2), we see that we need a sufficiently-
high-Q oscillator. Note that with τ ∼ 1/ωs and an oscillator
above a few hertz, comparing to the expected event rate (1),
we can resolve the collisions event by event.

In the example of a levitated bead, the required Q val-
ues and resulting impulse sensitivity have been demonstrated
in practice [28,29,40]. Thus, with these systems, it should
be immediately possible to detect collisions with SQL-
level thresholds (2) and event-by-event integration times fast
enough to resolve each individual collision in (1). In a mem-
brane system, the same approach may be more challenging
due to the presence of a phononic bath from the surrounding
substrate. To see an individual gas collision, we require that
the heating from these phonons is subdominant to the collision
signal,

�pT

�ptech
=

√
mgTgas

msTnoise

Q

ωsτ
� 1, (6)

where Q = γs/ωs is the quality factor of the membrane mode.
Again with an integration window τ ≈ 1/ωs and with the
same graphene monolayer parameters given above (ms ∼
10−3 fg, corresponding to a roughly 400-nm2 active area),
detecting the Tgas ≈ 4 K helium atoms boiling off the walls of
a dilution refrigerator Tnoise ≈ 10 mK would require Q ∼ 105.
This could potentially potentially be obtained with phononic
band-gap shielding [34,35], as depicted schematically in
Fig. 1. We note also that with sufficiently fast measurements
(τ � Q/h̄kBTnoise) one could try to resolve individual thermal
phonons rather than treat them as a continuous background,
relevant, for example, in searches for light dark matter scat-
tering with solid-state phonons [41].

III. GAS COLLISION SPECTRUM

Above, we outlined the basic sensitivity of a mechani-
cal sensor to individual gas collisions which deposit a given
impulse �p. In a real gas, collisions of ambient gas with a
mechanical sensor produce a spectrum of impulse signals. To
understand how to use our mechanical sensors as gauges for
pressure or for identification of gas species, we need to be
more precise about the expected signal distribution.

The thermal de Broglie wavelength of the typical gas of
interest is much smaller than the nanometer-scale devices
discussed here, so we can treat the gas-sensor collisions clas-
sically. The background gas can scatter off the mechanical
sensor both specularly (perfectly reflectively) and diffusely
(thermalizing with the sensor surface) [42–45]. We can model
both specular and diffuse scattering to derive a differential
event rate in terms of the momentum transfer in each event:

d�

d�p
= ngA�p

4m2
g

fB

(
�p

2mg

)[
(1 − α) + αξ

(
�p

mgv

)]
. (7)

FIG. 2. Example spectrum of collision events, expressed as a
differential rate d� per given impulse value �p. The black lines label
the nominal detection threshold �pmin = �pSQL, with a solid sphere
of radius 50 nm, trapped at either ωs/2π = 1 kHz (left) or 100 kHz
(right). We again assume the gas is dominated by diatomic hydrogen
at 300 K, and we show the predictions for pure hard-sphere scattering
(specular) as well as diffusive scattering corrections.

Here ng is the number density of the gas with mass mg, A is the
surface area of the sensor, fB(v) is the Boltzmann distribution
for velocity v at temperature Tgas, and v = √

kBTgas/mg is the
root-mean-square thermal velocity. The overall factor before
the term in square brackets in (7) represents specular reflec-
tion. We include a phenomenological coefficient 0 � α � 1
that parametrizes the fraction of scattering events which are
diffuse, whose spectrum is modified by the O(1) factor

ξ (x) = √
πx

(
1 − 2

x2

)
erf

(
x

2

)
e−x2/8 + 2e−3x2/8. (8)

Here x = �p/mgv is a dimensionless measure of the mo-
mentum transfer and erf is the Gaussian error function. The
coefficient α can in principle be calculated microscopically,
measured, or mitigated, as we discuss below.

An example of this spectrum is plotted in Fig. 2. For
brevity, Eqs. (7) and (8) make the simplifying assumption
that the sensor surface and gas are at the same temperature.
In Appendixes B and C we show that corrections from out-
of-equilibrium effects lead to easily tolerable errors in the
measurements outlined below even with very large temper-
ature differentials.

IV. APPLICATION TO PRIMARY PRESSURE SENSING

Prior mechanical vacuum sensors have been based on
damping measurements, which operate in the regime where
the readout is much slower than the typical gas collision
rate (1), and therefore limited to the high vacuum range
(10−6 Pa � P < 10−1 Pa) [45–48]. Here we explain how di-
rect detection of background gas molecules through collision
counting allows primary pressure sensing in the UHV and
XHV regimes using mechanical systems [11].

