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Nonadiabatic geometric quantum gates by composite pulses based on superconducting qubits
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The nonadiabatic geometric quantum gate (NGQG) is promising for the realization of high-fidelity operation
for large-scale quantum processing. Normally, conventional NGQGs can be especially robust to either the Rabi
error or the detuning error, which are two typical errors in many quantum computing platforms. However, it
is difficult to suppress these two types of errors at the same time. This remains a big challenge for NGQGs.
Here we present a general framework to implement the optimized geometric gate, where the evolution path is
performed by using a family of optimized composite pulses. These composite pulses can reduce the sensitivity to
the detuning error without introducing an extra Rabi error for this path. Thus, they help fulfill the cyclic evolution
condition for the geometric gate. In addition, the inserted composite pulses would not introduce unwanted
dynamical phase accumulation. As a result, the designed optimized geometric gate can simultaneously mitigate
both the Rabi and detuning errors even in the presence of decoherence related to the real experiments. Our work
paves a way to achieve geometric quantum computation robust against multiple errors.
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I. INTRODUCTION

Fault-tolerant quantum computation demands high-
precision manipulation for large-scale quantum processing.
However, when implementing the gate operations in specific
platforms, errors existing in the control environment
substantially reduce the control fidelity. In addition,
considering decoherence effects, the case would become
worse. In order to realize high-fidelity quantum computation,
many methods have been proposed to mitigate the gate errors,
such as the composite pulse sequences [1–4], time optimal
control [5–10], and designing gates using geometric space
curves [11–14]. Nevertheless, many of them implement gates
by using the dynamical phase, which correlates with the
energy of the Hamiltonian. Geometric quantum computation
(GQC) [15,16] based on the geometric phase is believed to be
a great choice to avoid the influence of quantum gate errors.
Compared to conventional dynamical phase, the geometric
phase is inherently robust to certain types of local error,
since it only depends on the global property of the evolution.
Therefore, it can ignore the evolution details during evolution
[17–21].

In the early development of GQC, the geometric gate was
designed using the Berry phase [19], which is obtained for
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the quantum state after adiabatic and cyclic evolution. This
hinders the use of GQC in real experiments due to slow
adiabatic evolution when considering decoherence [16,22,23].
In order to overcome this adiabatic limitation, a nonadiabatic
geometric quantum gate (NGQG) based on the nonadiabatic
geometric phase, i.e., the Aharonov-Anandan phase, was pro-
posed to speed up the gate time [24,25]. The NGQG has
been studied theoretically and experimentally in many sys-
tems, such as superconducting circuits [26–30], trapped ions
[31,32], the nitrogen-vacancy center in diamond [33–35], and
NMR [36–38]. In fact, the conventional NGQG is especially
useful in suppressing the Rabi error [39–45], which is induced
by the inaccurate control of the Rabi frequency; however, it is
hard to deal with the detuning error at the same time [46–48].
The detuning error is the dominant error source in many
platforms, such as the superconducting circuit and silicon
quantum dot. In the past, in combination with other tech-
niques, various NGQGs have been proposed to enhance the
robustness for conventional NGQGs. For example, a robust
NGQG can be made by using the optimal control technique
[49–55], the dynamical decoupling method [56–59], or the
reverse engineering scheme [60–62]. Most of these schemes
can be rather effective in combatting the Rabi error; however,
they can always lead to a poor performance when consid-
ering the detuning error simultaneously. In Refs. [46–48] it
was found that by picking up different evolution loops, the
obtained geometric gate can be more robust to the detuning
error compared to the dynamical gate. However, this would
substantially weaken the ability to mitigate the Rabi error.
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Recently, it was also found that by combining the geometric
phase and the geometric space curves, it is possible to obtain
the so-called doubly geometric quantum control that can im-
plement z-axis rotation [11]. In Ref. [11] both the detuning
and Rabi errors could be suppressed at the same time. On the
other hand, in Ref. [11], except for the Rabi driving field, one
still needs to synchronously drive the detuning field, which
increases the complexity of the experiments. Therefore, how
to simultaneously mitigate these two types of errors and obtain
the universal gate operations still remains a challenge for
NGQGs.

In this work we propose theoretically a general method
to implement universal optimized NGQGs. The optimized
NGQG is performed by using an optimized set of compos-
ite pulses [4] to refine the evolution path. In contrast to
the conventional NGQG scheme, these introduced composite
pulses would not introduce an extra Rabi error for the path.
Meanwhile, they can reduce the sensitivity to detuning er-
ror. As a result, the composite pulses help fulfill the cyclic
evolution condition for the geometric gate, and the imple-
mented optimized NGQG can mitigate both the Rabi error
and detuning error at the same time. In addition, in the imple-
mentation of the optimized NGQG, we always shut down the
detuning field, i.e., �(t ) ≡ 0. This also makes the optimized
NGQG adaptable to experiments. It is demonstrated that the
inserted composite pulses would not introduce the dynamical
phase accumulation during the whole operation. We verify the
performance of our optimized geometric gates (including a
universal set of single- and two-qubit gates) via implementing
them in the superconducting transmon qubits, considering the
errors and decoherence level related to the real experiments.
Although the evolution time for the optimized geometric gate
is prolonged, it can still outperform the dynamical gates. It is
worth noting that whether the proposed optimized geometric
gate can still offer a better performance than the dynamical
gates in other platforms remains a question for further study.