To use our collision-resolved sensor as a pressure gauge,
we want to monitor the total number of gas collisions above
some threshold �pmin (for example, �pSQL) in a fixed time
interval; detailed measurement of the individual momen-
tum transfers is not crucial. The total detectable event rate
�(�pmin) can be derived from (7) by integrating from our
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detection threshold �pmin to infinity. This gives

�(�pmin) = ngAv√
2π

[
(1 − α)ηs

(
�pmin

mgv

)
+ αηd

(
�pmin

mgv

)]
,

(9)

where the detectable momentum cutoffs for specular scatter-
ing ηs and diffuse scattering ηd are given by

ηs(xmin) = e−x2
min/8,

ηd (xmin) = e−x2
min/2 +

√
π

2
xminerf

(xmin

2

)
e−x2

min/4. (10)

In (10), xmin = �pmin/mgv. Equation (9) assumes detectabil-
ity of impulses on all three spatial axes; if one is monitoring
only one or two axes there is an additional geometric factor
(see Appendix A). Now, using the ideal gas law and inverting
Eq. (9), we find an expression for the pressure:

P = �(�pmin)

√
2πkBTgas

Av[(1 − α)ηs(xmin) + αηd (xmin)]
. (11)

This gives an estimate of the gas pressure in terms of the
measured event rate �(�pmin).

Equation (11) contains two constants kB and mg and three
measured quantities �(�pmin), A, and Tgas. It is therefore
traceable to the second, meter, kilogram, and kelvin. The rate
� can be measured as discussed above. The surface area of
a nanosphere can be determined by combining an in situ
mass measurement with prior scanning electron microscope
characterization [49]; the area of a tethered device can be
set using lithography and then measured using atomic force
microscopy. The gas temperature can be measured with cal-
ibrated or primary contact thermometers [50] mounted on
the exterior of the vacuum chamber, a standard technique in
pressure metrology [25].

The remaining difficulty is the unknown accommodation
coefficient α. However, the dependence on α in (11) drops out
when the optomechanical system detects all background gas
collisions (ηs, ηd → 1, i.e., when �pmin → 0). As discussed
in detail in Appendix C, we estimate that ηs > 0.9 is sufficient
for better than 5% total uncertainty; this is satisfied when
�pmin ≈ 6.3 keV/c for H2 at 300 K. State-of-the-art total
uncertainty less than 2% would be achievable with ηs > 0.95,
which corresponds to �pmin ≈ 4.4 keV/c for H2 gas at 300 K.
All told, assuming the measurement of �(�pmin) is limited
by molecule arrival shot noise, the nanosphere sensor plotted
in Fig. 2 would average down statistical uncertainty approxi-
mately 100 times faster than a deployable, primary cold-atom
vacuum sensor, due to its increased event rate [12].

V. APPLICATION TO GAS ANALYSIS

As another possible application, we could use more details
of the collision spectrum to deduce the fraction of different gas
species present. With multiple species, the differential event
rate becomes

d�

d�p
=

∑
i

ng,iA�p

4m2
g,i

fB

(
�p

2mg,i

)[
(1 − α) + αξ

(
�p

mg,ivi

)]
,

(12)

where the sum runs over all background gas species i. Because
the peak event rate due to gas i occurs roughly at �p =
2mg,ivi, we can use measurements of the differential event rate
at several resolvable momenta �p to extract all background
gas densities ng,i. Fully disentangling the overlapping event
distributions requires detailed knowledge of the characteristic
momentum spectrum of each gas; we give details on this
procedure in Appendix D.

Such a collision counting gas analyzer has significant ad-
vantages over conventional quadrupole mass spectrometers.
First, it is primary, allowing gas analysis in applications
where periodic calibrations are difficult. Second, it is intrin-
sically low outgassing, permitting analysis deep in the XHV,
where current spectrometers may add large systematic uncer-
tainty. Finally, its active area is at most millimeter sized, so
(with further advances in meta-optics and nanophotonics [51])
leak detection could be performed in compact autonomous
systems.

VI. OUTLOOK

In a sufficiently good vacuum, the only way to sense am-
bient gas pressure is to detect individual gas collisions with a
sensor. We outlined two architectures for such detection using
mechanical sensors operated in the quantum readout regime,
which would enable a pressure standard capable of opera-
tion in the increasingly important XHV range. Such collision
counters would represent pressure sensing at its fundamental
limit, where the concept of continuous pressure breaks down,
requiring a description in terms of individual quanta.
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APPENDIX A: DETAILED COLLISION SPECTRUM CALCULATIONS

We determine the collision spectrum using the kinetic theory of gases. The number of molecular collisions with the sensor
surface element dA in time element dt that have incoming velocity �vi and outgoing velocity �vo is [43,44]

d8Nc(�vi, �vo) = ngdAdt

(
1

2πv2

)3/2

vicosθie
−v2

i /2v2 1

2πv4 vocosθoe−v2
o/2v2

d�vid�vo, (A1)
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where ng is the gas density, vi,o is the magnitude of �vi,o, v = √
kBTgas/mg is the root-mean-square thermal velocity of the gas with

temperature Tgas and mass mg, and θi,o is the polar angle between �vi,o and the surface normal û⊥. Equation (A1) assumes that the
gas molecules scatter diffusely from the sensor surface according to the cosine law after thermalizing with it (see Refs. [42–45])
and that the sensor is in thermal equilibrium with the gas. We consider the possibility that the sensor is not in thermal equilibrium
with the gas, which may occur at low background pressure or high optical power [52], in Appendix B.

To find the number of collisions that impart momentum �p perpendicular to the surface, we integrate Eq. (A1) subject to the
constraint �vo · û⊥ + �vi · û⊥ − �p/mg = 0. After transforming to Cartesian coordinates, we have

d3Nc(�p) = ngdAdt

(
1

2πv2

)3/2 ∫ �p/mg

0
dvi,z

∫∫ ∞

−∞
dvi,xdvi,yvi,ze

−(v2
i,x+v2

i,y+v2
i,z )/2v2

× 1

2πv4 dvo,z

∫∫ ∞

−∞
dvo,xdvo,yvo,ze

−(v2
o,x+v2

o,y+v2
o,z )/2v2

, (A2)

where vi,z = �vi · ẑ (with ẑ = û⊥ the unit vector defining the z axis) and so on for the other Cartesian components of �vi and �vo.
We impose the momentum transfer constraint by taking vo,z = �p/mg − vi,z and dvo,z = d�p/mg. Evaluating the integrals over
the plane parallel to the surface then yields

d3Nc(�p) = ngdAdt

v2

(
1

2πv2

)1/2 d�p

mg

∫ �p/mg

0
dvi,zvi,z(�p/mg − vi,z )e−[v2

i,z+(�p/mg−vi,z )2]/2v2
. (A3)

The integral in Eq. (A3) can be solved by completing the square and mapping onto known Gaussian integrals. The result is

√
πe−�p2/4m2

gv
2

[
1√
π

(
vi,zv

2

2
− �pv2

4mg

)
e−(vi,z/v−�p/2mgv)2 + 1

2

(
�p2v

4m2
g

− v3

2

)
[1 + erf (vi,z/v − �p/2mgv)]

]�p/mg

0

, (A4)

where erf is the Gaussian error function. Inserting Eq. (A4) into Eq. (A3) gives the number of collisions imparting momentum
�p per unit area per unit time

d3Nc(�p)

dAdt
= ng

d�p

mg

(
1

2πv2

)1/2[
�p

2mg
e−�p2/2m2

gv
2 +

√
π

2

(
�p2

2m2
gv

− v

)
erf (�p/2mgv)e−�p2/4m2

gv
2

]
. (A5)

If we rearrange Eq. (A5) and integrate over the sensor area, we find the differential event rate

d�

d�p
= ngA�p

4m2
g

(
1

2πv2

)1/2

e−�p2/8m2
gv

2

[
2e−3�p2/8m2

gv
2 +

√
π

2

(
2�p

mgv
− 4mgv

�p

)
erf (�p/2mgv)e−�p2/8m2

gv
2

]

= ngA�p

4m2
g

(
1

2πv2

)1/2

e−�p2/8m2
gv

2
ξ

(
�p

mgv

)
, (A6)

where � = dNc/dt is the total collision rate and the diffuse scattering correction ξ (�p/mgv) is the term in large parentheses
within large square brackets. on the first line of the equation. Taking ξ (�p/mgv) → 1 yields the differential event rate for elastic

scattering. If we note that the Maxwell-Boltzmann distribution for �p/2mg is fB(�p/2mg) = e−�p2/8m2
gv

2
/
√

2πv2 and include
momentum accommodation, then Eq. (A6) becomes Eq. (7).