II. GEOMETRIC QUANTUM GATE BASED
ON PATH DESIGN

In this section we first propose the general framework to
implement the geometric gate via inverse engineering. Based
on this framework, we further discuss how to improve the
conventional geometric gate through composite pulses for
path optimization.

A. General geometric quantum gate via inverse engineering

Consider a general two-level system driven by an external
microwave field [41,42,46] whose Hamiltonian in the compu-
tational basis |0〉 and |1〉 can be described as

H(t ) = 1

2

( −�(t ) �(t )e−iϕ(t )

�(t )eiϕ(t ) �(t )

)
, (1)

where �(t ) and ϕ(t ) are the time-dependent amplitude and
phase of the driving field, respectively, and �(t ) is the time-
dependent detuning field due to the frequency difference
between the qubit transition energy and the microwave field.
Hereafter, we set h̄ = 1 for simplicity.

It is convenient to describe the geometric gate by using the
evolution of a pair of orthogonal states, i.e., the dressed-state
basis, which are defined as

|�+(t )〉 = cos
θ (t )

2
|0〉 + sin

θ (t )

2
eiφ(t )|1〉,

|�−(t )〉 = sin
θ (t )

2
e−iφ(t )|0〉 − cos

θ (t )

2
|1〉. (2)

Here, if we treat |�±(t )〉 as the qubit states on the Bloch
sphere, θ (t ) and φ(t ) can be regarded as the polar angle and
azimuthal angle of the spherical coordinates, respectively. The
angles θ (t ) and φ(t ) can be determined by solving the von
Neumann equation [46,49]

∂

∂t
[|�±(t )〉〈�±(t )|] = −i[H(t ), |�±(t )〉〈�±(t )|]. (3)

Then we can obtain

φ̇(t ) = −�(t ) − �(t ) cot θ (t ) cos[ϕ(t ) − φ(t )],

θ̇ (t ) = �(t ) sin[ϕ(t ) − φ(t )]. (4)

The parameters in the control Hamiltonian H(t ) can be in-
versely determined from Eq. (4) as

�(t ) = ±
√

(� − φ̇)2 + θ̇ cot2 θ tan θ,

ϕ(t ) = θ − arctan

(
± θ̇ cot θ

� − 2θ̇

)
. (5)

On the other hand, by driving the appropriate parameters
{�(t ), ϕ(t )} in H(t ), the evolution of the two dressed states
can be easily controlled. In particular, after tracing out closed
loops on the Bloch sphere at the final time τ , the cyclic
evolution condition of the dressed states for the geometric
gate would be satisfied [42,48], either of which would ob-
tain a global phase factor |�±(τ )〉 = eiγ±|�±(0)〉, with γ+ =
−γ− = γ . In this way, the obtained evolution operator can be
written as

U (τ ) = eiγ |�+(0)〉〈�+(0)| + e−iγ |�−(0)〉〈�−(0)|. (6)

Note that the accumulated total phase factor generally can
be divided into two parts, i.e., the dynamical phase γd and
the geometric phase γg. The key to implementing a geometric
gate is to cancel out the dynamical phase and retain the pure
geometric one. By inserting Eq. (4) into the definition of the
dynamical phase, the dynamical and geometric phases can be
parametrized as

γd = −
∫ τ

0
〈�+(t )|H(t )|�+(t )〉dt (7a)

= 1

2

∫ τ

0

φ̇(t ) sin2 θ (t ) + �(t )

cos θ (t )
dt, (7b)

γg = γ − γd . (7c)

According to Eq. (7b), for the case of �(t ) ≡ 0, namely,
when the qubit is on resonance with the microwave field,
the dynamical phase cancels out when taking φ̇(t ) = 0. This
means the dressed state evolves along a certain longitude line
on the Bloch sphere. In addition, the global phase factor is
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FIG. 1. (a) Evolution trajectory of the dressed state |�+(t )〉. For the conventional NGQG, it evolves along the path A → B → D → A to
enclose the so-called orange-slice shape, while for the optimized geometric gate, it evolves along the path A → B → C → B → D → E →
D → A to fulfill cyclic evolution. (b) For the conventional NGQG, the dressed state from the north pole cannot evolve to the south pole in
the presence of detuning error. (c) For the optimized geometric gates, the composite pulses helps the dressed state reach the south pole in the
presence of detuning error. (d) Energy level of a transmon qubit, the two lowest levels (|0〉 and |1〉) of which are used to encode a single qubit
and the third level |2〉 is regarded as the main leakage source due to the weak anharmonicity in the transmon qubit. (e) Energy-level diagram
for two coupled transmon qubits, where the single-excitation subspace {|10〉, |01〉} can be used to implement the optimized geometric iSWAP

gate.

thus the pure geometric phase γ = γg. Note that the azimuthal
angle φ(t ) at the north or south pole is discontinuous. Thus,
the derivatives φ̇(t ) at these points are nonzero and might be
indeterminate. In this way, one should calculate the dynamical
phase by directly using the definition in Eq. (7a) instead of
the parametrized expression in Eq. (7b). In Appendix B we
demonstrate that even though φ(t ) jumps at these discontinu-
ity points, the dynamical phases accumulated are still zero.