We calculate the total detectable collision rate by integrating Eq. (A6) over �p from �pmin to ∞, where �pmin is the
momentum transfer that corresponds to a measurement signal-to-noise ratio of 1 (or a chosen cutoff to ensure no spurious
events). Carrying out the integration yields

�|�p>�pmin = ngA

2

(
1

2πv2

)1/2[
v2e−�p2

min/2m2
gv

2 +
√

π

2

∫ ∞

�pmin

d�p

mg

(
�p2

m2
gv

− 2v

)
erf (�p/2mgv)e−�p2/4m2

gv
2

]

= ngA

2

(
1

2πv2

)1/2(
2v2e−�p2

min/2m2
gv

2 +
√

π�pminv

mg
erf (�pmin/2mgv)e−�p2

min/4m2
gv

2

)
.

(A7)

If we rewrite Eq. (A7) in terms of the expected total collision rate, we get

�|�p>�pmin = ngAv√
2π

ηd (�pmin), (A8)

with

ηd (�pmin) =
(

e−�p2
min/2m2

gv
2 +

√
π�pmin

2mgv
erf (�pmin/2mgv)e−�p2

min/4m2
gv

2

)
, (A9)

which defines the detectable momentum cutoff for diffuse scattering ηd (�pmin) < 1. The detectable momentum cutoff for
specular scattering is ηs(�pmin) = e−�p2

min/8m2
gv

2
, which can be found by taking the ξ (�p/mgv) → 1 limit in Eq. (A6) and then
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carrying out the integral in Eq. (A7). In the �pmin → 0 limit, we have ηs, ηd → 1, and Eq. (A8) simplifies to the standard result
from kinetic gas theory (� = nAv/

√
2π ) or scattering theory (� = n〈σv〉, where 〈· · · 〉 denotes a thermal average).

Equations (A8) and (A6) assume that all motion perpendicular to the sensor surface is detectable by the readout system, that
is to say, the readout system detects all motion along û⊥, which can be the case for tethered devices. However, motion readout
for a levitated sensor will occur along the principle axes of the levitating trap and the details of the experimental setup may
prevent simultaneous readout along all three principle axes [30,40]. To calculate the event rate along a trap axis for a levitated
nanosphere, we must project the center-of-mass momentum transfer onto the principle axis of the trap before integrating Eq. (A5)
over the sensor surface area. Taking the readout axis to be z′ such that û⊥ẑ′ = cosθ and substituting for �p yields

d�

d�pz′
= ng�pz′

2m2
g

(
1

2πv2

)1/2

4πR2
∫ π/2

0
sec2θ sinθ e−�p2

z′ sec2θ/2m2
gv

2

×
[

1 +
√

π

2

(
�pz′secθ

mgv
− 2mgv

�pz′secθ

)
erf (�pz′secθ/2mgv)e�p2

z′ sec2θ/4m2
gv

2
]

dθ, (A10)

where R is the nanosphere radius and �pz′ is the momentum transfer along the z′ axis. The integral in Eq. (A10) does not have an
analytic expression. Specifically, the term proportional to secθ must be integrated numerically. However, we can still calculate
the total collision rate by integrating over �pz′ and switching the order of integration. The total collision rate is then

�|�pz′>�pmin = ng

√
8πR2v

∫ π/2

0

[
e−�p2

minsec2θ/2m2
gv

2 +
√

π�pminsecθ

2mgv
erf

(
�pminsecθ

2mgv

)
e−�p2

minsec2θ/4m2
gv

2

]
sinθ dθ

= ngAv√
2π

η′
d (�pmin), (A11)

where the integral term defines the projected momentum cutoff for diffuse scattering η′
d (�pmin).

For specular scattering, the integral for event rate along a single trap axis is analytic, so the event rate is given by

d�

d�pz′
= ng�pz′

4m2
g

(
1

2πv2

)1/2

4πR2
∫ π/2

0
sec2θ sinθ e−�p2

z′ sec2θ/8m2
gv

2

dθ

= ngπR2

mg
erfc

(
�pz′√
8mgv

)
, (A12)

where erfc is the complementary Gaussian error function. The total collision rate for specular scattering is then

�|�pz′>�pmin = ngπR2

mg

∫ ∞

�pmin

erfc

(
�pz′√
8mgv

)
d�pz′

= ngAv√
2π

η′
s(�pmin), (A13)

where

η′
s(�pmin) = e−�p2

min/8m2
gv

2 −
√

π�pmin√
8mgv

erfc(�pmin/
√

8mgv). (A14)

APPENDIX B: SCATTERING RATES OUT OF THERMAL EQUILIBRIUM

When the sensor is not in thermal equilibrium with the background gas, Eq. (A1) is modified to read

d8Nc(�vi, �vo) = ngdAdt

(
1

2πv2

)3/2

vicosθi e−v2
i /2v2 1

2πv4
s

vocosθo e−v2
o/2v2

s d�vid�vo, (B1)

where vs = √
kBTs/mg is the root-mean-square thermal velocity of the diffusely scattered gas at the temperature of the sensor Ts.

Once again, we transform to Cartesian coordinates, impose the momentum transfer constraint, and evaluate the integrals over
the plane parallel to the surface to find

d3Nc(�p) = ngdAdt

v2
s

(
1

2πv2

)1/2 d�p

mg

∫ �p/mg

0
dvi,zvi,z(�p/mg − vi,z )e−v2

i,z/2v2
e−(�p/mg−vi,z )2/2v2

s . (B2)
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Completing the square in Eq. (B2) and mapping onto known Gaussian integrals yields

d3Nc(�p)

dAdt
= ng

d�p

mg

(
1

2πv2

)1/2
v2(

v2 + v2
s

)2

{
�p

mg

(
v2e−�p2/2m2

gv
2 + v2

s e−�p2/2m2
gv

2
s
)

+
√

π

2

√
2vvs√

v2 + v2
s

(
�p2

m2
g

− v2 − v2
s

)[
erf

(
�pvs

mgv

√
2
(
v2 + v2

s

)
)

+ erf

(
�pv

mgvs

√
2
(
v2 + v2

s

)
)]

e−�p2/2m2
g (v2+v2

s )

}
.

(B3)

After integrating over the sensor area, the differential event rate is

d�

d�p
= ngA�p

m2
g

(
1

2πv2

)1/2
v2(

v2 + v2
s

)2

{
v2e−�p2

/
2m2

gv
2 + v2

s e−�p2
/

2m2
gv

2
s

+
√

π

2

√
2vvs√

v2 + v2
s

(
�p

mg
− mg

(
v2 + v2

s

)
�p

)[
erf

(
�pvs

mgv

√
2
(
v2 + v2

s

)
)

+ erf

(
�pv

mgvs

√
2
(
v2 + v2

s

)
)]

e−�p2/2m2
g (v2+v2

s )

}

(B4)

and the total collision rate is

�|�p>�pmin = ngAv√
2π

1(
v2 + v2

s

)2

{
v4e−�p2

min/2m2
gv

2 + v4
s e−�p2

min/2m2
gv

2
s

+ v2v2
s e−�p2

min/2m2
g (v2+v2

s )
(
e−�p2

minv
2
s /2m2

gv
2(v2+v2

s ) + e−�p2
minv

2/2m2
gv

2
s (v2+v2

s )
)

+
√

πvvs�pmin√
2mg

√
v2 + v2

s

[
erf

(
�pminvs

mgv

√
2
(
v2 + v2

s

)
)

+ erf

(
�pminv

mgvs

√
2
(
v2 + v2

s

)
)]

e−�p2
min/2m2

g (v2+v2
s )

}
. (B5)

When Ts = Tgas, Eqs. (B4) and (B5) reduce to Eqs. (A6) and (A7), respectively.
To understand out-of-equilibrium operation when the motion readout of the optomechanical sensor occurs only along one

axis, we project the center-of-mass momentum transfer onto the principle axis of the trap before integrating Eq. (B3) over the
sensor surface area. Again taking the readout axis to be z′ such that û⊥ · ẑ′ = cosθ and substituting for �p yields

d�

d�pz′
= ng4πR2

mg

(
1

2πv2

)1/2
v2(

v2 + v2
s

)2

∫ π/2

0
sec2θ sinθ dθ

{
�pz′

mg

(
v2e−�p2

z′ sec2θ/2m2
gv

2 + v2
s e−�p2

z′ sec2θ/2m2
gv

2
s
)