B. Conventional geometric quantum gate

The typical conventional NGQG [42,43,46,47] is as shown
in Fig. 1(a), the basic idea of which is to evolve the dressed
state always along a specific longitude so as to enclose the
so-called orange-slice loop. For any designed geometric gate,
the whole evolution path is divided into three segments. As
one can see, the initial dressed state |�+(0)〉 on the Bloch
sphere starts from a certain point A with coordinate (θ0, φ0)
(determined by the specific gate operation, as seen below)
and travels to the north pole B along the longitude denoted
by the red A-B path. During the second evolution process, it
goes right down to the south pole D along another longitude
denoted by the gray B-D path. Finally, the dressed state returns
to the original point along the D-A path. In such a way, the
dressed state fulfills a cyclic evolution A → B → D → A.
For this evolution loop, one can easily derive its control

Hamiltonian parameters via Eq. (5). During each time inter-
val, the parameters satisfy∫ T1

0
�(t )dt = θ0

{
ϕ(t ) ≡ ϕ1

g = φ0 − π

2
, t ∈ [0, T1]

}
,

(8a)∫ T2

T1

�(t )dt = π
{
ϕ(t ) ≡ ϕ2

g = φ0 + γ + π

2
, t ∈ [T1, T2]

}
,

(8b)∫ T

T2

�(t )dt = π − θ0

{
ϕ(t ) ≡ ϕ3

g = φ0 − π

2
, t ∈ [T2, T ]

}
.

(8c)

Meanwhile, we have � ≡ 0 during the gate operation. The
resulting geometric operator is thus

Ug(T ) = UDA(T, T2)UBD(T2, T1)UAB(T1, 0)

= cos γ Î + i sin γ

(
cos θ0 sin θ0e−iφ0

sin θ0eiφ0 − cos θ0

)

= eiγ �n·�σ , (9)

where �n = (sin θ0 cos φ0, sin θ0 sin φ0, cos θ0) can be regarded
as the unit vector on the Bloch sphere. By setting appropriate
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FIG. 2. Gate fidelity versus detuning error δ, where the Rabi error is zero, i.e., ε = 0, and the decoherence rate is (a)–(c) κ = 0 and (d)–(f)
κ = 2π × 4 kHz, for the (a) and (d) H , (b) and (e) S, and (c) and (f) T gates. Conventional refers to the geometric gate as shown in Eq. (8),
conventional 2 refers to the scheme as shown in Refs. [46,47], and optimized refers to the gate parameters in Eq. (15).

parameters {γ , θ0, φ0}, Ug(T ) can implement arbitrary single-
qubit rotation, namely, it is universal.

On the other hand, the operator can be alternatively
written as

Ug(T ) = |�+(T )〉〈�+(0)| + |�−(T )〉〈�−(0)|
= eiγ |�+(0)〉〈�+(0)| + e−iγ |�−(0)〉〈�−(0)|. (10)

It is clear that |�+(t )〉 (|�−(t )〉) fulfills the cyclic evolu-
tion condition at the final evolution time T [determined by∫ T

0 �(t )dt = 2π ] and obtains a corresponding global phase
factor γ (−γ ). According to the parameters in Eqs. (8), the
related azimuthal angle during each path reads

φ(t ) =
⎧⎨
⎩

φ0, A → B
φ0 + γ , B → D
φ0, D → A.

(11)

It is clear that except for the discontinuous points B and
D, we have φ̇(t ) = 0, and the accumulated dynamical phase
in the whole evolution process is zero, as mentioned above.
Meanwhile, the obtained global phase factor γ represents the
pure geometric phase and Ug(T ) is a pure geometric quantum
gate.

In the implementation of gate operations, the control
Hamiltonian can suffer from mainly two types of errors,
i.e., the detuning and Rabi errors. The corresponding control
Hamiltonian can be written as

H ′
c(t ) = (1 + ε)�(t )

2
[cos ϕ(t )σx + sin ϕ(t )σy] − �(t )δ

2
σz.

(12)

Here ε and δ denote the Rabi and detuning errors, respectively.
It is worth noting that, in this work, we treat these two errors
as perturbations, which is normally reasonable considering
|ε|, |δ| 	 �max. The robustness of the conventional geometric
gate against detuning errors is shown in Fig. 2. Here we
consider the universal single-qubit gate set {H, S, T }. The
robustness for other types of gates is shown in Appendix A.
It is clear that the conventional geometric gates [see the blue
long-dash–short-dashed lines in Figs. 2(a)–2(c)] perform even
worse than the dynamical gates (solid red lines), which is
directly designed using the control Hamiltonian in Eq. (12).
However, from Figs. 3(a)–3(c) we also see that it can effec-
tively combat the Rabi error. Therefore, the detuning error
is the dominant error source for the conventional NGQG. To
suppress the detuning error, one can alternatively construct the
geometric gate by designing another evolution path [46,47]
during the second time interval, namely, (ϕ2

g )′ ≡ ϕ2
g − π , t ∈

[T1, T2]. In contrast, this type of geometric gate (see the black
dotted lines) would be robust to the detuning error while it is
rather susceptible to the Rabi error. For simplicity, we denote
the geometric gates in Refs. [46,47] as conventional 2 NGQG.
Both types of NGQGs cannot simultaneously mitigate these
two types of errors.