+
√

πvvs√
2
(
v2 + v2

s

)
(

�p2
z′

m2
g

− v2 + v2
s

sec2θ

)
secθ

[
erf

(
�pz′secθ vs

mgv

√
2
(
v2 + v2

s

)
)

+ erf

(
�pz′secθ v

mgvs

√
2
(
v2 + v2

s

)
)]

e−�p2
z′ sec2θ/2m2

g (v2+v2
s )

}

= ng4πR2

mg

(
1

2πv2

)1/2
v2(

v2 + v2
s

)2

√
π

2

([
v3erfc

(
�pz′√
2mgv

)
+ v3

s erfc

(
�pz′√
2mgvs

)]

+ vvs

{
v erfc

(
�pz′√
2mgvs

)
+ vserfc

(
�pz′√
2mgv

)

+
√

v2 + v2
s e−�p2

z′ /2m2
g (v2+v2

s )

[
erf

(
�pz′vs

mgv

√
2
(
v2 + v2

s

)
)

+ erf

(
�pz′v

mgvs

√
2
(
v2 + v2

s

)
)]}

−
∫ π/2

0
tanθ dθ v vs

√(
v2 + v2

s

)[
erf

(
�pz′secθ vs

mgv

√
2
(
v2 + v2

s

)
)

+ erf

(
�pz′secθ v

mgvs

√
2
(
v2 + v2

s

)
)]

e−�p2
z′ sec2θ/2m2

g (v2+v2
s )

)
. (B6)

042616-7



DANIEL S. BARKER et al. PHYSICAL REVIEW A 109, 042616 (2024)

Again, the term proportional to secθ must be integrated numerically, but it is no longer amenable to reversing the order of
integration. By integrating over �pz′ , we arrive at the total collision rate

�|�pz′>�pmin = ngAv√
2π

1

v2 + v2
s

(
v2e−�p2

min/2m2
gv

2 + v2
s e−�p2

min/2m2
gv

2
s −

√
π

2
�pmin

[
v erfc

(
�pmin√

2mgv

)
+ vserfc

(
�pmin√
2mgvs

)]

+
√

π

2

v vs√
v2 + v2

s

∫ ∞

�pmin

{
e−�p2

z′ /2m2
g (v2+v2

s )

[
erf

(
�pz′vs

mgv

√
2
(
v2 + v2

s

)
)

+ erf

(
�pz′v

mgvs

√
2
(
v2 + v2

s

)
)]

−
∫ π/2

0
e−�p2

z′ sec2θ/2m2
g (v2+v2

s )

[
erf

(
�pz′secθ vs

mgv

√
2
(
v2 + v2

s

)
)

+ erf

(
�pz′secθ v

mgvs

√
2
(
v2 + v2

s

)
)]

tanθ dθ

})
d�pz′ , (B7)

where the integral term defines the projected momentum cutoff for diffuse scattering η′
d (�pmin).

APPENDIX C: UNCERTAINTY DUE TO Ts AND α

Using Eqs. (B5) and (B7), we can calculate the variation
in ηd and η′

d , respectively, as a function of sensor surface
temperature Ts. We can use the calculated change in ηd with
Ts to estimate the uncertainty in a pressure measurement due
to Ts, since Ts only enters Eq. (11) through ηd . Figure 3
shows the calculated ηd for H2 gas colliding with a tethered
sensor at each of ηs = {0.99, 0.95, 0.9}, which correspond
to �pmin = {1.7, 4.4, 6.3} keV/c. Because H2 is the lightest
gas, the results of Fig. 3 represent a worst-case scenario for
a given �pmin. The change in ηd with Ts ranging from 200
to 1000 K is less than 1% for �pmin < 4.4 keV/c. When
�pmin = 6.3 keV/c, the change in ηd with Ts from 200 to
1000 K is still less than 3%. Figure 4 shows the calculated η′

d
for a nanosphere at each of η′

s = {0.99, 0.95, 0.9}, which cor-
respond to �pmin = {0.11, 0.56, 1.1} keV/c. When �pmin =
1.1 keV/c, the change in η′

d with Ts from 200 to 1000 K
is roughly 3%. It appears that measuring the sensor surface
temperature is not necessary for better than 5% uncertainty
pressure measurements, provided the sensor achieves a �pmin

such that ηs > 0.9.
A key feature of our proposal is that the measured pres-

sure does not depend on the momentum accommodation

FIG. 3. Diffuse momentum cutoff ηd for a tethered sensor as a
function of Ts for various values of ηs.

coefficient α when ηs → 1 and ηd → 1 (i.e., �pmin → 0).
Given that �pmin = 0 is not experimentally achievable, we
must assess the systematic uncertainty δP in the pressure
measurement due to uncertainty δα in α. Applying linear error
propagation theory, we find the fractional uncertainty in P due
to α, (

δP

P

)
α

=
∣∣∣∣ ηd − ηs

ηs + α(ηd − ηs)
δα

∣∣∣∣. (C1)

To apply Eq. (C1), we must estimate α and δα. We can
approximate α by finding the fraction of the Maxwell-
Boltzmann distribution of the gas that has a de Broglie
wavelength smaller than the characteristic surface rough-
ness of the sensor. As a worst case, we can then take
the true α to be uniformly distributed about the Maxwell-
Boltzmann approximated mean value with a half-width that
extends to the nearest edge of the physical range for α

(α = 0 or 1). A completely uninformed prior on α then
corresponds to a mean α of 0.5. Figure 5 shows the re-
sulting (δP/P)α as a function of α for a tethered sensor
with Ts = 300 K. The estimated pressure measurement un-
certainty is shown for ηs = {0.99, 0.95, 0.9, 0.75, 0.5}, which

FIG. 4. Diffuse momentum cutoff η′
d for a nanosphere as a func-

tion of Ts for various values of η′
s.
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FIG. 5. Fractional pressure uncertainty (δP/P)α due to uncer-
tainty in α as a function of α for a tethered sensor at various values
of ηs.

correspond to �pmin = {1.7, 4.4, 6.3, 10.5, 16.3} keV/c. For
ηs > 0.9 (�pmin < 6.3 keV/c), (δP/P)α < 2.5%. Figure 6
shows the resulting (δP/P)α as a function of α for
a nanosphere with Ts = 300 K. Again, the estimated
pressure measurement uncertainty is shown for ηs =
{0.99, 0.95, 0.9, 0.75, 0.5}, which correspond to �pmin =
{0.11, 0.56, 1.1, 3.0, 6.8} keV/c. For ηs > 0.9 (�pmin < 1.1
keV/c), (δP/P)α < 2.5%.

Armed with worst-case estimates for uncertainty in δα and
δηd , we can estimate the total fractional pressure measure-
ment uncertainty of our proposal. We will take the fractional
uncertainty in the gas temperature δT/T = 1%, the fractional
uncertainty in the sensor area δA/A = 2% [49], and the frac-
tional statistical uncertainty δ�|�p>�pmin/�|�p>�pmin = 1%.
We will use the ηs = 0.9 worst-case estimates from our analy-
sis above for the uncertainties δα and δηd . Adding all sources
of uncertainty in quadrature yields δP/P ≈ 4.6% for either
a tethered sensor or a nanosphere. Note that even modest
improvements on our uncertainty estimates would yield frac-
tional total uncertainties less than 2%, which is state of the
art for primary UHV metrology [25]. Such improvements
could include improving �pmin to reach ηs = 0.95, using heat
transfer modeling or secondary thermometers to constrain Ts

(even δTs ≈ 100 K would substantially reduce δP/P), and

FIG. 6. Fractional pressure uncertainty (δP/P)α due to uncer-
tainty in α as a function of α for a nanosphere at various values
of η′

s.

using the surface roughness of the sensor to estimate α as
described above.

APPENDIX D: RATIOMETRIC PRIMARY OPERATION

In the main text, we required both ηs ≈ 1 and ηd ≈ 1 to
ensure that incomplete momentum accommodation did not
prevent primary pressure sensing. However, even when the
detectable momentum cutoffs are significantly less than one,
primary operation can be recovered ratiometrically if a single
gas species has α = 0 or 1. There are two possible gas-sensor
pairs where α = 0 or 1 might arise. First, collisions of xenon
with a nanosphere with 1-nm surface roughness will be ap-
proximately 98% diffuse [53]. Second, collisions of H2 or
helium with an ultraflat tethered two-dimensional material
will be greater than 99% specular [54]. In either case, template
momentum spectra for other gases can be built up ratiometri-
cally using a classical pressure standard to transfer traceability
of the International System of Units [11]. A library of template
momentum spectra can then be constructed to enable gas
analysis beyond the α = 1 limit.
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