C. Optimized geometric quantum gates based
on composite pulses

As stated above, the conventional NGQG is robust to the
Rabi error while it is sensitive to the detuning error. Therefore,
the key to optimizing the conventional NGQG is to combat
the detuning error during the evolution. In fact, for arbitrary
gate operation based on conventional NGQGs, the dressed
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FIG. 3. Gate fidelity versus Rabi error ε, where the detuning error is zero, i.e., δ = 0, and the decoherence rate is (a)–(c) κ = 0 and (d)–(f)
κ = 2π × 4 kHz, for the (a) and (d) H , (b) and (e) S, and (c) and (f) T gates. Conventional refers to the geometric gate as shown in Eq. (8),
conventional 2 refers to the scheme as shown in Refs. [46,47], and optimized refers to the gate parameters in Eq. (15).

state would go through the longitude from the north pole B
to the south pole D [see Fig. 1(b)], which corresponds to
the second evolution UBD(T2, T1). Actually, the ideal evolution
operator corresponding to UBD(T2, T1) can be regarded as a π

rotation

R
(
π, ϕ2

g

) = exp

(
−i

∫ T2

T1

�(t )

2

(
cos ϕ2

gσx + sin ϕ2
gσy

)
dt

)

= exp

(
− i

π

2

(
cos ϕ2

gσx + sin ϕ2
gσy

))
(13)

around a specific axis determined by ϕ2
g on the x-y plane.

As shown in Fig. 1(b), in the presence of detuning error, the
dressed state would deviate from the south pole and reach
another point D′. Thus, we have UBD(T2, T1) 
= R(π, ϕ2

g ) and
|�δ

+,D′ 〉 
= |�+,D〉 with |�+,D〉 = R(π, ϕ2
g )|0〉. It is obvious

that the dressed state cannot go back to the starting point to
fulfill cyclic evolution.

To optimize the conventional NGQG, we should refine the
evolution path, where the path itself is robust to the detuning
error. This can be achieved by using an optimized composite
pulse based on the identity

R(π, ϕ2
g ) = R

(
π

3
, ϕ4

opt

)
R

(
5π

3
, ϕ3

opt

)
R

(
π

3
, ϕ2

opt

)
. (14)

Here ϕ2
opt = ϕ4

opt = ϕ2
g + π and ϕ3

opt = ϕ2
g , which are deter-

mined by ϕ2
g . We now explain why the optimized composite π

pulse is more robust than the original one based on the conven-
tional NGQG. To quantitatively compare these two types of π

pulses, we define the infidelity as δF = 1 − |〈�+,D|�δ
+,D′ 〉|2.

As shown in Fig. 4(a), compared to the original π pulse

represented by UBD(T2, T1), the infidelity for the optimized
one in Eq. (14) is much lower in the whole detuning er-
ror region considered δ ∈ [−0.1, 0.1]. In addition, optimized
composite π pulse would not introduce extra infidelity when
considering the Rabi error, as shown in Fig. 4(b). As a result
in Fig. 1(c), the dressed state can evolve to the south pole even
though the detuning error exists. Further, it helps to fulfill all
the cyclic evolution.

By inserting this composite π pulse into Eq. (8b) and keep-
ing the other two evolutions in Eqs. (8a) and (8c) unchanged,
we can realize an arbitrary optimized geometric gate. The
corresponding parameters for the Hamiltonian during each
part satisfy∫ T1

0
�(t )dt = θ0

{
ϕ(t ) ≡ ϕ1

opt = ϕ1
g , t ∈ [0, T1]

}
, (15a)

∫ T2

T1

�(t )dt = π

3

{
ϕ(t ) ≡ ϕ2

opt, t ∈ [T1, T2]
}
, (15b)

∫ T3

T2

�(t )dt = 5π

3

{
ϕ(t ) ≡ ϕ3

opt, t ∈ [T2, T3]
}
, (15c)

∫ T4

T3

�(t )dt = π

3

{
ϕ(t ) ≡ ϕ4

opt, t ∈ [T3, T4]
}
, (15d)

∫ T

T4

�(t )dt = π − θ0
{
ϕ(t ) ≡ ϕ5

opt = ϕ3
g , t ∈ [T4, T ]

}
.

(15e)

Also, we have � ≡ 0 during the whole evolution. At the end
of the evolution time, namely,

∫ T
0 �(t )dt = 10π

3 , the resultant
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FIG. 4. Infidelity for the effective π pulse which corresponds
to the evolution operator UBD(T2, T1) (blue long-dash–short-dashed
lines) in conventional NGQGs and the optimized composite pulses
(green dashed lines).

operator is

Ug,opt(T ) = U (T, T4)U (T4, T3)U (T3, T2)U (T2, T1)U (T1, 0)

= eiγ �n·�σ , (16)

which is equivalent to the conventional NGQG in Eq. (9).

As shown in Fig. 1(a), the total evolution path for the opti-
mized geometric gate is divided into five parts, which enclose
the evolution loop A → B → C → B → D → E → D → A.
Compared with the conventional NGQG, the first and the last
paths are the same. Accordingly, the azimuthal angles are
similar. In addition, the original second path B → D is fur-
ther divided into B → C → B → D → E → D. The related
azimuthal angles in these parts are

φ(t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ0 + γ + π, B → C
φ0 + γ + π, C → B
φ0 + γ , B → D
φ0 + γ + π, D → E
φ0 + γ + π, E → D.

(17)

Since φ(t ) remains constant (except for the north pole B
and the south pole D) during the evolution, the accumulated
dynamical phase is zero. Also, there are no unwanted extra
dynamical phase factors accumulated for the first and the final
evolution paths.

From Figs. 2(a)–2(c) we can see that the optimized geo-
metric gate (green dashed lines) can substantially improve the
robustness against the detuning error when compared to the
dynamical gate. For the H and S operations, it can outperform
both the conventional and conventional 2 NGQGs, and the
improvement becomes remarkable when the error is large.
Surprisingly, for the Rabi error, it still performs better than
the dynamical gate, as seen in Figs. 3(a)–3(c). By contrast,
the fidelity of the conventional 2 NGQG would decrease
drastically as the Rabi error increases. In other words, the
optimized geometric gates can mitigate both types of errors
for the dynamical gate at the same time. On the other hand,
compared to its counterparts, the evolution time for the opti-
mized geometric gate is prolonged. Whether it can still offer
fidelity improvement considering the decoherence effect in
the real experimental environment remains to be verified. This
is considered further in Sec. III.

III. PHYSICAL IMPLEMENTATION

In this section we demonstrate the error-resilient character
of our optimized geometric gates based on the transmon qubit
in a superconducting circuit [28,42,46].

A. Single-qubit gate

The energy-level diagram of the transmon qubit is shown
in Fig. 1(d), whose Hamiltonian can be described as

Ht (t ) =
2∑

m=0

(
mω − m(m − 1)

2
α

)
|m〉〈m| + 1

2

∑
n=1,2

{
�(t ) exp

[
i

(∫ t

0
ω(t ′)dt ′ − ϕ(t )

)]√
n|n − 1〉〈n| + H.c.

}
. (18)

Here ω is the intrinsic frequency, α is the anharmonicity of
the transmon qubit, and �(t ), ω(t ), and ϕ(t ) represent the
strength, frequency, and phase of the driving microwave field,
respectively. In this work we consider the two lowest energy
levels |0〉 and |1〉 as our qubit basis.

Note that, due to the weak anharmonicity in transmons, the
quantum states would leak to the third-level state |2〉, as shown
in Fig. 1(d). In order to combat this unwanted leakage error,
in this work we use the derivative removal by adiabatic gate
technique [63–65], where the pulse shape is designed as the
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sinusoidal-like form

�(t ) = �max sin2(πt/T ). (19)

Here the constant �max is the largest strength of the mi-
crowave field and T is the total evolution time for a given
gate operation. When the frequency of the microwave field
matches ω, namely, is on resonance, Ht (t ) is equivalent to
Eq. (1) when ignoring the rotating-wave approximation and
leakage effects. When considering the control errors, in our
simulation, we take the Rabi error as (1 + ε)�max. Here ε

relates to the inaccurate control of the Rabi frequency of the
microwave field. For the detuning error, it is slightly different
from the two-level case. For the transmon qubits with three
levels, the qubit-frequency drift introduces detuning error as
�max(δ|1〉〈1| + 2δ|2〉〈2|). Ignoring the third-level state |2〉, it
is then equivalent to the form in Eq. (12).

To simulate the real environment in the transmon qubit, we
use the Lindblad master equation [66] to numerically verify
the gate robustness under decoherence,

ρ̇1 = −i[Ht (t ), ρ1] +
2∑

j=1

(
κ

j
−
2
L(σ j ) + κ

j
z

2
L(χ j )

)
, (20)

where ρ1 is the density matrix of the transmon qubit, σ j =√
j| j − 1〉〈 j| is the standard lower operator, χ j = | j〉〈 j| is

the projector for the jth energy level, L(G) = 2Gρ1G† −
G†Gρ1 − ρ1G†G is the Lindblad operator for the operator
G, and κ

j
− and κ

j
z are the relaxation and dephasing rates of

the transmon, respectively. In our simulation, we choose the
parameters of the decoherence rates from the state-of-the-
art experiments, κ1

− = κ1
z = 1

2κ2
− = 1

2κ2
z = κ = 2π × 4 kHz

[67,68].
In the simulation, the parameters for the optimized geo-

metric gate are (θS, γS ) = (π, π/4), (θT , γT ) = (π, π/8), and
(θH , γH ) = (π/4, π/2) for the S, T , and H gates, respectively,
with φS = φT = φH = 0. On the other hand, to achieve a
good performance for the gate, we set α = 2π × 320 MHz,
with �max = 2π × {43, 58, 58} MHz for the {H, S, T } gates,
respectively. With the above parameter settings, we obtain
the gate fidelity as FH = 99.90%, FS = 99.92%, and FT =
99.92%. The gate robustness of the optimized geometric
gates considering decoherence is shown in Figs. 2(d)–2(f) and
3(d)–3(f). One can see that even though the performance for
the optimized geometric gates slightly decreases due to long
evolution time, these gates still outperform their counterparts.
To further reveal the performance of the gates, in Fig. 5 we
plot the fidelity for the H gate as a function of the detun-
ing (Rabi) errors and decoherence rate. It is shown that the
optimized geometric gate can substantially improve the gate
fidelity for a rather wide range of decoherence rate κ and
errors δ and ε.

B. Two-qubit gate

Here we discuss how to realize an optimized geometric
entangling gate for the transmon qubits. The two-qubit gate
can be constructed through two capacitively coupled transmon
qubits by parametric modulation [69–71]. The Hamiltonian
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FIG. 5. Fidelity of the H gate as a function of decoherence and
(a)–(d) detuning error and (e)–(h) Rabi error for (a) and (e) dy-
namical gates, (b) and (f) the conventional NGQG, (c) and (g) the
conventional 2 NGQG, and (d) and (h) the optimized geometric gate.

for the coupled system is

Hc =
∑

i=A,B

2∑
k=0

(
kωi − k(k − 1)

2
αi

)
|k〉i〈k|

+ gAB

(
1∑

m=0

√
m + 1|m〉A〈m + 1|

⊗
1∑

n=0

√
n + 1|n + 1〉B〈n| + H.c.

)
, (21)

where A and B denote the transmon qubits A and B, respec-
tively, and gAB is the qubit-qubit coupling strength between
the two transmon qubits A and B. Applying a well-controlled
microwave ωA(t ) = ωA + Ḟ (t ) to the first transmon qubit A,
where F (t ) = εL cos(ν1t + η), the Hamiltonian in the interac-
tion picture is

HI (t ) = gAB(|10〉〈01|ei�1t e−iβ1 cos(ν1t+η)

+
√

2|11〉〈02|ei(�1+αB )t e−iβ1 cos(ν1t+η)

+
√

2|20〉〈11|ei(�1−αA )t e−iβ1 cos(ν1t+η) + H.c.), (22)

where �1 = ωA − ωB is the frequency difference between
the two qubits and β1 = εL/ν1. As shown in Fig. 1(e), this
Hamiltonian can introduce a transition in the single-excitation
subspace |10〉 ↔ |01〉; it can also introduce transitions in the
double-excitation subspace |02〉 ↔ |11〉 and |11〉 ↔ |20〉. By
meeting the resonance condition �1 = ν1, one can choose
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FIG. 6. Physical implementation of the iSWAP gate in superconducting transmon qubits. (a) The iSWAP gate as a function of the tunable
parameters �1 and β1. (b) Evolution of the gate fidelity of the optimized iSWAP gate as a function of time. (c) and (d) Gate fidelity for the
detuning and Rabi errors without decoherence effects. Note that all of the above simulation results are based on the full Hamiltonian in Eq. (22).

the single-excitation subspace. Alternatively, by matching
ν1 = �1 + αB or ν1 = �1 − αA, one can also pick up the
double-excitation subspace. In this work we focus on the
single-excitation subspace. To simplify the Hamiltonian, we
use the Jacobi-Anger identity

exp[−iβ1 cos(ν1t + η)]

=
∞∑

k=−∞
(−i)kJk (β1) exp[−ik(ν1t + η)], (23)

where J−k (β1) = (−1)kJk (β1), with Jk (β1) Bessel functions
of the first kind. Neglecting the high-order oscillating terms
by the rotating-wave approximation, the effective resonant
interaction Hamiltonian in the single-excitation subspace
{|10〉, |01〉} can be written as

H ′
I (t ) = 1

2 g′
AB(|10〉〈01|e−i(η+π/2) + H.c.). (24)

Here g′
AB = 2J1(β1)gAB is the effective coupled strength

which can be modulated by changing the value of β1. Similar
to the single-qubit case, one can implement the optimized
two-qubit geometric gates in the single-excitation subspace
{|10〉, |01〉}, which can also be regarded as an effective two-
level system. Specifically, the parameters are

g′
ABτ1 = ϑ, η ≡ ξ − π, t ∈ [0, τ1],

g′
AB(τ2 − τ1) = π

3
, η ≡ ξ + γ ′ + π, t ∈ [τ1, τ2],

g′
AB(τ3 − τ2) = 5π

3
, η ≡ ξ + γ ′, t ∈ [τ2, τ3],

g′
AB(τ4 − τ3) = π

3
, η ≡ ξ + γ ′ + π, t ∈ [τ3, τ4],

g′
AB(τ − τ4) = π − ϑ, η ≡ ξ − π, t ∈ [τ4, τ ]. (25)

Here, by setting ϑ = γ ′ = π/2 and ξ = 0, we can realize an
iSWAP gate. Alternatively, one can also obtain the iSWAP gate
in the dynamical way or just design it using the typical NGQG
scheme [42,46].

We further consider the performance of the designed op-
timized iSWAP gate. In our simulation, the parameters are set
as gAB = 2π × 13.6 MHz, αA = 2π × 320 MHz, and αB =
2π × 343 MHz. Below, we first consider the fidelity of our
optimized iSWAP gate as a function of the tunable parameters
�1 and β1. The simulation results in Fig. 6(a) show that
the optimized iSWAP gate can reach a high fidelity of more
than 99.60% with the decoherence rate κ = 2π × 4 kHz. As
shown in Fig. 6(b), when taking β1 = 1.26 and �1 = 2π ×
554 MHz, the gate fidelity can be as high as 99.66% with the
same decoherence rate κ = 2π × 4 kHz. Note that all of the
above simulation results are based on the full Hamiltonian in
Eq. (22).

To further verify the robustness of the optimized geometric
iSWAP gate, we take both types of errors into account. The de-
tuning error comes from the qubit-frequency drifts of the two
qubits. This would change the resonance condition as �1 →
�1 + δg′

AB. The effective Rabi error ε affects the effective
coupling strength that can be modeled as g′

AB → (1 + ε)g′
AB.

042615-8



NONADIABATIC GEOMETRIC QUANTUM GATES BY … PHYSICAL REVIEW A 109, 042615 (2024)

-0.2 -0.1 0 0.1 0.2
0

2

4

6

8

/2
(k

H
z)

0.975

0.
97

5

0.99

0.
99

-0.1 0 0.1 0.2

0.975

0.
97

5

-0.1 0 0.1 0.2

0.975

0.
97

5

-0.1 0 0.1 0.2

0.975

0.99

0.
99 0.

99
5

-0.2 -0.1 0 0.1 0.2
0

2

4

6

8

/2
(k

H
z)

0.
97

5

0.99

0.
99

-0.1 0 0.1 0.2

0.975

0.
97

5

-0.1 0 0.1 0.2

0.975

0.
97

5

-0.1 0 0.1 0.2

0.
99

5

0.94

0.95

0.96

0.97

0.98

0.99

(b) (c)

(e) (f) (g)

(d)(a)

(h) G
at

e 
Fi

de
lit

y

FIG. 7. Fidelity of the iSWAP gate as a function of the decoherence rate and (a)–(d) Rabi error and (e)–(h) detuning error for the (a) and (e)
dynamical gates, (b) and (f) conventional NGQG, (c) and (g) conventional 2 NGQGs, and (d) and (h) optimized geometric gates. Note that all
of the above simulation results are based on the Hamiltonian in Eq. (22).

As we can see in Figs. 6(c) and 6(d), without considering the
decoherence effect, the fidelity for the optimized iSWAP gate
can greatly surpass its counterparts for both types of errors in
the whole region considered. In addition, we further analyze
the gate performance by taking both the decoherence and error
effects into account. The contour plot results are shown in
Fig. 7. Compared to other types of gates, our designed scheme
can realize fidelity higher than 99% in a rather wide region
of decoherence rate and errors, which faithfully verifies the
superiority of our optimized geometric gate.

IV. CONCLUSION

In this work we have proposed a general scheme to im-
plement the optimized geometric gate based on composite
pulses. The key to realizing the optimized geometric gate is to
refine the evolution path which is robust to the detuning error.
Meanwhile, the dynamical phase during the evolution is not
accumulated. To this end, we established a set of optimized
composite pulses, which helps enclose cyclic evolution for
the geometric gate even though the detuning error exists. The
numerical simulation results show that the obtained optimized
geometric gate can mitigate both the Rabi and detuning errors
at the same time with or without the presence of the decoher-
ence effect. All these results indicate that our scheme provides
a promising approach to improve conventional NGQGs and
achieve high-fidelity quantum computation.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grants No. 11905065, No. 62171144,
and No. 12305019) and the Natural Science Foundation of
Guangxi (Grants No. AD22035186 and No. 2021GXNS-
FAA220011).

APPENDIX A: ERROR ROBUSTNESS ANALYSIS FOR
OTHER TYPES OF GATES

In the main text we demonstrated the robustness of the
universal gate set {H, S, T } for our optimized geometric gate.
To fully verify its performance, here we further discuss the
case for the x̂-axis rotation, which is useful for randomized
benchmarking in experiments. By performing a Taylor series
expansion of the fidelity, we can analytically compare the
robustness performance for various gates. Here the fidelity
is defined as F = Tr(V †U )/2, where V is the ideal target
rotation and U is the actual rotation. For the Rabi error, we
can expand the fidelity of the gates as

F ε
dyn(x̂, γ ) � 1 − γ 2

8
ε2 + O(ε3),

F ε
con(x̂, γ ) � 1 − π2

2
sin4

(γ

4

)
ε2 + O(ε3),

F ε
con,2(x̂, γ ) � 1 − π2

2
cos4

(γ

4

)
ε2 + O(ε3),

F ε
opt(x̂, γ ) � 1 − π2

2
sin4

(γ

4

)
ε2 + O(ε3). (A1)

Here F ε
dyn(x̂, γ ), F ε

con(x̂, γ ), F ε
con,2(x̂, γ ), and F ε

opt(x̂, γ )
denote the fidelity of the x̂-axis rotation around the angle γ for
the dynamical gate, the conventional geometric gate, the con-
ventional 2 geometric gate in Refs. [46,47], and our optimized
geometric gate, respectively. In the region −π � γ � π ,
we can easily demonstrate the relations F ε

con,2(x̂, γ ) �
F ε

dyn(x̂, γ ), F ε
dyn(x̂, γ ) � F ε

con(x̂, γ ), and F ε
dyn(x̂, γ ) �

F ε
opt(x̂, γ ), which means that the dynamical gate is sensitive

to the Rabi error when compared to the conventional
geometric and optimized geometric gates. In addition, we find
F ε

con(x̂, γ ) = F ε
opt(x̂, γ ), namely, our optimized geometric
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gate has the same robustness as the conventional geometric
gate against the Rabi error.

For the detuning error, we can expand the fidelity as

F δ
dyn(x̂, γ ) � 1 + 1

4
[cos(γ ) − 1]δ2 + O(δ3),

F δ
con(x̂, γ ) � 1 − 2 cos4

(γ

4

)
δ2 + O(δ3),

F δ
con,2(x̂, γ ) � 1 − 2 sin4

(γ

4

)
δ2 + O(δ3),

F δ
opt(x̂, γ ) � 1 + 1

4
[− cos(γ ) − 1]δ2 + O(δ3). (A2)

From Eqs. (A2), in the region −π � γ � π , we have the
relations F δ

con(x̂, γ ) � F δ
dyn(x̂, γ ), F δ

dyn(x̂, γ ) � F δ
con,2(x̂, γ ),

and F δ
con(x̂, γ ) � F δ

opt(x̂, γ ). These results suggest that the
conventional geometric gate is more sensitive than the dynam-
ical counterpart and our optimized geometric gate performs
better than the conventional geometric gate. However, when
comparing the optimized geometric gate with the dynamical
gate and the conventional 2 geometric gate, the case be-
comes a little complex. In the range |γ | ∈ [π/2, π ] we find
F δ

dyn(x̂, γ ) � F δ
opt(x̂, γ ), while in the region |γ | ∈ [2π/3, π ]

we have F δ
con,2(x̂, γ ) � F δ

opt(x̂, γ ). This means that our opti-
mized geometric gate can only tolerate effects for a specific
region. The case for the ŷ-axis rotation is similar.

APPENDIX B: DEMONSTRATION OF ZERO DYNAMICAL
PHASE ACCUMULATION NEAR THE NORTH

AND SOUTH POLES

As shown in Eqs. (11) and (17), the azimuthal angle φ(t )
at the north pole B and the south pole D is not continu-
ous. At these points, the derivatives φ̇(t ) are not zero since
φ(t ) abruptly changes. To calculate the dynamical phase,
we should use Eq. (7a), i.e., the definition of the dynamical
phase. Below we demonstrate that even though φ(t ) jumps
at these points, the dynamical phase accumulated is still
zero.

We take the north pole as an example. First, we assume
there is a infinitesimal jump time δt with lim δt = 0. Suppose
the Hamiltonian before and after jumping within the time

interval [t − δt, t + δt] is

H(t ± δt ) = �(t ± δt )

2
[cos ϕ(t ± δt )σx + sin ϕ(t ± δt )σy]

= �(t ′)
2

[cos ϕ(t ′)σx + sin ϕ(t ′)σy]. (B1)

Here t ′ = t ± δt denotes the time before and after the jump-
ing. On the other hand, the polar angle at the north pole
remains unchanged, i.e., θ = 0 before and after jumping.
Therefore, the dressed state at the north pole is thus

|�+(t ± δt )〉 = eiφ(t±δt )|0〉 = eiφ(t ′ )|0〉. (B2)

Then, during the jumping interval, the dynamical phase accu-
mulated can be calculated by inserting H(t ± δt ) and |�+(t ±
δt )〉 into Eq. (7a), for which we find

γ ′
d = γ t−δt

d + γ t+δt
d , (B3)

where

γ t−δt
d = −

∫ t ′

t ′−δt
〈�+(t − δt )|H(t − δt )|�+(t − δt )〉dt,

γ t+δt
d = −

∫ t ′+δt

t ′
〈�+(t + δt )|H(t + δt )|�+(t + δt )〉dt .

(B4)

Specifically, the related antiderivative is∫
〈�+(t ± δt )|H(t ± δt )|�+(t ± δt )〉dt

=
∫

e−iφ(t ′ )〈0|�(t ′)
2

[cos ϕ(t ′)σx + sin ϕ(t ′)σy]eiφ(t ′ )|0〉dt

=
∫

�(t ′)
2

〈0|[cos ϕ(t ′)σx + sin ϕ(t ′)σy]|0〉dt

=
∫

�(t ′)
2

[cos ϕ(t ′)〈0|1〉 + i sin ϕ(t ′)〈0|1〉]dt

= 0. (B5)

Thus we have

γ ′
d = γ t−δt

d + γ t+δt
d = 0, (B6)

namely, during the jumping interval δt , the dynamical phase
accumulated is still zero. The case for the south pole can be
understood in the same way.
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